离心式压缩机的失速和喘振
- 格式:ppt
- 大小:124.50 KB
- 文档页数:16
离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。
喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。
本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。
离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。
在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。
喘振产生的原因喘振是目前离心式压缩机容易发生的通病。
离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。
该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。
另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。
曲线表明随着温度的升高,压缩机易进入喘振区。
图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。
本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。
关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。
根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。
1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。
喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。
2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。
但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。
3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。
喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
离心式压缩机喘振故障原因分析及预防措施离心式压缩机喘振故障原因分析及预防措施【摘要】本文介绍了离心式压缩机的喘振原理和喘振的形成表现形式,并结合喘振现象对压缩机的喘振故障原因进行了分析,提出了压缩机喘振故障的控制和预防措施。
【关键词】离心式;压缩机;喘振;故障前言喘振是离心式压缩机固有的特性,它是在一定的操作条件下,由被压缩气体的气流扰动引起的一种非正常现象。
在化工生产中为了保证压缩机的稳定运行,我们对离心式压缩机喘振原因进行了分析,并采取了相应的防范措施,最终解决了压缩机组的喘振问题,确保了机组的长周期稳定运行。
一、离心式压缩机的喘振原理喘振是离心式压缩机运行在某一工况下产生的特有现象。
离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成。
当压缩机内气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流漩涡,占据了大部分叶道,这时气流就会受到严重阻塞,致使压缩机出口压力明显下降。
管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力反而大于压缩机出口压力的现象,使管网中的气体倒流,直到管网中的气体压力下降至与压缩机出口压力相同时,气体倒流才停止。
随后在旋转叶轮的作用下气体的压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。
管网中的气体压力迅速回升,气体流量又下降,系统中的气流再次出现倒流,气体在压缩机组和管网系统中反复出现正流、倒流,使整个系统发生了周期性的低频、大振幅的气流振荡现象,这种现象就称为压缩机的喘振。
喘振造成的后果非常严重,不仅降低压缩机的工作效率,使设备出现异常噪声和强烈振动,而且会损坏压缩机的轴承和密封,甚至发生转子和固定部件的碰撞,导致设备严重受损。
二、离心式压缩机喘振故障原因分析压缩机喘振本质上是因为进入压缩机的流量不足以使压缩机产生足够的压力,以至于外部系统的压力大于压缩机内部的压力,因此,产生喘振故障主要可以通过以下几个方面来分析。
离心式压缩机的喘振原因与预防措施分析摘要:喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象,并且,故障的引发原因较多,很容易影响整体的生产效率,在我国目前的生产发展当中离心式压缩机起到了至关重要的作用,可以在一定程度上提高整体的生产效率,而由于喘振现象的出现导致离心式压缩机不能够正确的发挥作用,甚至是引发爆炸或者是火灾等灾害,不仅严重影响了整体的生产效率,还会对工作人员造成严重的人身伤害,甚至是不可挽回的恶劣后果,所以需要相关工作人员对离心式压缩机喘振现象加以重视,深度挖掘喘振现象的产生原因,并结合喘振现象的发生原因制定相应的解决对策,同时,利用信息技术实现故障诊断系统的有效应用,通过远程监测功能与智能故障预警等功能实现离心式压缩机喘振现象的智能化控制,做到科学预防、合理治理离心式压缩机喘振故障。
关键词:离心式压缩机;喘振原因;预防措施引言离心式压缩机又叫透平式压缩机,整个压缩机没有中间罐等装置,也没有巨大且笨重的基础元件,整体结构十分紧凑,总体尺寸小,分量轻。
机器内部耗油量很少,只有轴承部分需要润滑,减少了压缩空气被污染的可能性。
压缩机运行过程中振动小,出口排气连续,易于调节,维修简单。
因此广泛应用在石油化工行业的多种装置上。
1离心式压缩机喘振的故障原因1.1叶轮磨损或有附着物叶轮磨损或表面存在附着物,也是造成离心式压缩机存在喘振故障的主要原因,在离心式压缩机的运行过程当中,叶轮通过自身结构形成高速旋转为气体提供速度及其压力,从而保证离心式压缩机能够正常运行,如果叶轮出现磨损或表面存在附着物等现象就会在一定程度上改变叶轮的自身结构,降低叶轮的旋转速度,导致不能够为气体具体提供正确的速度以及压力,从而导致离心式压缩机出现喘振故障,而且叶轮在日常的运行过程当中势必会造成一定的磨损,这是无法避免的必然现象,只能通过工作人员人为检修更换来避免这一现象发生。
1.2内因离心式压缩机喘振的内因就是由叶轮以及介质所导致的,当进口的流量低于标准值时,压缩机的气流方向就会和叶片进口的安装角产生偏差,如果偏差较大,还会导致脱离,此时气体就会滞留在叶轮的流道中,进而造成压缩机的压力减小,不过由于工程管路有一定的背压,出口压力并不会变小,这样就会使气体发生回流,补充流量,使其恢复正常。
离心式压缩机振动的原因与处理措施摘要:离心式压缩机是目前石油和化工工业中最重要的设备之一,在能源和化工工业中也发挥着重要作用。
为了有效地保证设备的平稳工作和正常运行,有必要针对常见振动事件故障情况进行调查和分析,确定问题的原因。
分析离心式压缩机振动干扰问题及其应用对策。
关键词:离心式压缩机;振动故障;石化行业Causes and Treatment Measures of Vibration of Centrifugal CompressorGuoyunmingAbstract :Centrifugal compressors are currently one of the most important equipment in the petroleum and chemical industries,and they also play an important role in the energy and chemical industries.In order to effectively ensure the smooth and normal operationof the equipment,it is necessary to investigate and analyze the failure of common vibration events and handle them properly.Analyze thevibration interference of centrifugal compressor and its application countermeasures.Keywords :centrifugal compressor ;vibration failure ;petrochemical industry1离心式压缩机的基本原理、结构和性能1.1离心式压缩机的基本原理及优点1.1.1 离心压缩机的基本原理离心式压缩机的工作原理: 当叶轮高速旋转时,离心力通过叶轮出口接收叶轮扩散器,提高压力能和运动能。
喘振喘振”应该是单级离心式制冷压缩机(即速度型制冷压缩机)所特有的一个特征。
它表现在当单级离心式制冷压缩机在低负荷下(额定负荷的25%以下)运行时,容易发生“喘振”,造成周期性地增大噪声和振动,严重时甚至损坏压缩机。
这是由单级离心式制冷压缩机特殊结构和运行方式决定的,因为它是一种速度型制冷压缩机,而非容积型制冷压缩机(如往复式及回转式)。
离心机组的喘振是单级离心机组的特性之一,它的产生是由于压缩机的排气压力小于冷凝器的压力,导致压缩机无法实现排气,但压缩机又不断吸气,从而机组出现剧烈震动和噪音。
一般来讲,机组负荷在低于机组总负荷的30%即会出现"喘振",主要是由于机组运行负荷过低造成,一般来说,一是整个系统负荷过低,而采用离心机组必须运转时可能出现,可以采取的措施,如果已经采用了离心机组,可以在电脑系统进行设臵,保证机组最低运转负荷在30%以上(这是最笨的办法)。
最好的解决办法是系统采用的机组大小搭配,即保证整个系统的最小负荷大于采用的最小的一台离心机组的30%负荷,或者采用离心机组和螺杆机组搭配的方案它是离心压缩机固有的特性,不过随着速度变化而喘振点后发生偏移。
产生是由于压缩机的排气压力小于冷凝器的压力,造成压力的倒灌从而对叶轮冲击。
高速的离心机特别易产生喘振(如开利,约克的单级离心机),一般是通过热气旁通的方式克服,另一种是通过限制导叶轮的开启度从而限制冷凝压力的增加。
对于低速的多级离心机由于速度较低一般为2900转,喘振点远离工作点,此种机型在运行时可以在10%的低负荷下运行(如特灵的多级离心机)。
喘振是离心机特有的,但不只是单级,多级离心机照样会喘,其原因是在低负荷时吸气量少,因而排气压力有可能低于冷凝压力,所以冷凝器气体回流造成反复。
特点是声音大,电流波动大。
喘振控制可通过打开压缩机的旁路阀或直接将一部分气体放空以维持压缩机的最低流量来实现。
但是由于使气体通过旁路或放空都意味着要浪费能量,所以通常总希望尽可能准确地确定喘振流量,以便于实际操作时,避免不必要的浪费。
旋转失速与喘振故障的机理与诊断(1) 中国设备管理网(2005-06-16)文章来源:中国设备管理网旋转失速与喘振是高速离心压缩机特有的一种振动故障。
这种故障是由于流体流动分离造成的,设备本身一般没有明显的结构缺陷,因而不需要停工检修,通过调节流量即可使振动减至允许值。
当旋转脱离进一步发展为喘振时,不仅会引起机组效率下降,而且还会对机器造成严重危害。
喘振会导致机器内部密封件、轴承等损坏,严重的甚至会导致转子弯曲、联轴器损坏。
喘振是离心压缩机等流体机械运行最恶劣、最危险的工况之一,对机器危害很大。
对这种危害性极大但又不需要停机即可处理的故障,最能显示出状态监测与故障诊断工作的作用与效益。
一、旋转失速的机理与特征1.旋转失速旋转失速的机理首先由H . W . Emmons在1995年提出。
旋转失速的形成过程大致如下。
离心压缩机的叶轮结构、尺寸都是按额定流量设计的,当压缩机在正常流量下工作时,气体进入叶轮的方向β1与叶片进口安装角βS一致,气体可以平稳地进人叶轮,如图1(a)所示,此时,气流相对速度为ω1,入口径向流速为C1。
当进人叶轮的气体流量小于额定流量时,气体进人叶轮的径向速度减少为C1′气体进人叶轮的相对速度的方向角相应的减少到β1′,因而与叶片进口安装角βS不相一致。
此时气体将冲击叶片的工作面(凸面),在叶片的凹面附近形成气流旋涡,旋涡逐渐增多使流道有效流通面积减小。
由于制造、安装维护或运行工况等方面的原因,进人压缩机的气流在各个流道中的分配并不均匀,气流旋涡的多少也有差别。
如果某一流道中[图1(b)中的流道2]气流旋涡较多,则通过这个流道的气量就要减少,多余的气量将转向邻近流道(流道1和3)。
在折向前面的流道(流道1)时,因为进人的气体冲在叶片的凹面上,原来凹面上的气流旋涡有一部分被冲掉,这个流道里的气流会趋于畅通。
而折向后面流道(流道3)的气流则冲在叶片的凸面上,使得叶片凹面处的气流产生更多的旋涡,堵塞了流道的有效流通面积,迫使流道中的气流又折向邻近的流道。
离心式压缩机喘振原因及其预防措施摘要: 离心式压缩机喘振是离心式压缩机在流量减少到一定程度时发生的一种不正常情况下的振动现象,由于喘振随时都有可能发生,因此必须采取有效的措施才能防止阻止他所带来的危害。
本文就离心式压缩机喘振的作用原理进行了详细的分析,并指出了离心式压缩机喘振的原因,于此同时,提出了相关的预防措施。
详细情况,请见下文。
关键词:离心式压缩机;喘振;原因;预防措施Abstract: the centrifugal compressor surge is centrifugal compressor in the flow rate reduce to certain degree of a kind not happen normally vibration phenomenon, due to the surge could happen at any time, so we must take effective measures to prevent the damage caused by stop him. This paper centrifugal compressor surge action principle to carry on the detailed analysis, and points out that the cause of centrifugal compressor surge, at the same time, some corresponding prevention measures. For more information, please see below.Keywords: centrifugal compressor; Surge; Reason; Prevention measures一、前言离心式压缩机喘振是普遍存在的一种现象,而离心压缩机是速度式压缩机中的一种,由于具有排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,目前已广泛应用于石油、化工、冶金、动力、制冷等行业。
离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。
如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。
喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。
但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。
二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。
离心式压缩机振动故障的诊断及解决措施汇报人:日期:CATALOGUE目录•引言•离心式压缩机振动故障的诊断•振动故障的原因分析•离心式压缩机振动故障的解决措施•案例分析•结论与展望引言01离心式压缩机的基本结构和工作原理离心式压缩机的特点和应用领域离心式压缩机的概述振动故障的危害振动故障对离心式压缩机的危害振动故障对操作人员和设备周围环境的影响离心式压缩机振动故障的诊断02离心式压缩机振动故障的原因多种多样,包括机械不平衡、气动不平衡、转子不对中、轴承磨损等。
因此,对于振动故障的诊断,需要采用多种方法,包括信号处理、机器学习以及其他技术。
信号处理方法主要包括频谱分析、波形分析、轴心轨迹等,可以用于识别机械不平衡和气动不平衡等故障。
机器学习算法则可以通过学习样本数据,自动识别和预测振动故障,提高诊断准确率。
其他技术,如轴颈测量和激光对中等,也可以用于诊断转子不对中和轴承磨损等故障。
诊断方法概述VS频谱分析01通过对振动信号进行频谱分析,可以将振动信号分解成不同频率的分量,从而识别出不同性质的振动故障。
例如,对于机械不平衡故障,可以在频谱上看到以转子转速频率为基频的振动分量。
波形分析02波形分析可以用于识别不同性质的振动故障。
例如,对于气动不平衡故障,可以在波形上看到周期性的波动,其频率与气动力的频率相等。
轴心轨迹03轴心轨迹可以用于识别转子不平衡和不对中等故障。
通过测量轴心位置的变化,可以绘制出轴心轨迹图,从而识别出转子不平衡和不对中的位置和大小。
支持向量机(SVM)SVM是一种有监督学习算法,可以用于分类和回归问题。
在振动故障诊断中,可以使用SVM对采集的振动信号进行分类,判断是否存在故障,并预测故障的类型和程度。
随机森林(RF)RF是一种集成学习方法,将多个决策树的结果进行集成,提高预测精度和稳定性。
在振动故障诊断中,可以使用RF对采集的振动信号进行分类或回归分析,预测故障的类型和程度。
神经网络神经网络是一种模拟人脑神经元网络结构的计算模型,具有强大的自学习和自适应能力。
离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。
其优点是单级流量大,压力比高,气体介质密封效果好。
离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。
通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。
关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。
气体压力主要是通过扩散阀和推进器来提高的。
当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。
在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。
因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。
一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。
直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。
此后,在人工转动叶轮的作用下,气压逐渐上升。
在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。
这就是压缩机的喘振现象。
2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。
如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。
如果有非常大的偏离,也可能造成分离。
这时,气体将滞留于叶轮流道内,使压缩机内压下降。
但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。
若持续降低且补给不充分,仍然存在回流现象。
长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。