喘振与失速区别
- 格式:doc
- 大小:98.00 KB
- 文档页数:35
谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。
失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
一、风机失速与喘振1、失速是叶片结构特性造成的一种流体动力现象,如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。
2、喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。
所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。
3、喘振时风机的流量和压力周期性地反复变化,电流也摆来摆去,也就是说一台风机运行也可能发生喘振,而且是风机低负荷时。
而失速通常发生在两台风机并列运行在大负荷时,失速发生时,失速风机风压、风量、振动、风机电机电流等参数突变后不发生波动,这是失速与喘振的最大区别。
抢风是失速和喘振的一种通俗性的说法二、喘振与失速的区别当风机处于不稳定工作区运行时,可能会出现流量全压的大幅度波动,引起风机及管路系统周期性的剧烈振动,并伴随着强烈的噪声,这种现象叫作喘振。
风机在下列条件下才会发生喘振:1.风机在不稳定工作区运行,且风机工作点落在性能曲线的上升段。
2.风机的管路系统具有较大的容积,并与风机构成一个弹性的空气动力系统。
3.系统内气流周期性波动频率与风机工作整个循环的频率合拍,产生共振。
风机并联运行时,有时会出现一台风机流量特别大,而另一台风机流量特别小的现象,若稍加调节则情况可能刚好相反,原来流量大的反而减小。
如此反复下去,使之不能正常并联运行,这种现象称为抢风现象。
从风机性能曲线分析:具有马鞍形性能曲线的风机并联运行时,可能出现“抢风”现象。
所谓抢风,是指并联运行的两台风机,突然一台风机电流(流量)上升,加一台风机电流(流量)下降。
此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。
在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。
风机喘振、失速、抢风的实用操作!失速与喘振现象是两种不同的概念,失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如脱流区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受泵与风机管路系统的容量和形状的影响。
喘振是泵与风机性能与管路系统耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受泵与风机管路系统容量的支配,其流量、全压和轴功率的波动是由不稳定工况区造成的。
但是,试验研究表明,喘振现象总是与叶道内气流的旋转脱流密切相关,而冲角的增大也与流量的减小有关。
所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。
出现失速并不一定出现喘振,出现喘振一定已经出现了失速;失速只属于轴流风机内流特性,而喘振是轴流风机内外特性耦合结果,与出口管路特性有必然的联系。
在实际运行中,风机喘振时,风机和管道会产生很大的振动,且发出噪声。
失速的风机不会产生很大的振动,也不会发出噪声只要对动叶或转速进行调整可以继续运行。
抢风肯定是发生在并联管路中,抢风时不一定发生失速与喘振,和管路情况有关。
一般风机出现抢风现象,主要是两台风机的出口到负荷点管路系统的沿程阻力和局部阻力发生变化引起。
如一侧空预器发生严重堵灰,脱硝、脱硫系统发生堵塞,有增压风机的系统,增压风机故障。
都会使沿程阻力和局部阻力。
典型的如沿锅炉前后墙直列布置的磨煤机系统,因为各磨煤机一次风进口跟一次风母管的距离偏差很大,当一台磨煤机跳闸时,原本出力平衡的两台一次风机,因为沿程阻力偏差大,就可能使一台阻力大的风机的风被顶住,两台风机出力形成偏差。
一般大流量时,抢风不会很严重。
但如果在小流量时就可能会使风机进入失速和喘振区,造成风机失速和喘振,形成严重的抢风现象。
所以说两台风机中的一台发生失速与喘振肯定会发生抢风现象。
延伸阅读风机由于运行条件恶劣,故障率较高,容易导致机组非计划停运或减负荷运行,影响正常生产。
风机振动是运行中常见的现象,只要在振动控制范围之内,不会造成太大的影响。
轴流风机失速与喘振的分析和对策摘要:本文对轴流风机常见的失速以及喘振问题进行了分析,并结合某发电厂#3炉轴流式吸风机的异常现象进行了总结并提出防范措施。
关键词:轴流风机;失速;喘振前言:由于动叶可调轴流风机具有占地面积小、各负荷段效率都较高等优点,近年来火电厂锅炉辅机普遍都采用动叶可调式轴流风机。
动叶可调轴流风机的性能曲线具有驼峰型特性,这就导致了风机接近曲线边缘时可能会导致风机发生失速甚至喘振的现象。
本文分析了某发电厂3号炉乙号吸风机失速的原因,提出了相应的预防措施,以及在机组运行过程中如何避免失速和喘振的发生。
1轴流风机的失速与喘振1.1失速轴流风机普遍采用扭曲机翼型叶片,气流方向与叶片叶弦的夹角α即称为冲角,正常运行时,冲角为零或很小,气流绕过叶片保持稳定的流动状态,如图1(a)所示。
当冲角为正时,即α > 0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,在叶片背面尾端出现涡流区,形成“失速”现象,如图1(b)所示。
冲角α大于临界值越多,失速现象就越严重,流体的流动阻力也就越大,严重时还会阻塞叶道,同时风机出力也会随之大幅下降。
风机的叶片在制造及安装过程中,由于各种客观因素的影响,叶片不可能有完全相同的形状和安装角度,因此当运行工况变化时使气流方向发生偏离,各个叶片进口的冲角就不可能完全相同。
当某一叶片进口处的冲角α达到临界值时,就可能首先在该叶片上发生失速,并非是所有叶片都会同时发生失速,失速可能会发生在一个或几个区域,该区域内也可能包括一个或多个叶片。
由于失速区不是静止的,它会从一个叶片向另一个叶片或一组叶片扩散,如图2所示。
假定产生的流动阻塞首先从叶道23开始,其部分气流只能分别流进叶道12和34, 使叶道12 的气流冲角减小, 叶道34的冲角增大,以至于叶道34也发生阻塞, 并逐个向其他叶道传播。
如图3所示,马鞍形曲线M为风机不同安装角的失速点连线,工况点落在马鞍形曲线的左上方,均为不稳定工况区,这条线也称为失速线。
动叶可调轴流风机失速与喘振现象及预防措施分析摘要本文就动叶可调轴流风机失速以及喘振现象的原因进行分析,并提出相应的预防措施,以期能够避免或减少失速于喘振的发生。
关键词动叶可调轴流风机;失速;喘振;预防0 引言动叶可调轴流风机能够调节的范围较广,低负荷的区域工作效率比较高且反应的速度比较快,使得动叶可调轴流通风机被广泛应用于电力行业中。
但是由于风机在工作时工作点常出现不稳定的运行,容易导致风机发生失速和喘振等现象。
1动叶可调轴流风机的失速与喘振现象1.1失速现象轴流风机叶片通常是机翼流线型,当冲角<临界冲角或为0时,气流将绕过机翼使其流线平稳,如图1(a)。
而一旦冲角超过某一个临界值,叶片背面的流动恶化,使其边界遭遇破坏,叶片背部的尾端涡流加宽,增加了阻力,降低了升力,阻塞叶道,出现失速现象,如图1(b)。
1.2喘振现象由于瞬间内风机能头及流量发生周期性、不稳定反复变化,使得动叶可调轴流风机产生喘振现象。
动叶可调轴流风机具有驼峰型曲线的性能,使得其存在峰值点,而峰值点左侧是喘振区,右侧是稳定的工作区。
一旦风机工作点掉落到喘振区,就会发生喘振现象,给设备以及建筑物造成危害。
1.3两者之间的区别和联系动叶可调轴流风机发生失速现象时仍可继续运行;而出现喘振现象时无法正常运行。
失速主要是由于叶片结构产生出空气动力的工况,有规律可循,且影响的因素有叶轮自身、气流以及叶片的结构等;但喘振现象的发生主要是由于外界条件造成的。
失速与喘振之间的关系较为密切,失速可以诱发喘振。
2实例分析动叶可调轴流风机失速与喘振的原因2.1实例分析失速原因针对某电厂4号机组中,由于风机的保护系统出现跳闸现象,使得辅机出现减负荷动作的故障,导致一次风管的阻力增加以及一次风量的减少,引发了B侧出现风机失速现象(见图2)。
正常情况下系统的压力通常在P。
处,而A、B两侧一次风机运行的工况点分别是A。
、B。
但当出现减负荷动作故障时,系统的压力将从P。
风机的失速与喘振一、风机的失速从流体力学得知,当气流顺着机翼叶片流动时,作用于叶片上有两种力,即垂直于叶片的升力与平行于叶片的阻力,当气流完全贴着叶片呈线型流动时,这种升力大于阻力。
当气流与叶片进口形成正冲角,此正冲角达到某一临界值时,叶片背面流动工况开始恶化,冲角超过临界值时,边界层受到破坏,在叶片背面尾端出现涡流区,即“失速”现象,此时作用于叶片的升力大幅度降低,阻力大幅度增大,对于风机来讲压头降低。
二、产生失速的原因1、风机在不稳定工况区域运行。
2、锅炉受热面积灰严重或风门、挡板操作不当,造成风烟系统阻力增加。
3、并联运行的二台风机发生“抢风”现象时,使其中一台风机进入不稳定区域运行。
依据运行经验,当风机运行中出现下列现象时,说明风机发生了失速。
1、失速风机的风压或烟压、电流发生大幅度变化或摆动。
2、风机噪音明显增加,严重时机壳、风道或烟道也发生振动。
3、当发生“抢风”现象时,会出现一台风机的电流、风压上升,另一台下降。
当机组运行中发生“抢风”现象时,应迅速将二台风机切手动控制,手动调整风机动叶开度,待开度一致、电流相接后将二台风机导叶同时投入自动。
为防止机组运行中风机“抢风”现象发生,值班员在调整时调整幅度不要太大,并尽量使二台并联运行的风机导叶开度、电流基本一致。
三、风机的喘震当风机的Q-H特性曲线不是一条随流量增加而下降的曲线,而是驼峰状曲线,那么它在下降区段工作是稳定的,而在上升区段工作是不稳定的。
当风机在不稳定区工作时,所产生的压力和流量的脉动现象称为喘震。
一般送风机为轴流式,运行中要防止送风机的喘振。
喘振产生主要是因为风机性能曲线为“驼峰形”。
当风机工作在不稳定区,流量降低时风压也降低,造成风道中压力大于风机出口压力而引起反向倒流,倒流的结果,又使风道内的压力急剧下降,风机的送风量突然上升,再次造成风机出口压力小于风道压力。
如此往复形成喘振。
喘振对风机危害很大,严重时会造成风机断叶片,及其它部位的机械损坏。
旋转失速机理与故障特征1.故障机理:当进入叶轮的气体流量低于额定流量时,气体进入叶轮的相对速度方向角与叶片入口安装角度不一致,气体冲击叶片的工作面(凸面),在图面附近形成气流漩涡,漩涡逐渐增加使流道有效通过面积减小,漩涡组成的气体堵塞团沿着叶轮旋转的相反方向轮流在各个流道出现,由于失速区反向传播速度低于叶轮旋转速度,从绝对坐标系看失速区还是沿着叶轮旋转方向旋转,这就是旋转失速。
2.旋转失速特征:旋转失速的表现:1、失速区内达不到要求的压力时,就会引起叶轮出口和管道内的压力脉动,发生机器和管道的振动;2、叶轮失速在0.5-0.8倍的转频范围内,扩压器失速0.1-0.25倍的转频范围内3、当压缩机进入旋转失速范围后,虽然压力存在脉动,但机器流量基本稳定,这与喘振不同4、旋转失速引起的振动在强度比喘振小时域与频域特征:1)时域:各成分叠加波形2)频域:及的成对次谐波(为转子角频率,旋转脱离团角频率,,N为气体脱离团数目,实际工作流量,设计流量)3)轴心轨迹:杂乱不稳定,正进动喘振机理与故障特征1.故障机理:喘振是离心式和轴流式压缩机运行常见故障之一,是旋转失速的进一步发展。
喘振是压缩机组严重失速和管网相互作用的结果,它既可以是管网负荷急剧变换所引起,也可以是压缩机工作状况变化所引起。
当进入叶轮的气体流量减少到某一最小值时,气体失速团扩大到整个叶轮流道,压缩机出口压力突然下降,管网气流倒流,当管网中的下降低于出口排气压力,停止倒流恢复向管网供气,因进气量不足,出口管网回复到原来压力后,又会在流道出现旋涡区,周而复始,气体在进出口处吞吐倒流。
2.喘振特征:喘振的表现:由于气体的吞吐倒流,会伴随有巨大周期性的气体吼声和剧烈的机械振动,这些波动,在压力,流量,振动信号等都有显示。
有喘振引起的机器振动频率和强度,不但与压缩机中严重的旋转失速团有关,还和管网容量有关:管网容量越大,则喘振振幅越大,频率越低;管网容量小,则喘振幅值小,喘振频率也较高,一般为0.5-20Hz。
风机失速、喘振、抢风防范措施660MW机组风机失速、喘振、抢风一、动调风机失速、喘振、抢风的定义与区别失速:是动调风机固有的结构特性,在运行中行成的一种流体动力现象。
失速时风机的全压、风量、振动、风机电流等参数突变后不发生波动,就地伴随着异常的闷声。
单风机或并列运行时的风机均会出现失速,风机失速时不一定喘振。
喘振:是动调风机性能与管道阻力耦合后振荡特性的一种表现形式,喘振时风机的压力和流量周期性地反复变化,电流、动叶开度也摆来摆去,轴承振动明显增大并伴随着强烈的噪声,单风机或并列运行时的风均会出现喘振。
风机喘振时肯定失速。
抢风:在动调风机并联运行时,风机本身未失速也未喘振,随着管路特性阻力的变化,会出现一台风机出力、电流特别大,另一台风机出力、电流特别小的现象,若稍加调节则情况刚好相反,原来出力大的反而减小。
如此反复,使之不能正常并联运行。
一次风机,送风机、引风机失速的现象1、风机电流减小且稳定,明显低于正常运行动叶开度。
2、风机全压(风机出口+进口)减小且稳定,轴承振动X向、Y 向振幅呈增大趋势。
3、就地听风机运行声音,有异常的闷声。
4、一次风机失速时,两台风机电流明显偏差(10A以上),两台风机出口风压降低,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。
5、送风机失速时,两台风机电流明显偏差(20A以上),两台风机出口风压降低,总风量降低,两台风机动叶会自动开大,炉膛压力波动大。
6、引风机失速时,两台风机电流明显偏差(30A以上),两台风机出口风压降低,全压明显降低,两台风机动叶会自动开大,炉膛压力波动大。
一次风机,送风机、引风机失速的处理1、一次风机失速的处理1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF 方式运行。
降低失速一次风机动叶开度至25%左右,或听到失速一次风机无闷声为止。
注意未失速一次风机的电流不超额定值。
2)快速减负荷500MW,保留3-4台磨煤机运行。
失速探头由两根相隔约3mm 的测压管所组成,将它置于叶轮叶片的进口前。
测压管中间用厚3mm、高(突出机壳的距离)3mm 的镉片分开,风机在正常工作区域内运行时,叶轮进口的气流较均匀地从进气室沿轴向流入,那么失速探头之间的压力差几乎等于零或略大于零。
当风机的工作点落在旋转脱流区,叶轮前的气流除了轴向流动之外,还有脱流区流道阻塞成气流所形成的圆周方向分量。
于是,叶轮旋转时先遇到的测压孔,即镉片前的测压孔压力高,而镉片后的测压孔的气流压力低,产生了压力差,一般失速探头产生的压力差达245~392Pa,即报警,风机的流量越小,失速探头的压差越大。
由失速探头产生的压差发出信号,然后由测压管接通一个压力差开关(继电器),压力差开关将报警电路系统接通发出报警,操作人员及时采取排除旋转脱流的措施。
失速探头装好以后,应予以标定,调整探头中心线的角度,使测压管在风机正常运转的差压为最小。
轴流风机在叶轮进口处装置喘振报警装置,该装置是由一根皮托管布置在叶轮的前方,皮托管的开口对着叶轮的旋转方向,皮托管是将一根直管的端部弯成90°(将皮托管的开口对着气流方向),用一U 形管与皮托管相连,则U 形管(压力表)的读数应该为气流的动能(动压)与静压之和(全压)。
在正常情况下,皮托管所测到的气流压力为负值,因为它测到的是叶轮前的压力。
但是当风机进入喘振区工作时,由于气流压力产生大幅度波动,所以皮托管测到的压力亦是一个波动的值。
为了使皮托管发送的脉冲压力能通过压力开关,利用电接触器发出报警信号,所以皮托管的报警值是这样规定的:当动叶片处于最小角度位置(-30°)用一U 形管测得风机叶轮前的压力再加上2000Pa 压力,作为喘振报警装置的报警整定值。
当运行工况超过喘振极限时,通过皮托管与差压开关,利用声光向控制台发出报警信号,要求运行人员及时处理,使风机返回正常工况运行。
关于风机失速及喘振的分析我厂在生产过程中,曾经出现过一次风机失速,影响风机的安全、稳定运行,因此此类现象的发生和处理进行进一步的分析和探讨,以便在遇到相同的事故时,能有效、及时的预防和处理。
失速和喘振发生的原因:风机在正常工况时,冲角很小,气流绕过机翼型叶片保持流线状态,当气流与叶片冲角>0超过某一临界值时,叶片背面的流动工况开始恶化,在叶片的背面出现漩涡区,即所谓的“失速”,冲角大于临界值越多,失速现象越严重,流体的阻力越大,使叶片受阻,同时风机风压也随之迅速降低。
风机的叶片在安装过程中,由于各种的原因使叶片不可能油完全相同的形状和安装角,因此,当运行工况变化而使流动方向发生改变时,各个叶片的冲角就不可能完全相同,正是因为这样,在发生失速现象时不是每个叶片都同时发生失速,风机进行到不稳定工况里运行时,叶轮将产生数个旋转失速区,叶片每经过一个失速区就会受到一次激振力的作用,使叶片发生共振。
严重时可导致叶片的断裂。
由于失速的产生,使得风管中的压力大于风机的出口压力,因此,气流回流后压力差正常后,风机有正常工作向风管送风,当风管内的压力到达一定值后,风机的出风又受阻,从而又出现倒流,如此反复风管出现周期性的振荡,这样的现象叫“喘振”。
失速是喘振的前因,喘振是失速恶化的进一步表现,但失速不一定会发生喘振,喘振还和管路的阻力特性有关。
对于一次风机、送风机和引风机发生失速和喘振的危险性有:1.引起炉膛负压波动。
2.造成被迫降负荷。
3.严重时会引起锅炉MFT。
4.造成风机本体振动加剧,造成设备损坏。
5. 炉内燃烧不稳。
事故可能发生的原因:1.快速增减负荷。
2.风机动叶开度较大时。
3.空预器堵灰严重时。
4.并风机操作时。
5.两台风机电流偏差较大。
6.炉膛内燃烧不稳。
7.风机动叶或挡板的执行机构故障。
8.受热面、空预器严重积灰或烟气系统挡板误关,引起系统阻力增大,造成风机动叶开度与进入的风量、烟气量不相适应,使风机进入喘振区。
660MW机组风机失速、喘振、抢风一、动调风机失速、喘振、抢风的定义与区别失速:是动调风机固有的结构特性,在运行中行成的一种流体动力现象。
失速时风机的全压、风量、振动、风机电流等参数突变后不发生波动,就地伴随着异常的闷声。
单风机或并列运行时的风机均会出现失速,风机失速时不一定喘振。
喘振:是动调风机性能与管道阻力耦合后振荡特性的一种表现形式,喘振时风机的压力和流量周期性地反复变化,电流、动叶开度也摆来摆去,轴承振动明显增大并伴随着强烈的噪声,单风机或并列运行时的风均会出现喘振。
风机喘振时肯定失速。
抢风:在动调风机并联运行时,风机本身未失速也未喘振,随着管路特性阻力的变化,会出现一台风机出力、电流特别大,另一台风机出力、电流特别小的现象,若稍加调节则情况刚好相反,原来出力大的反而减小。
如此反复,使之不能正常并联运行。
一次风机,送风机、引风机失速的现象1、风机电流减小且稳定,明显低于正常运行动叶开度。
2、风机全压(风机出口+进口)减小且稳定,轴承振动X向、Y向振幅呈增大趋势。
3、就地听风机运行声音,有异常的闷声。
4、一次风机失速时,两台风机电流明显偏差(10A以上),两台风机出口风压降低,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。
5、送风机失速时,两台风机电流明显偏差(20A以上),两台风机出口风压降低,总风量降低,两台风机动叶会自动开大,炉膛压力波动大。
6、引风机失速时,两台风机电流明显偏差(30A以上),两台风机出口风压降低,全压明显降低,两台风机动叶会自动开大,炉膛压力波动大。
一次风机,送风机、引风机失速的处理1、一次风机失速的处理1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF方式运行。
降低失速一次风机动叶开度至25%左右,或听到失速一次风机无闷声为止。
注意未失速一次风机的电流不超额定值。
2)快速减负荷500MW,保留3-4台磨煤机运行。
及时投入油枪。
注意炉膛负压、除氧器水位,必要时手动干预。
风机的失速和喘振一、失速在轴流风机中,当流量减少到某一小流量时,会因在叶片上脱流而造成失速,这是轴流风机所特有的不稳定现象。
失速是动叶附近的一种压力脉动,动叶会受到一种周期性的作用力而导致振动和低频噪声,若振动频率与叶片自振频率接近或相等,那么叶片将会很快遭受破坏。
由流体力学知,当速度为v的直线平行流以某一冲角(翼弦与来流方向的夹角)绕流二元孤立翼型(机翼)时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小。
因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼型上形成一个向上的作用力。
如果绕流体是理想流体,则这个力和来流方向垂直,称为升力,其大小由儒可夫斯基升力公式确定:F L=ρυ∞ΓΓ-速度环量ρ-绕流流体的密度其方向是在来流速度方向沿速度环量的反方向转90°来确定。
轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头、和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。
实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。
这两种不正常工况是不同的,但是它们又有一定的关系。
轴流风机叶片前后的压差,在其它都不变的情况下,其压差的大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成比例,不同的叶片叶型有不同的临界冲角值。
翼型的冲角不超过临界值,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”,如图3-13。
图3-13 正常工况时的气体流动图5-15 正常工况时的气体流动图3-14 脱流工况时的气体流动泵与风机进入不稳定工况区,其叶片上将产生旋转脱流,可能使叶片发生共振,造成叶片疲劳断裂。
现以轴流式风机为例说明旋转脱流及其引起的振动。
轴流式风机失速、喘振和抢风的区别轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高当风机流量减小时,w的方向角改变,气流冲角增轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高当风机流量减小时,w的方向角改变,气流冲角增大当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反这种现象称为旋转失速与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量风机的喘振,是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象现以单台风机为例,配合上图加以说明2U7W-{*D"^6W$[当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K但当风机负荷降到低于Qk时,进入不稳定区工作此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功此时,管路中的气体向两个方向输送,一方面供给负荷需要,一方面倒送给风机,故压力迅速降低至C点时停止倒流,风机流量增加但由于风机的流量仍小于管路流量,QC。
谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。
失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。
这种现象称为旋转失速。
与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。
从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。
为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量二、风机喘振:图1:风机喘振图2:风机喘振报警线风机的喘振是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象。
现以单台风机为例,配合上图加以说明。
当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K。
但当风机负荷降到低于Qk时,进入不稳定区工作。
此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功。
此时,管路中的气体向两个方向输送,一方面供给负荷需要,一方面倒送给风机,故压力迅速降低。
至C点时停止倒流,风机流量增加。
但由于风机的流量仍小于管路流量,QC<QD,所以管路压力仍下降至E点,风同的工作点将瞬间由E点跳到F点(E、F点等压),此时风机输出流量为QF。
由于QF大于管路的输出流量,此时管路风压转而升高,风机的工作点又移到K点。
上述过程重复进行,就形成了风机的喘振。
喘振时,风机的流量在QB-QF范围内变化,而管路的输出流量只在少得多的QE-QA间变动。
缔所以,只要运行中工作点不进入上述不稳定区,就可避免风机喘振。
轴流风机当动叶安装角改变时,K点也相应变动。
因此,不同的动叶安装角度下对应的不稳定区是不同的。
大型机组一般设计了风机的喘振报警装置。
其原理是,将动叶或静叶各角度对应的性能曲线峰值点平滑连接,形成该风机喘振边界线,(如下图所示),再将该喘振边界线向右下方移动一定距离,得到喘振报警线。
为保证风机的可靠运行,其工作点必须在喘振边界线的右下方。
一旦在某一角度下的工作点由于管路阻力特性的改变或其他原因,沿曲线向左上方移动到喘振报警线时,即发出报警信号提醒运行人员注意,将工作点移回稳定区。
并联风机的风压都相等,因此负荷小的风机的动叶开度小,其性能曲线峰值点(K点)要低于另一台风机,负荷越低,K点低得越多。
因此,负荷低的风机,其工作点就容易落在喘振区以内。
所以,调节风机的负荷时,两台并列风机的负荷不宜偏差过大,以防止低负荷风机进入不稳定的喘振区。
运行中,烟风道不畅或风量系统的进、出口挡板误关或不正确,系统阻力增加,会使风机在喘振区工作。
并列风机动叶开度不一致或与指示与就地不符、自控失灵等情况,则引起风机特性变化,也会导致风机的喘振。
应避免风机长期在低负荷下运行。
电三、风机抢风图1:风机抢风抢风是指并联运行的两台风机,突然一台风机电流(流量)上升,另一台风机电流(流量)下降。
此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。
在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。
抢风现象的出现,是因为并列风机存在较大的不稳定工况区。
上图为两台特性相同的轴流风机并联后的总性能曲线。
图中,有一个∞字型区域,若两台风机在管路系统1中运行,则P1点为系统的工作点,每台风机都在E1点稳定运行,此时抢风现象不会发生。
如果由于某种原因,管路系统阻力改变至2(升高)时,比如辅助风门突然大幅度关小,则风机进入∞字型工作区域内运行。
我们看P2点的工作情况,两台风机分别位于E2a 和E2点工作。
大流量的风机在稳定区工作,小流量的风机在不稳定区工作,两台风机的不平衡状态极易被破坏。
因此,便出现两台风机的抢风现象。
为了消除抢风现象,对于送、引风机,可在锅炉点火或低负荷运行时,采用单台运行方式,待单台风机出力不能满足锅炉负荷需要时,再启动另一台风机并列运行。
一旦发生抢风,就手动调整两台风机,保持适当的风量偏差(此时,风机并列特性的∞字型区域收缩),以避开抢风区域。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风喘振是指风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反当风机处于不稳定工作区运行时,可能会出现流量全压的大幅度波动,引起风机及管路系统周期性的剧烈振动,并伴随着强烈的噪声,这种现象叫作喘振。
风机在下列条件下才会发生喘振:1.风机在不稳定工作区运行,且风机工作点落在性能曲线的上升段。
2.风机的管路系统具有较大的容积,并与风机构成一个弹性的空气动力系统。
3.系统内气流周期性波动频率与风机工作整个循环的频率合拍,产生共振。
风机并联运行时,有时会出现一台风机流量特别大,而另一台风机流量特别小的现象,若稍加调节则情况可能刚好相反,原来流量大的反而减小。
如此反复下去,使之不能正常并联运行,这种现象称为抢风现象。
从风机性能曲线分析:具有马鞍形性能曲线的风机并联运行时,可能出现“抢风”现象。
为避免风机出现抢风现象,在低负荷时可以单台运行,当单台风机运行满足不了需要时,再启动第二台参加并联运行。
当冲角增加到某一个临界值时,流体在叶片凸面的流动遭到了破坏,边界层严重分离,阻力大大增加,升力急剧减小。
这种现象称为脱流或失速。
在叶轮叶栅上,流体对每个叶片的绕流情况不可能完全一致,因此脱流也不可能在每个叶片上同时产生。
一旦某一个或某些叶片上首先产生了脱流,这个脱流就会在整个叶栅上逐个叶片地传播。
这种现象称为旋转脱流。
个人理解:1喘振是风机出口流量过小,压力过高,风机开始出现异常的响声.风机仍然有出力2,失速,在喘振的基础上进而进入了失速区,此时风机出力非常小,必须立即减小风机出力重新并入运行.失速和喘振是两种不同的概念,失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。
喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。
所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。
总结一下:出现失速不一定有喘振现象,但有喘振必定出现失速。
失速不一定喘振,喘振肯定是先失速。
首先是气流和叶片的冲角改变,发生气流在部分叶片背部发生气流场改变,形成漩涡,气流不能出去或较少,这就是失速,失速的叶片多了,风机的叶片就发生喘振风机的失速从流体力学得知,当气流顺着机翼叶片流动时,作用于叶片上有两种力,即垂直于叶片的升力与平行于叶片的阻力,当气流完全贴着叶片呈线型流动时,这种升力大于阻力。
当气流与叶片进口形成正冲角,此正冲角达到某一临界值时,叶片背面流动工况开始恶化,冲角超过临界值时,边界层受到破坏,在叶片背面尾端出现涡流区,即“失速”现象,此时作用于叶片的升力大幅度降低,阻力大幅度增大,对于风机来讲压头降低。
产生失速的原因1、风机在不稳定工况区城运行。
2、锅炉受热面积灰严重或风门、挡板操作不当,造成风烟系统阻力增加。
3、并联运行的二台风机发生“抢风”现象时,使其中一台风机进入不稳定区城运行。
据电厂运行经验,当风机运行中出现下列现象时,说明风机发生了失速。
1、失速风机的风压或烟压、电流发生大幅度变化或摆动。
2、风机噪音明显增加,严重时机壳、风道或烟道也发生振动。
3、当发生“抢风”现象时,会出现一台风机的电流、风压上升,另一台下降。
当机组运行中发生“抢风”现象时,应迅速将二台风机切手动控制,手动调整风机动叶开度,侍开度一致、电流相接后将二台风机导叶同时投入自动。
为防止机组运行中风机“抢风”现象发生,值班员在调整时调整幅度不要太大,并尽量使二台并联运行的风机导叶开度、电流基本一致。
风机的喘震:当风机的Q-H特性曲线不是一条随流量增加而下降的曲线,而是驼峰状曲线,那么它在下降区段工作是稳定的,而在上升区段工作是不稳定的。