变频器载波频率的设置及注意事项
- 格式:doc
- 大小:81.50 KB
- 文档页数:2
变频器常用参数设置方法
变频器是一种电力调节设备,主要用于控制交流电机的转速和扭矩。
为了使变频器能够正常工作,需要对其进行一些参数设置。
以下是变频器常用参数设置方法:
1. 频率设定:根据实际需求设置变频器输出的频率值。
一般情况下,频率设定值与需求的转速成正比。
2. 过载保护设定:根据实际负载情况设置变频器的过载保护值。
过载保护值过小,可能导致变频器过载,影响设备正常运转;过大则容易误判。
3. 加速时间和减速时间设定:根据需要加速和减速的时间来设定变频器相应的参数。
加速时间过短,会导致设备运转不稳定;减速时间过短,则可能导致设备因惯性而损坏。
4. PID参数设定:PID参数是用于控制变频器输出电压的参数。
根据实际控制需求来设定PID参数,以保证设备能够稳定运转。
5. 过电流保护设定:根据实际需求设定变频器过电流保护值。
过电流保护值过小,可能导致设备损坏;过大则容易误判。
6. 过压保护设定:根据实际需求设定变频器过压保护值。
过压保护值过小,可能导致设备损坏;过大则容易误判。
7. 过热保护设定:根据实际需求设定变频器过热保护值。
过热保护值过小,可能导致设备损坏;过大则容易误判。
8. 转矩控制设定:根据实际需求设置变频器输出的转矩。
转矩控制值过小,可能导致设备负载不足;过大则容易损坏设备。
以上是变频器常用参数设置方法,需要根据实际需求进行相应的调整。
在操作过程中,需要注意安全问题,以免造成不必要的损失。
变频器载波频率的设置及注意事项变频器的载波频率,是影响变频器控制性能,长期稳定性及可靠性的一个关键因素,根据不同应用场合、负载大小、性能要求等,对载波做合理的设置显得尤为重要。
一,各型号机器的默认出厂载频二,载波频率对温升的影响1,载波频率对变频器温升的影响:载波频率越高,变频器IGBT温升越大,反之亦然。
2,载波频率对电机温升的影响:载波频率越高,电机温升越低,反之依然。
3,出厂载波频率的设置,是在额定负载下,综合考虑变频器温升,电机温升后的最小载波设置。
如果用户设置载波频率过大,会影响变频器长期稳定性。
三,载波频率对电机噪声的影响1,对于SD90/SD90H机型,提高低频载波频率(F00.16)可以降低电机低频运行下的噪声,但低频运行下的最大力矩输出会有一定的下降。
提高高频载波频率(F00.15),可以降低电机高频运行下的噪声。
2,对于SD90/SD90H机型,F07.29为PWM模式,出厂设置为1(2/3相调制切换);修改F07.29=0(3相调制)后,可降低电机在高频运行下的噪声。
3,对于SD200/SD300机型,低频运行下的载频是强制设置的,通过修改F0C.17=0可以使得强制载频无效,此时高低频运行下使用同样载频设置F00.15。
4,对于SD200/SD300机型,F0C.16为PWM模式,出厂设置为1(2/3相调制切换);修改F0C.16=0(3相调制)后,可降低电机在高频运行下的噪声。
四,载波频率与变频器实际输出频率的调整关系载波频率的出厂值设置,都是根据50Hz标准异步电机的满负荷测试标准来设定的,在实际50Hz实际使用中,变频器载波频率设置>=5倍的变频器实际最大输出频率;以SD90H为例,如果如果设置为高频机型(驱动高频电机)。
变频器的载波频率(开关频率、PWM频率)的影响及设定标准变频器大多是采用PWM调制的形式进行变频器的。
也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。
其大小就取决于调制波和载波的交点,也就是开关频率。
开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。
载波频率越低或者设置的不好,电机就会发出难听的噪音。
通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。
1低压变频器载波频率概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。
但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。
本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。
2 载波频率与变频器功耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。
载波频率越大,变频器的损耗越大,输出功率越小。
如果环境温度高,逆变桥上下两个逆变管在交替导通过程中的死区将变小,严重时可导致桥臂短路而损坏变频器。
3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT 安全、可靠、长期地运行。
4 载波频率与电动机功率电动机功率大的,相对选用载波频率要低些,目的是减少干扰(对其它设备使用的影响),一般都遵守这个原则,但不同制造厂具体值亦不同的。
变频器常⽤频率参数1.给定频率⽤户根据⽣产⼯艺的需求所设定的变频器输出频率称为给定频率。
例如,原来⼯频供电的风机电动机现改为变频调速供电,就可设置给定频率为50Hz,其设置⽅法有两种:①⽤变频器的操作⾯板来输⼊频率的数字量50;②从控制接线端上⽤外部给定(电压或电流)信号进⾏调节,最常见的形式就是通过外接电位器来完成。
2.输出频率输出频率指变频器实际输出的频率。
当电动机所带的负载变化时,为使拖动系统稳定,此时变频器的输出频率会根据系统情况不断地调整。
因此,输出频率在给定频率附近经常变化。
3.基准频率基准频率也叫基本频率。
⼀般以电动机的额定频率作为基准频率的给定值。
基准电压指输出频率到达基准频率时变频器的输出电压,基准电压通常取电动机的额定电压。
基准电压和基准频率的关系如图3-3所⽰。
4.上限频率和下限频率上限频率和下限频率分别指变频器输出的最⾼、最低频率,常⽤f H和f L表⽰。
根据拖动系统所带负载的不同,有时要对电动机的最⾼、最低转速给予限制,以保证拖动系统的安全和产品的质量。
另外,由操作⾯板的误操作及外部指令信号的误动作引起的频率过⾼和过低,设置上限频率和下限频率可起到保护作⽤。
常⽤的⽅法就是给变频器的上限频率和下限频率赋值。
当变频器的给定频率⾼于上限频率,或者低于下限频率时,变频器的输出频率将被限制在上限频率或下限频率,如图3-4所⽰。
例如,设置f H=60Hz,f L=10Hz。
若给定频率为50Hz或20Hz,则输出频率与给定频率⼀致;若给定频率为70Hz或5Hz,则输出频率被限制在60Hz或1OHz。
5.点动频率点动频率指变频器在点动时的给定频率。
⽣产机械在调试以及每次新的加⼯过程开始前常需进⾏点动,以观察整个拖动系统各部分的运转是否良好。
为防⽌发⽣意外,⼤多数点动运转的频率都较低。
如果每次点动前都需将给定频率修改成点动频率是很⿇烦的,所以⼀般的变频器都提供了预置点动频率的功能。
如果预置了点动频率,则每次点动时,只需要将变频器的运⾏模式切换⾄点动运⾏模式即可,不必再改动给定频率。
变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
变频器的参数设置
1、对于变频器参数的设置,有很多不同的设置参数,其中常用的有以下几种:
2、初始化:在变频器参数设置前,需要先进行初始化操作,将变频器中所有设置参数清除,以保证参数设置的准确性。
3、输入电压和频率:在变频器的参数设置中,需要先设置输入电压和电流的相关参数,以确保变频器的运行稳定,防止出现过载或电源损坏的情况发生。
4、转速控制:在变频器参数设置中,需要进行转速控制的设置,以设定电机的转速,保证电机的最佳运行效果。
5、增量频率设置:增量频率是指在其中一固定频率时每次变频器启动所增加的频率值,一般设置在0.2HZ~2HZ之间,可以根据实际的电机工作需求,进行具体的设置。
6、启动减速:变频器需要设置启动减速功能,以避免电机启动时出现大电流瞬间加载,导致损坏变频器。
7、坐标调整:设置变频器时,需要根据电机的实际坐标进行调整,以实现电机的最佳运行效果。
8、输出电流调整:在变频器参数设置中,需要调整输出电流,以使电机在不同工况下都能正常工作,同时保证变频器的正常运行。
9、温度控制:变频器需要进行温度控制的设置。
变频器的参数设定及运行变频器是一种用于控制交流电机速度和电力输出的电子设备,它能够通过改变输入电压和频率来调整电机的转速。
在实际应用中,正确的参数设置和运行是保证变频器正常工作的关键。
本文将介绍变频器的参数设定和运行过程,以及一些注意事项。
一、参数设定1.输入电压和频率:变频器需要根据电网电压和频率来确定合适的参数设定,一般来说,标准工作范围为380V±10%、50Hz±1%。
如果电网电压和频率波动较大,可以使用额外的电压调整器和频率稳定器。
2.输出电压和频率:输出电压和频率决定了电机的转速,一般情况下,可以根据应用需要进行设定。
在设定输出电压和频率时需要考虑电机的额定电压和频率。
3.加速时间和减速时间:加速时间和减速时间分别指电机从静止状态到额定转速的时间和从额定转速停止的时间。
加速时间和减速时间的设定要根据实际需求来确定,一般来说,加速时间和减速时间不宜过长或过短。
4.出风口温度:变频器运行时会产生一定的热量,为了确保设备的正常运行,需要设定适当的出风口温度上限,超过该温度应自动报警或停机。
5.过载保护:变频器设定的过载保护参数会根据电机的额定功率和负载情况来确定。
过载保护参数设置过小会导致误报警,设置过大则可能造成电机过载损坏。
6.故障报警:变频器设定的故障报警参数包括过流、过压、过载、短路等,根据实际情况进行设定。
二、运行过程1.启动和停机:在启动之前,首先检查变频器的输入电压和频率是否符合要求,确保各个参数设置正确。
启动时,逐渐增加输出频率和电压,使电机平稳启动;停机时,逐渐降低输出频率和电压,使电机平稳停止。
2.运行监测:运行过程中需要监测变频器和电机的运行状态,包括温度、电流、转速等参数,及时发现异常情况并进行处理。
3.维护保养:定期对变频器进行清洁和维护保养,包括除尘、检查散热器、紧固螺栓等,确保设备的正常运行。
三、注意事项1.变频器的安装位置要离散热器较远,避免高温环境造成散热不良。
关键词:变频器参数设置,电机,节能控制变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,需要对相关的参数进行正确的设定。
1.控制方式:即速度控制、转距控制、PID 控制或其他方式。
采取控制方式后,一般要根据控制精度进行静态或动态辨识。
2.MIN运行频率:即电机运行的MIN转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
3.MAX运行频率:一般的变频器MAX频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
4.载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
5.电机参数:变频器在参数中设定电机的功率、电流、电压、转速、MAX频率,这些参数可以从电机铭牌中直接得到。
6.跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
7.加减速时间加速时间就是输出频率从0 上升到MAX频率所需时间,减速时间是指从MAX 频率下降到0 所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出更佳加减速时间。
三菱变频器参数设置三菱变频器控制方式:即速度控制、转距控制、PID控制或其他方式。
采取控制方式后,一般要根据控制精度,需要开展静态或动态辨识。
三菱变频器最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
三菱变频器最高运行频率:一般的三菱变频器最大频率到60Hz,有的甚至到400Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
三菱变频器载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热三菱变频器发热等因素是密切相关的。
三菱变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
三菱变频器跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要防止压缩机的喘振点。
三菱变频器参数设置操作规程一.工作监视选择1. 待机状态现在为频率监视2. 按SET键进入电流监视3. 在2状态下按SET键进入电压监视4. 在3状态下按SET键进入报警监视5. 在4状态下按SET键进入频率监视二. 变频器工作模式选择1. 在待机状态下显示监视模式2. 按MODE键进入频率设置模式3. 在2状态按MODE键进入参数模式4. 在3状态下按MODE键进入运行模式5. 在4 状态下按MODE键进入帮助模式6. 在5 状态下按MODE键回到监视模式三.变频器主要参数介绍1. 上限频率(Pr。
1)限制变频器输出频率上限值,出厂设定为120Hz2. 下限频率(Pr。
2)限制变频器输出频率下限值,只要启动信号为ON,频率到达下限值就启动电机3. 加减速时间设定Pr。
7加速时间Pr。
8 减速时间Pr。
44第二加速时间Pr。
45第二减速时间4. 电子过流保护(Pr。
变频器基频设置方法及要点变频器如何操作一、如何设置基频基频参数设置应当以的额定参数设置,而不能依据负载特性设置,即使电动机选型不适合负载特性,以必需尽量遵奉并服从电动机的参数,否则,简单过流或过载一、如何设置基频基频参数设置应当以的额定参数设置,而不能依据负载特性设置,即使电动机选型不适合负载特性,以必需尽量遵奉并服从电动机的参数,否则,简单过流或过载。
例如:假如电机的额定工作频率为50HZ,基频应设置为50HZ;假如电机的额定工作频率为60HZ,基频应设置为60HZ;假如电机的额定工作频率为100HZ,基频应设置为100HZ。
假如电动机选择专用的交流变频电机,电机一般都标注恒转矩、恒功率调速范围。
假如标注5~100HZ为恒转矩,100~150HZ为恒功率,基频应当设置为100HZ。
二、基频设置的注意点基频参数直接反映输出电压和输出频率的关系,假如设置不当简单造成电动机的过流或过载。
一台交流电动机的额定工作频率为50HZ,额定电压380V。
假如变频器的基频设置低于50HZ(如基频1),V/F比例高,同等频率的输出电压高,输出电流高,在启动时,简单造成过流。
假如变频器的基频设置高于50HZ(如基频2),V/F比例低,同等频率的输出电压低,输出电流低,在启动时,简单造成无法启动而过载。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
目前电机调速节能比较为有效的方式之一就是高压技术,并且在工业领域得到广泛的应用。
由于所带设备的紧要性,所以高压变频器的日常维护和故障处理,显得尤为紧要,只有目前电机调速节能比较为有效的方式之一就是高压技术,并且在工业领域得到广泛的应用。
使用變頻器使馬達產生噪音及變頻器載波頻率的正確選擇使用變頻器使馬達產生噪音電磁噪音是電磁力對電機線圈鐵心等的作用產生,因此,電機結構的對稱性,結構的穩定性,工藝等都是產生噪音的原因。
另外,低次諧波(一般是3,5次)由於幅值較大,產生的電磁力更大,所以電機製造是一般考慮短距繞組和分佈繞組消除,若工藝偏差則不能完全消除。
另外高次諧波容易產生教刺耳的聲音,但成分很低。
另外電機在低速運轉到某個頻率時會達到與其機構共振的頻率,這時回發出囂叫,這個是正常的,用變頻器控制,可以屏蔽這個運行頻率以消除。
變頻器載波頻率的正確選擇1 低壓變頻器概述對電壓≤500V的變頻器,當今幾乎都採用交—直—交的主電路,其控制方式亦選用正弦脈寬調製即SPWM,它的載波頻率是可調的,一般從1 -15kHz,可方便地進行人為選用。
但在實際使用中不少用戶只是按照變頻器製造單位原有的設定值,並沒有根據現場的實際情況進行調整,因而造成因載波頻率值選擇不當,而影響正確,感覺的有效工作狀態,因此在變頻器使用過程中如何來正確選擇變頻器的載波頻率值亦是重要的事。
本文就此提供應該從以下諸方面來考慮,並正確選擇載波頻率值的依據。
2載波頻率與功率損耗功率模塊 IGBT的功率損耗與載波頻率有關,且隨載波頻率的提高、功率損耗增大,這樣一則使效率下降,二則是功率模塊發熱增加,對運行是不利的,當然變頻器的工作電壓越高,影響功率損耗亦加大。
對不同電壓、功率的變頻器隨著載波頻率的加大、功率損耗具體變化,可見圖1A-E所示。
3載波頻率與環境溫度當變頻器在使用時載波頻率要求較高,而且環境溫度亦較高的情況下,對功率模塊是非常不利的,這時對不同功率的變頻器隨著使用的載波頻率的高低及環境溫度的大小,對變頻器的允許恆輸出電流要適當的降低,以確保功率模塊IGBT安全、可靠、長期地運行。
可參見表1及圖2A-D所示。
4載波頻率與電動機功率電動機功率大的,相對選用載波頻率要低些,目的是減少干擾(對其它設備使用的影響),一般都遵守這個原則,但不同製造廠具體值亦不同的。
变频器的载波频率(开关频率、PWM频率)的影响及设定标准分类:变频器2012-12-06 11:17 448人阅读评论(0) 收藏举报变频器大多是采用PWM调制的形式进行变频器的。
也就是说变频器输出的电压其实是一系列的脉冲,脉冲的宽度和间隔均不相等。
其大小就取决于调制波和载波的交点,也就是开关频率。
开关频率越高,一个周期内脉冲的个数就越多,电流波形的平滑性就越好,但是对其它设备的干扰也越大。
载波频率越低或者设置的不好,电机就会发出难听的噪音。
通过调节开关频率可以实现系统的噪音最小,波形的平滑型最好,同时干扰也是最小的。
1低压变频器载波频率概述对电压≤500V的变频器,当今几乎都采用交—直—交的主电路,其控制方式亦选用正弦脉宽调制即SPWM,它的载波频率是可调的,一般从1-15kHz,可方便地进行人为选用。
但在实际使用中不少用户只是按照变频器制造单位原有的设定值,并没有根据现场的实际情况进行调整,因而造成因载波频率值选择不当,而影响正确,感觉的有效工作状态,因此在变频器使用过程中如何来正确选择变频器的载波频率值亦是重要的事。
本文就此提供应该从以下诸方面来考虑,并正确选择载波频率值的依据。
2 载波频率与变频器功耗功率模块IGBT的功率损耗与载波频率有关,且随载波频率的提高、功率损耗增大,这样一则使效率下降,二则是功率模块发热增加,对运行是不利的,当然变频器的工作电压越高,影响功率损耗亦加大。
载波频率越大,变频器的损耗越大,输出功率越小。
如果环境温度高,逆变桥上下两个逆变管在交替导通过程中的死区将变小,严重时可导致桥臂短路而损坏变频器。
3 载波频率与环境温度当变频器在使用时载波频率要求较高,而且环境温度亦较高的情况下,对功率模块是非常不利的,这时对不同功率的变频器随着使用的载波频率的高低及环境温度的大小,对变频器的允许恒输出电流要适当的降低,以确保功率模块IGBT安全、可靠、长期地运行。
4 载波频率与电动机功率电动机功率大的,相对选用载波频率要低些,目的是减少干扰(对其它设备使用的影响),一般都遵守这个原则,但不同制造厂具体值亦不同的。
变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。
1 、控制方式:即速度控制、转距控制、PID 控制或其他方式。
采取控制方式后,一般要根据控制精度进行静态或动态辨识。
2 、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
3 、最高运行频率:一般的变频器最大频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
4 、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
5 、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
6 、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
变频器参数设置(二)变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。
实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。
一、加减速时间加速时间就是输出频率从0 上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。
通常用频率设定信号上升、下降来确定加减速时间。
在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。
加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。
加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
变频器载波频率的影响及设定规范载波频率对变频器输出电流的影响:(1)作业频率越高,则电压波的占空比越大,电流高次谐波成份越小,即载波频率越高,电流波形的滑润性越好;(2)载波频率越高,变频器容许输出的电流越小;(3)载波频率越高,布线电容的容抗越小(由于Xc=1/2πfC),由高频脉冲致使的漏电流越大。
载波频率对电机的影响:载波频率越高,电机的振动越小,作业噪音越小,电机发热也越少。
但载波频率越高,谐波电流的频率也越高,电机定子的集肤效应也越严峻,电机损耗越大,输出功率越小。
电动机功率大的,相对选用载波频率要低些,意图是削减烦扰(对其它设备运用的影响),通常都遵照这个准则,但纷歧样制造厂详细值亦纷歧样的。
电动机功率大的,相对选用载波频率要低些,意图是削减烦扰(对其它设备运用的影响)以及下降功耗和发热量,通常都遵照这个准则,但纷歧样制造厂详细值亦纷歧样的。
例,日本有下列联络供参看载波频率15kHz 十kHz 5kHz 电动机频率≤30kW 37-十0kW 185-300kW 例,芬兰VACON 载波频率1-16kHz 1-6kHz 电动机功率≤90kW 1十-1500kW 例,深圳安圣(原华为) 载波频率6kHz 3kHz 1kHz 电动机功率5.5-22kW 30-55kW 75-200kW 例,成都佳灵公司JP6C-T9系列载波频率2-6kHz 2-4kHz 电动机功率0.75-55kW 75-630kW载波频率需求设定的要素:(1) SPWM变频器的输出电压是一系列的脉冲,脉冲频率等于载波频率。
因而,在电动机的电流中,具有较强的载波频率的谐波重量,它将致使电动机铁心的振动而宣告噪声。
假定噪声的频率和电动机铁心的固有振动频率持平而发作谐振的话,噪声将增大。
为了减小噪声,变频器为用户供应了能够在必定计划内调整载波频率的功用,以避开噪声的谐振频率。
(2)从改进电流波形的视点来说,载波频率越高,电流波形的滑润性越好。
变频器怎么设置参数_变频器的参数设定步骤变频器的参数设定在调试过程中是十分重要的。
许多初次使用变频器的用户,因为不十分了解这些参数的意义,再加上列出的设定参数又比较多,对如何设定变频器的诸多参数有些不知所措。
对于这些用户,需要掌握变频器参数设定的基本知识:哪些参数需要在试运转前设定;哪些参数需要在运转中调整以及调整的适宜范围;如何防止在调试过程中因参数设置不当造成变频器的损坏等等。
变频器参数的分类1、不必调整可保持出厂设置的参数2、在试运转前需预设定的参数3、在试运转中需要调整的参数常用的变频器的参数有1、控制方式:2、最低运行频率:3、最高运行频率:4、载波频率:5、电机参数:6、跳频:7、加减速时间8、转矩提升9、电子热过载保护10、频率限制11、偏置频率12、频率设定信号增益13、转矩限制变频器参数设置(一)变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。
1 、控制方式:即速度控制、转距控制、PID 控制或其他方式。
采取控制方式后,一般要根据控制精度进行静态或动态辨识。
2 、最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。
而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
3 、最高运行频率:一般的变频器最大频率到 60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
4 、载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
5 、电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
6 、跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
西门子变频器的载波频率调整1、变频器的载波频率可以改变,但是我不推荐你随便去改这个参数。
2、为了减小噪声,可以将变频器的载波频率适当设置得高些,但这时又会带来一些问题,如果载波频率调得太高,又会对其它设备造成干扰,尤其是当采用plc通讯方式时。
因此要根据现场的实际情况设置载波频率。
3、如果不是非常有经验的工程师,建议不要改动载波频率这个参数。
4、MM440变频器的载波频率参数是P1800。
MM440变频器载波频率参数是P1800。
P1800——设定变频器功率开关的调制脉冲频率。
这一脉冲频率每级可改变2kHz。
最低的脉冲频率取决于P1082(最大频率)和P0310(电动机的额定频率)。
电动机频率的最大值(P1082)限定为脉冲调制频率P1800。
当变频器散热器的温度(P0614)超过了报警电平,将使调制脉冲的开关频率降低和/或输出频率降低。
如果增加脉冲调制频率,变频器的最大电流(r0209)可能要降低(降容)。
降容特性决定于变频器的型号和功率大小。
如果变频器运行时并不要求绝对地安静,可选用较低的调制脉冲频率,这将有利于减少变频器的损耗和降低射频干扰发射的强度。
在一定的环境条件下,可以减少变频器的开关频率,为变频器提供过温保护,保证设备不致因过温而损坏。
但是,按理论上来说载波频率是越高越好,因为这样逆变出来的波形越接近正弦波。
同时,调整变频器的载波频率可降低机器的噪音,但是,并不是说可以消除干扰,只是可以降低机器震动的噪音。
而且,降低载波频率会引起谐波的增加,所以说实际上干扰会更严重,对电机没有什么好处。
总的来说,降低载波频率会引起谐波分量增加,这是不好的现象,好处是有可能降低机器震动产生的噪音。
建议不要乱动这个值!5、6SE70变频器的载波频率参数是P340。
变频器载波频率的设置及注意事项
变频器的载波频率,是影响变频器控制性能,长期稳定性及可靠性的一个关键因素,根据不同应用场合、负载大小、性能要求等,对载波做合理的设置显得尤为重要。
一,各型号机器的默认出厂载频
1,SD90出厂载波设置
2,SD90H出厂载波设置
3,SD200/SD300
二,载波频率对温升的影响
1,载波频率对变频器温升的影响:载波频率越高,变频器IGBT温升越大,反之亦然。
2,载波频率对电机温升的影响:载波频率越高,电机温升越低,反之依然。
3,出厂载波频率的设置,是在额定负载下,综合考虑变频器温升,电机温升后的最小载波设置。
如果用户设置载波频率过大,会影响变频器长期稳定性。
三,载波频率对电机噪声的影响
1,对于SD90/SD90H机型,提高低频载波频率(F00.16)可以降低电机低频运行下的噪声,但低频运行下的最大力矩输出会有一定的下降。
提高高频载波频率(F00.15),可以降低电机高频运行下的噪声。
2,对于SD90/SD90H机型,F07.29为PWM模式,出厂设置为1(2/3相调制切换);修改F07.29=0(3相调制)后,可降低电机在高频运行下的噪声。
3,对于SD200/SD300机型,低频运行下的载频是强制设置的,通过修改F0C.17=0可以使得强制载频无效,此时高低频运行下使用同样载频设置F00.15。
4,对于SD200/SD300机型,F0C.16为PWM模式,出厂设置为1(2/3相调制切换);修改F0C.16=0(3相调制)后,可降低电机在高频运行下的噪声。
四,载波频率与变频器实际输出频率的调整关系
载波频率的出厂值设置,都是根据50Hz标准异步电机的满负荷测试标准来设定的,在实际
应用中变频器的输出最高频率不一定是50Hz。
各机型的最高输出频率如下表:
实际使用中,变频器载波频率设置>= 5倍的变频器实际最大输出频率;以SD90H为例,如果。