递推关系式
- 格式:ppt
- 大小:560.00 KB
- 文档页数:17
递推关系知识点总结一、递推关系的基本概念1.1 递推关系的定义递推关系是一种反映事物发展变化规律的数学模型。
通常来说,递推关系是指数列的前项与后项之间的关系。
例如,斐波那契数列就是一个经典的递推关系,它的递推式是F(n)=F(n-1)+F(n-2),其中F(n)表示第n个斐波那契数。
1.2 递推关系的元素递推关系一般包括以下几个元素:- 初始条件:递推关系的第一个数值,通常是已知的特定值。
- 递推公式:描述数列前后项之间关系的公式,用于计算数列后续项的值。
- 递推方程:将递推公式用代数方式表示的方程。
1.3 递推关系的类型根据递推公式的性质和形式,递推关系可以分为线性递推关系、非线性递推关系、齐次递推关系、非齐次递推关系等类型。
不同类型的递推关系有不同的性质和求解方法。
二、递推关系的性质2.1 线性递推关系的性质线性递推关系具有以下性质:- 线性组合性:若数列{an}与{bn}分别满足递推关系an=an-1+an-2和bn=bn-1+bn-2,则任意常数c1和c2的线性组合{c1an+c2bn}也满足递推关系an=an-1+an-2。
- 独立性:若数列{an}和{bn}都满足递推关系an=an-1+an-2,则其线性组合{an+bn}也满足该递推关系。
2.2 齐次递推关系的性质齐次递推关系是指递推关系的递推式中不包含任何常数项或者其他特殊项。
对于齐次递推关系,如果其通解为an=cn1^n+cn2^n2,其中c1和c2是任意常数,n1和n2是特征方程的两个不同实根,那么其特解为包含初始条件的实数数列。
2.3 非齐次递推关系的性质非齐次递推关系是指递推关系的递推式中包含有常数项或者其他特殊项。
对于非齐次递推关系,如果其通解为an=cn1^n+cn2^n2+fn,其中cn1^n+cn2^n2是其对应的齐次递推关系的通解,fn是递推式的非齐次项对应的特解。
三、递推关系的求解方法3.1 通项公式法通项公式法是求解递推关系最直接的方法。
组合数学讲义3章递推关系递推关系§3.1 基本概念(一)递推关系定义3.1.1 (隐式)对数列aii 0 和任意自然数n,一个关系到an和某些个ai i n 的方程式,称为递推关系,记作F a0,a1, ,an 0 (3.1.1)__例an an 1 an 2 a0 n 0an 3an 1 2an 2 2a1 1 0定义3.1.1'(显式)对数列aii 0 ,把an与其之前若干项联系起来的等式对所有n≥k均成立(k为某个给定的自然数),称该等式为ai 的递推关系,记为an F an 1,an 2, ,an k (3.1.1)'例an 3an 1 2an 2 2a1 1 (二)分类(1)按常量部分:① 齐次递推关系:指常量=0,如Fn Fn 1 Fn 2;② 非齐次递推关系,即常量≠0,如hn 2hn 1 1。
(2)按ai的运算关系:组合数学讲义① 线性关系,F是关于ai的线性函数,如(1)中的Fn与hn均是如此;② 非线性关系,F是ai的非线性函数,如hn h1hn 1 h2hn2 hn 1h1。
(3)按ai的系数:① 常系数递推关系,如(1)中的Fn与hn;② 变系数递推关系,如pn npn 1,pn 1之前的系数是随着n而变的。
(4)按数列的多少:① 一元递推关系,其中的方程只涉及一个数列,如(3.1.1)和(3.1.1)'均为一元的;② 多元递推关系,方程中涉及多个数列,如an 7an 1 bn 1bn 7bn 1 an 1(5)显式与隐式:yn 1(三)定解问题xn 1yn h yn 1 2 yn 1定义3.1.2 (定解问题)称含有初始条件的递推关系为定解问题,其一般形式为F a0,a1, ,an 0,(3.1.2)a0 d0,a1 d1, ,ak 1 dk 1所谓解递推关系,就是指根据式(3.1.1)或(3.1.2)求an的与a0、a1、、an-1无关的解析表达式或数列{an}的母函数。
分式型递推数列通项公式的求法步骤一:观察数列的前几项,寻找规律。
首先,观察数列的前几项,尝试找出数列之间的关系和规律,看看能否从中找到一些线索。
特别地,注意每一项与其前一项之间的关系,这可能是我们找到递推关系的关键。
例如,给定数列的前几项为:2,5/2,13/5,34/13,...可以观察到每一项的分子和分母都与前一项有关,于是可以猜测数列的递推关系可能是以前一项的分子和分母为基础。
步骤二:列出递推关系式。
基于观察到的规律,我们可以将递推关系表示为一个等式。
通常,在分式型递推数列中,递推关系可以表示为:an = (an-1 ) * f(n)其中,an表示第n项,an-1表示前一项,f(n)表示与前一项相关的一个函数。
例如,对于给定的数列,我们可以猜测递推关系为:an = (an-1 ) * (2n+1) / (n+1)步骤三:证明递推关系。
一旦我们猜测出递推关系,我们需要证明它的正确性。
这可以通过数学归纳法来完成。
首先,我们将递推关系带入前两项,看看是否能够成立。
例如,对于给定的数列,我们将递推关系带入前两项,得到:a2=(a1)*(2*2+1)/(2+1)=(5/2)*5/3=25/6确实,对于数列的前两项是符合递推关系的。
步骤四:求解递推数列的通项公式。
一旦我们证明了递推关系的正确性,我们可以继续求解数列的通项公式。
为了简化计算,我们可以将递推关系展开:an = a1 * f(2) * f(3) * ... * f(n)在猜测的递推关系的情况下,我们可以得到:an = a1 * (2/1) * (3/2) * (4/3) * ... * (n+1/n)化简后,可以得到:an = a1 * (n+1)因此,数列的通项公式为:an = a1 * (n+1)总结:上述步骤提供了求解分式型递推数列通项公式的一般方法。
关键是观察数列的规律,并尝试猜测递推关系,然后通过数学归纳法来证明递推关系的正确性,并最终确定数列的通项公式。
二中二公式表二中二公式是组合数学中的经典定理,是指从n个不同元素中取出k个元素的组合数量,即C(n,k)可以表示为∑C(n-1,m-1),其中m=1,2,...,k。
该公式有两种常见的表达方式,一种是利用递推关系式进行计算,另一种是通过简化组合式的形式推导出来。
一、递推关系式递推关系式是利用已知的n-1个元素取k-1个元素和n-1个元素取k个元素的组合数计算n个元素取k个元素的组合数。
具体来说,可以利用以下两个递推式计算C(n,k):C(n,k) = C(n-1,k-1) + C(n-1,k)C(n,0) = 1,C(n,n) = 1其中C(n,k)表示从n个元素中取出k个元素的组合数。
这两个递推式可以递归地计算所有的组合数,时间复杂度为O(nk)。
二、简化组合式的形式另一种常见的求解二中二公式的方法是通过简化组合式的形式得到。
具体来说,可以利用以下等式计算C(n,k):C(n,k) = n!/[k!(n-k)!]= (n-k+1)/1 * (n-k+2)/2 * ... * n/k= C(n-1,k-1) * n/k其中n!表示n的阶乘,即n!=n*(n-1)*...*2*1。
这种方法的时间复杂度为O(k),比递推关系式的时间复杂度低。
三、应用二中二公式广泛应用于组合数学、概率论、统计学等领域。
例如,在概率论中,可以利用二中二公式计算从n个球中取k个球的概率;在图论中,可以利用二中二公式计算从n个点中取k个点形成的子图的数量;在密码学中,可以利用二中二公式计算从n个字母中取k个字母组成的密码的种数。
总之,二中二公式是组合数学中的核心定理之一,具有广泛的应用价值。
掌握它的计算方法和应用场景,对于深入理解和应用组合数学至关重要。
通项公式和递推关系
通项公式是指数列中的每一项与项号之间的关系式。
通项公式可以通过观察数列的规律、使用递推关系或利用数学方法推导得出。
递推关系是数列中相邻项之间的关系式。
通过已知的前几项,可以通过递推关系计算出后面的项数。
递推关系可以是线性关系、二次关系、几何关系等。
举例来说:
1.等差数列的通项公式和递推关系:
通项公式:an = a1 + (n-1)d
其中,an表示第n项,a1表示首项,d表示公差。
递推关系:an = an-1 + d
2.等比数列的通项公式和递推关系:
通项公式:an = a1 * r^(n-1)
其中,an表示第n项,a1表示首项,r表示公比。
递推关系:an = an-1 * r
除了等差数列和等比数列,还有其他类型的数列,如斐波那契数列、等差三角数列等,它们都有各自的通项公式和递推关系。
拓展:
还有一种特殊的数列称为递归数列,它的每一项都是前面若干项
的函数。
递归数列的通项公式无法通过递推关系直接得出,而是需要
找到项之间的递推规律,通过前面的项算出后面的项。
递归数列常见
的例子是费氏数列,其通项公式为:
Fn = Fn-1 + Fn-2,其中F1 = F2 = 1。
有时候,数列的规律不仅仅通过递推关系来确定,还需要借助于
其他数学工具,如组合数学中的排列组合、二项式定理等。
在某些情
况下,数列的通项公式可能无法通过已知的方法求得,这时候需要借
助于数值计算、数学推论或者近似方法来获取数列的一些特性和性质。
利用几类经典的递推关系式求通项公式经典的递推关系式是一种常见的数学问题,其中通项公式是递推关系式的一般解。
在数学中,几类经典的递推关系式包括等差数列、等比数列以及斐波那契数列。
一、等差数列等差数列是一种常见的数列,每一项与前一项之差保持不变。
等差数列的递推关系式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
利用等差数列的递推关系式可以求得通项公式:an = a1 + (n-1)d二、等比数列等比数列是一种常见的数列,每一项与前一项之比保持不变。
等比数列的递推关系式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。
利用等比数列的递推关系式可以求得通项公式:an = a1 * r^(n-1)三、斐波那契数列斐波那契数列是一种著名的数列,每一项是前两项之和。
斐波那契数列的递推关系式如下:fn = fn-1 + fn-2其中,fn表示第n项,f1和f2分别表示斐波那契数列的前两项。
利用斐波那契数列的递推关系式可以求得通项公式:fn = [(1+sqrt(5))^n - (1-sqrt(5))^n] / (2^n * sqrt(5))其中,sqrt(5)表示5的平方根。
四、其他递推关系式除了等差数列、等比数列和斐波那契数列,还有许多其他经典的递推关系式。
例如,阶乘数列是一种常见的递推关系式,每一项是前一项与当前项之积。
阶乘数列的递推关系式如下:an = an-1 * n其中,an表示第n项,n表示当前项。
利用阶乘数列的递推关系式可以求得通项公式:an = n!其中,n!表示n的阶乘。
总结起来,利用等差数列、等比数列、斐波那契数列以及其他经典递推关系式,可以推导出它们的通项公式。
这些递推关系式和通项公式在数学问题中具有广泛的应用,能够帮助我们快速计算数列中任意项的数值。