第2章天线与传播
- 格式:ppt
- 大小:1012.50 KB
- 文档页数:59
第二章 天线的基本特性参数2.1 方向图函数和方向图天线的最基本特性是它的方向特性。
对发射天线来说,方向特性通常是表示在相同距离条件下天线的远区辐射场与它的空间方向之间的关系。
描述天线的方向特性,最常用的是方向图函数和方向图。
方向图函数是定量表示远区天线辐射能量在空间相对分布情况的一个参数,通常是指远区同一距离处天线辐射场强(或能流密度)的大小与方向坐标关系的函数。
若用图形把它描绘出来,便是天线方向图。
其中表示场强大小与方向关系的,称为场强振幅方向图,表示能流密度大小与方向关系的,称为功率方向图。
习惯上又把场强振幅方向图简称为场强方向图,或进一步简称为方向图。
把场强振幅方向图函数用),(θf 表示,或进一步简写成f (,)θϕ。
把最大值为1的方向图称为归一化方向图。
把归一化场强振幅方向图函数用F (,)θϕ表示,或进一步简写成F (,)θϕ。
方向图一般是三维立体图形。
为了简单,大多数实际应用场合中通常只画出两个具有代表性的正交平面上的方向图。
这两个正交的平面称为主平面。
主平面经常选取水平面(平行于地面的面)和垂直面(垂直于地面的面),或E 面(包含天线最大辐射方向及其电场方向的面)和H 面(包含天线最大辐射方向及其磁场方向的面)。
有时也选取XY 面、YZ 面、ZX 面等。
在所有方向的辐射都相同的天线称为无方向性天线。
显然无方向性天线的立体方向图呈球状,它在任一平面的方向图均为园。
在某一平面上无方向性的天线称为该平面全向天线,它在该平面上的方向图为园。
天线的平面方向图有两种表示方式。
一种是以直角坐标表示的,称为直角坐标方向图.。
此时横轴代表角度(以度为单位),纵轴代表函数值。
另一种是以极坐标表示的,称为极坐标方向图。
它用极角(射线与极轴的夹角)代表角度(以度为单位),用射线的长度代表函数值。
极坐标方向图由于直观形象,应用很广。
天线的平面方向图一般呈花辫状。
我们把它的每一个辫称为波辫。
其中把包含最大辐射方向的一个辫称为主辫,位于主辫相反方向的辫称为后辫,与主辫完全相同的辫称为栅辫。
智能天线的研究及改进摘要智能天线利用数字信号处理技术,产生空间定向波束,使天线主波束对准期望用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。
智能天线分为两大类切换波束智能天线与自适应阵智能天线。
智能天线技术是第三代移动通信系统的关键技术之一,智能天线技术将会在未来移动通信系统中发挥重要作用。
本文在简要介绍智能天线的基本原理、系统组成的基础上,详细论述了智能天线的自适应算法和技术优势及其在中的应用。
引言随着移动通信产业的高速发展及其用户的飞速增长,市场对移动通信技术的改进和更新提出了更高的要求。
而如何提高无线频谱的使用效率成为近些年来各种新技术所面临解决的核心问题。
第三代移动通信系统是正在全力投入开发的系统,其最基本的特征是智能信号处理技术。
智能信号处理模块将成为它的基本功能模块,实现基于话音业务为主的多媒体数据通信。
目前最典型的智能天线技术是实现移动通信扩大通信容量的关键技术之一。
智能天线技术作为有效解决这一问题的新技术已成功应用于移动通信系统,并通过对无线数字信号的高速时空处理,极大地改善了无线信号的传输,成倍地提高了系统的容量和覆盖范围,从而极大地改善了频谱的使用效率。
1 智能天线的基本概念及组成1.1 智能天线的基本概念智能天线, 即具有一定程度智能性的自适应天线, 由多个天线单元组成, 每一个天线后接一个加权器即乘以某一个系数, 这个系数通常是复数, 既调节幅度又调节相位,而在相控阵雷达中只有相位可调, 最后用相加器进行合并输出, 这种结构的智能天线只能完成空域处理同时具有空域、时域处理能力的智能天线在结构上相对复杂些,每个天线后接的是一个延时抽头加权网结构上与时城均衡器相同。
自适应或智能的主要含义是指这些加权系数可以恰当改变和自适应调整。
上面介绍的是智能天线用作接收天线时的结构,当用它进行发射时结构稍有变化,加权器或加权网络置于天线之前,也没有相加合并器。
第三章 MF/HF单边带通信设备第一节电波与天线的基本知识GMDSS系统中,无论是地面系统还是空间系统,都属于无线电通信系统,任何无线电通信系统都包括发射端、接收端、传输信道三全环节,其中无线电波的传播对通信质量有重大的影响,作为通信人员首先应了解无线电波的传播规律。
一、无线电波的基本概念1、无线电波的产生与传播无线电波实质上就是一种电磁波:频率10Hz~1023Hz2、波长、速度、频率的关系λf=c3、无线电波的波段划分二、无线电波的传播途径及其特点1、地波传播沿地表面绕射传播的波:传播距离与频率有关,波长越长,距离越远与地表导电性有关稳定性好,基本不受气候条件影响2、空间传播在地表面上空至少一个波长以上的空间传播3、电离层传播(天线)通过电离层传播:不稳定,有衰落现象;存在盲区(寂静区)三、常用船舶天线1、天线基本理论(1)天线的方向性(2)天线的效率(3)天线的辐射电阻(4)天线的电流分布2、船舶常用天线介绍(1)T型(2)倒L型(3)直立桅杆式天线(4)鞭状天线第三章MF/HF单边带通信设备一、MF/HF单边带通信设备概述GMDSS系统是原有遇险系统的自然发展,是在原有的MF/HF/VHF通信系统进行改造而形成的,在GMDSS系统中,MF/HF不仅要完成无线电话业务,而且还要完成遇险报警,搜救协调通信,搜救现场通信及日常通信,为了保证GMDSS地面通信系统各种功能的实现。
对MF/HF设备提出新的要求:1、设备应形成组合式结构2、设备应有一个合理的操作程序,最重要的是:自动报警;自动值守;自动通信;技术上收发信机能遥控;有频率扫描及频率预置功能,能自动调谐。
3、开机1分钟就能工作,频率转换时间不超过15S4、可靠性高,能连续工作24小时5、发射类型增加了J2B或F1B发射种类:由三个符号组成的第一个符号:主载波调制的种类例:J:单边带抑制载波;第二个符号:调制载波的信号性质“1”:无调制副载波长包含数字信息的单信道“2”、有调调制副载波长包含数字信息的单信道“3”、包含有模拟信息的单信道第三个符号:表示所发射的信息种类B:自动接收电报E:电话C:传真二、通信的一般概念信息源——发射设备——信道——接收设备——接收终端三、单边带信号的特点1、调幅波ωc ωc+ Ωωc- Ω讨论:信息包含在两个边带中包含信息部分和不含信息部分的比例B=2Ω调幅波的包络与调制信号的波形完全一样结论:为了减小功率浪费,只用单边带,就能满足通信的整个过程。
电磁波传播与天线电磁波在日常生活中无处不在,是一种触手可及却又难以捉摸的存在。
在电信、科研、医疗、军事等各个领域,电磁波发挥着不可小觎的重要作用。
本文将围绕电磁波传播与天线两个主题进行探讨,分析电磁波传播的一般过程和天线的种类、性能以及天线与电磁波传播之间的关系。
电磁波传播是一个复杂的物理过程,但在最基本的层面上,它涉及两个部分:发送端和接收端。
发送端是电磁波的来源,它可以是无线通信设备、雷达系统或者其它任何能产生电磁波的设备。
接收端则是电磁波的接收者,它可以是电磁波的探测器、接收天线等。
在传播过程中,电磁波会经历引用、吸收、散射和干扰等复杂的物理过程。
与电磁波传播密不可分的就是天线。
天线是进行电磁波的发射和接收的设备,其作用是将有源电路的电信号转换成电磁波进行发射,或者将接收到的电磁波转换成电信号。
其种类多样,包括偶极天线、阵列天线、平面天线、螺旋天线等等,各类天线都有各自的性能特性,可以根据实际需求进行选择。
关于天线与电磁波传播的关系,可以从以下几个方面进行阐述。
首先,天线的性能直接影响到电磁波的传播效果。
好的天线可以提高电磁波的发射质量,提高电磁波的接收明度,从而实现更远距离的通信。
其次,天线的设计与制作与电磁波的性质有着直接关系。
例如,天线的尺寸必须与预期的电磁波波长匹配,才能保证最佳的发射和接收效果。
此外,天线的位置、方向以及环境因素等,也影响到电磁波的传播。
总的来说,电磁波传播与天线是科技进步中的重要一环。
通过对电磁波传播的深入理解与高效的天线设计,我们可以推动无线通信等领域的快速发展,为人类社会带来更大的便利。
在未来的科研中,研究电磁波传播与天线将会成为最具挑战性的任务之一。