失速与喘振
- 格式:doc
- 大小:234.00 KB
- 文档页数:9
第4章压缩机喘振4.1 导论喘振是流动状态在完全压缩系统处于不稳定状态并且在这个过程中平均流量通过整个压缩机时存在波动的情况。
通过压缩机的净流量在这个高的不稳定状态可能是正的或负的。
这与旋转失速不同,一个条件是通过压缩机系统的平均流量随时间为恒值。
在失速时,关于下游节流阀如果能满足第1章中略述的需求稳定性,则系统是稳定的。
在喘振过程中系统是不能获得稳定匹配节的流阀。
在第3章中也表示过在失速过程中,压力波动主要地发生在压缩机的叶栅附近。
在喘振时,完整的系统实践了在压力上的波动。
在质量流量和压力上的波动能在压缩机和连接管道内部产生机械振动以及可听得到的噪音。
压缩机的振动载荷以及卸载利用在轴承上的瞬时载荷来支持压缩机的轴系。
这章包括事件有:·作为喘振的准备,·在喘振时发生的,·在喘振后发生的,并且·在重新恢复到稳定状态的过程发生的。
4.2 轴流压缩机喘振由于高声的过热蒸汽通常伴随有喘振,因此自然的联想到基于突变失速的一个喘振模型。
当流量减少时,在压比上达到的突变下降点,且下游贮液器的随着通过压缩机的回流而减轻。
然而事实上,Huppert(1952)的数据表示喘振能在末端失速开始不久之后遇到。
在这个参考文献上的数据表示在一个突变失速时没有发生喘振。
在另一个转速时,喘振在末端失速开始之后发生。
只有使稳定条件复原之后,最后通过突变失速遇到或伴随有旋转失速。
Huppert(1952)的压缩机有0.8的中心/末端比,且包含有进口导叶片,转子和定子。
压缩机性能和喘振与失速事件在图4.1上表示。
这幅图上的字母表示不同的失速事件。
在转子转速为203rps时,末端失速在E点开始,跟随着听不见的喘振在F点。
在喘振过程中选用的波形图的数据表示喘振随质量流量10%的波动的脉动频率是从10到15cps。
这些波动包含了在绝对转速等于85%的转子转速时旋转的8单元旋转失速模式。
当流量减少是,喘振停止。
一、风机失速与喘振1、失速是叶片结构特性造成的一种流体动力现象,如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。
2、喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。
所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。
3、喘振时风机的流量和压力周期性地反复变化,电流也摆来摆去,也就是说一台风机运行也可能发生喘振,而且是风机低负荷时。
而失速通常发生在两台风机并列运行在大负荷时,失速发生时,失速风机风压、风量、振动、风机电机电流等参数突变后不发生波动,这是失速与喘振的最大区别。
抢风是失速和喘振的一种通俗性的说法二、喘振与失速的区别当风机处于不稳定工作区运行时,可能会出现流量全压的大幅度波动,引起风机及管路系统周期性的剧烈振动,并伴随着强烈的噪声,这种现象叫作喘振。
风机在下列条件下才会发生喘振:1.风机在不稳定工作区运行,且风机工作点落在性能曲线的上升段。
2.风机的管路系统具有较大的容积,并与风机构成一个弹性的空气动力系统。
3.系统内气流周期性波动频率与风机工作整个循环的频率合拍,产生共振。
风机并联运行时,有时会出现一台风机流量特别大,而另一台风机流量特别小的现象,若稍加调节则情况可能刚好相反,原来流量大的反而减小。
如此反复下去,使之不能正常并联运行,这种现象称为抢风现象。
从风机性能曲线分析:具有马鞍形性能曲线的风机并联运行时,可能出现“抢风”现象。
所谓抢风,是指并联运行的两台风机,突然一台风机电流(流量)上升,加一台风机电流(流量)下降。
此时,若关小大流量风机的调节风门试图平衡风量时,则会使另一台小流量风机跳至最大流量运行。
在调整风门投自动时,风机的动叶或静叶频繁地开大、关小,严重时可能导致风机电机超电流而烧坏。
什么是失速和喘振?失速当气流与叶片进口形成正冲角时,随着冲角的增大,在叶片后缘点附近产生涡流,而且气流开始从表面分离。
当正冲角超过某一临界值时,气流在叶片背部的流动遭到破坏,升力减小,阻力却急剧增加,这种现象称为“旋转脱流”或“失速”。
正常工况时的气体流动脱流工况下的气体流动如果脱流现象发生在风机的叶道内,则脱流将对叶道造成堵塞,使叶道的阻力增大,同时风压也随之而迅速降低。
动叶调节轴流式风机特性曲线轴流风机的失速特性是由风机的叶型等特性决定的,同时也受到风道阻力等系统特性的影响,如图所示,鞍形曲线M为风机不同安装角的失速点连线,工况点落在马鞍形曲线的左上方,均为不稳定工况区,这条线也称为失速线。
由图中看出:•在同一叶片角度下,管路阻力越大,风机出口风压越高,风机运行越接近于不稳定工况区;•在管路阻力特性不变的情况下,风机动叶开度越大,风机运行点越接近不稳定工况区。
失速的现象:•失速风机的压头、流量、电流大幅降低;•失速风机噪声明显增加,严重时机壳、风道、烟道发生振动;•在投入“自动”的情况下,与失速风机并联运行的另一台风机电流、容积比能大幅升高;•与风机“喘振”不同,风机失速后,风压、流量降低后不发生脉动。
失速的危害:•风机失速时,风量、风压大幅降低,引起炉膛燃烧剧烈变化,易于发生灭火事故;•并联运行的另一台风机投入“自动”时,出力增大,容易造成电机过负荷;•失速风机振动明显增高,可能风机设备、风道振动大损坏;•处理过程不正确时,易于引发风机“喘振”,损坏设备。
喘振由于失速气流脱流造成风机出口风压降低,这时就会由于风道内的风压大于风机出口风压造成风量回流,当风机出口风压大于风道压力时,风机又向风道送风。
这样气流会发生往复流动,风机及管道会产生强烈的振动,噪声显著增高,还可能发生流量、全压和电流的大幅度波动,这种不稳定工况称为喘振。
轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动等不正常工况,这一不稳定工况区称为喘振区,形成原理见下图。
谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。
失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
风机的失速与喘振一、风机的失速从流体力学得知,当气流顺着机翼叶片流动时,作用于叶片上有两种力,即垂直于叶片的升力与平行于叶片的阻力,当气流完全贴着叶片呈线型流动时,这种升力大于阻力。
当气流与叶片进口形成正冲角,此正冲角达到某一临界值时,叶片背面流动工况开始恶化,冲角超过临界值时,边界层受到破坏,在叶片背面尾端出现涡流区,即“失速”现象,此时作用于叶片的升力大幅度降低,阻力大幅度增大,对于风机来讲压头降低。
二、产生失速的原因1、风机在不稳定工况区域运行。
2、锅炉受热面积灰严重或风门、挡板操作不当,造成风烟系统阻力增加。
3、并联运行的二台风机发生“抢风”现象时,使其中一台风机进入不稳定区域运行。
依据运行经验,当风机运行中出现下列现象时,说明风机发生了失速。
1、失速风机的风压或烟压、电流发生大幅度变化或摆动。
2、风机噪音明显增加,严重时机壳、风道或烟道也发生振动。
3、当发生“抢风”现象时,会出现一台风机的电流、风压上升,另一台下降。
当机组运行中发生“抢风”现象时,应迅速将二台风机切手动控制,手动调整风机动叶开度,待开度一致、电流相接后将二台风机导叶同时投入自动。
为防止机组运行中风机“抢风”现象发生,值班员在调整时调整幅度不要太大,并尽量使二台并联运行的风机导叶开度、电流基本一致。
三、风机的喘震当风机的Q-H特性曲线不是一条随流量增加而下降的曲线,而是驼峰状曲线,那么它在下降区段工作是稳定的,而在上升区段工作是不稳定的。
当风机在不稳定区工作时,所产生的压力和流量的脉动现象称为喘震。
一般送风机为轴流式,运行中要防止送风机的喘振。
喘振产生主要是因为风机性能曲线为“驼峰形”。
当风机工作在不稳定区,流量降低时风压也降低,造成风道中压力大于风机出口压力而引起反向倒流,倒流的结果,又使风道内的压力急剧下降,风机的送风量突然上升,再次造成风机出口压力小于风道压力。
如此往复形成喘振。
喘振对风机危害很大,严重时会造成风机断叶片,及其它部位的机械损坏。
谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。
失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。
我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。
主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。
喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。
避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。
不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。
当风机流量减小时,w的方向角改变,气流冲角增大。
当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。
由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。
因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。
若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。
结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。
叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。
失速探头由两根相隔约3mm的测压管所组成,将它置于叶轮叶片的进口前。
测压管中间用厚3mm、高(突出机壳的距离)3mm的镉片分开,风机在正常工作区域内运行时,叶轮进口的气流较均匀地从进气室沿轴向流入,那么失速探头之间的压力差几乎等于零或略大于零。
当风机的工作点落在旋转脱流区,叶轮前的气流除了轴向流动之外,还有脱流区流道阻塞成气流所形成的圆周方向分量。
于是,叶轮旋转时先遇到的测压孔,即镉片前的测压孔压力高,而镉片后的测压孔的气流压力低,产生了压力差,一般失速探头产生的压力差达245~392Pa,即报警,风机的流量越小,失速探头的压差越大。
由失速探头产生的压差发出信号,然后由测压管接通一个压力差开关(继电器),压力差开关将报警电路系统接通发出报警,操作人员及时采取排除旋转脱流的措施。
失速探头装好以后,应予以标定,调整探头中心线的角度,使测压管在风机正常运转的差压为最小。
轴流风机在叶轮进口处装置喘振报警装置,该装置是由一根皮托管布置在叶轮的前方,皮托管的开口对着叶轮的旋转方向,皮托管是将一根直管的端部弯成90°(将皮托管的开口对着气流方向),用一U 形管与皮托管相连,则U 形管(压力表)的读数应该为气流的动能(动压)与静压之和(全压)。
在正常情况下,皮托管所测到的气流压力为负值,因为它测到的是叶轮前的压力。
但是当风机进入喘振区工作时,由于气流压力产生大幅度波动,所以皮托管测到的压力亦是一个波动的值。
为了使皮托管发送的脉冲压力能通过压力开关,利用电接触器发出报警信号,所以皮托管的报警值是这样规定的:当动叶片处于最小角度位置(-30°)用一U 形管测得风机叶轮前的压力再加上2000Pa压力,作为喘振报警装置的报警整定值。
当运行工况超过喘振极限时,通过皮托管与差压开关,利用声光向控制台发出报警信号,要求运行人员及时处理,使风机返回正常工况运行。
1/ 1。
旋转失速机理与故障特征1.故障机理:当进入叶轮的气体流量低于额定流量时,气体进入叶轮的相对速度方向角与叶片入口安装角度不一致,气体冲击叶片的工作面(凸面),在图面附近形成气流漩涡,漩涡逐渐增加使流道有效通过面积减小,漩涡组成的气体堵塞团沿着叶轮旋转的相反方向轮流在各个流道出现,由于失速区反向传播速度低于叶轮旋转速度,从绝对坐标系看失速区还是沿着叶轮旋转方向旋转,这就是旋转失速。
2.旋转失速特征:旋转失速的表现:1、失速区内达不到要求的压力时,就会引起叶轮出口和管道内的压力脉动,发生机器和管道的振动;2、叶轮失速在0.5-0.8倍的转频范围内,扩压器失速0.1-0.25倍的转频范围内3、当压缩机进入旋转失速范围后,虽然压力存在脉动,但机器流量基本稳定,这与喘振不同4、旋转失速引起的振动在强度比喘振小时域与频域特征:1)时域:各成分叠加波形2)频域:及的成对次谐波(为转子角频率,旋转脱离团角频率,,N为气体脱离团数目,实际工作流量,设计流量)3)轴心轨迹:杂乱不稳定,正进动喘振机理与故障特征1.故障机理:喘振是离心式和轴流式压缩机运行常见故障之一,是旋转失速的进一步发展。
喘振是压缩机组严重失速和管网相互作用的结果,它既可以是管网负荷急剧变换所引起,也可以是压缩机工作状况变化所引起。
当进入叶轮的气体流量减少到某一最小值时,气体失速团扩大到整个叶轮流道,压缩机出口压力突然下降,管网气流倒流,当管网中的下降低于出口排气压力,停止倒流恢复向管网供气,因进气量不足,出口管网回复到原来压力后,又会在流道出现旋涡区,周而复始,气体在进出口处吞吐倒流。
2.喘振特征:喘振的表现:由于气体的吞吐倒流,会伴随有巨大周期性的气体吼声和剧烈的机械振动,这些波动,在压力,流量,振动信号等都有显示。
有喘振引起的机器振动频率和强度,不但与压缩机中严重的旋转失速团有关,还和管网容量有关:管网容量越大,则喘振振幅越大,频率越低;管网容量小,则喘振幅值小,喘振频率也较高,一般为0.5-20Hz。
动叶可调轴流通风机的失速与喘振分析及改进措施一、引言动叶可调轴流通风机是一种广泛应用于建筑物、工厂车间、地下车库等场合的通风设备。
它在实际使用中可能出现失速和喘振现象,降低了其工作效率并可能对设备和使用环境造成损害和威胁。
因此,本文将就动叶可调轴流通风机的失速和喘振现象进行探究,并提出相应的改进措施,以提高其工作效率和使用安全性。
二、失速分析2.1 失速概述失速是指当轴流风机的风量或静压达到一定数值时,浓度分布却发生逆向流动现象,致使风机放弃原有的风场,失去能力继续稳定工作的现象。
2.2 失速原因动叶可调轴流通风机发生失速的原因涉及多种因素,包括风机转子尺寸、转速、角度、流量等因素,另外还有可能受到外界扰动的影响。
2.3 失速对设备的影响失速会引起风机的性能下降,使其工作效率降低,产生噪音和振动,同时也对设备和使用环境造成损害和威胁,例如风机的振动过大会导致齿轮失喉、轴承过早损坏等问题。
2.4 改进措施1)增加不可调空穴:增大空穴可以增加进风容积,降低进风速度,减小啮合歪斜风及离心力在内部的影响矩; 2)增加叶片数量:减少每叶周期离心力梯度,使风量能均匀分配到每一片叶子上,避免在某一片叶子梯度过大而导致实际风量不能达到设计风量; 3)增加进口角度或离心前角度:增大入口扩散角及入口面积来减小进口剪切损失和充填损失; 4)在叶片上安装增厚条或变厚型叶片,来改变湍流动态特性的分布情况; 5)在风机进气口上安装回旋系统,即进气口处形成的漩涡层,可延缓轴流管道系统中干扰波的向前传播,减小干扰波对最后叶片的影响,从而使风压更接近设计风压。
三、喘振分析3.1 喘振概述闪脱及随之发生的流体不稳定现象,喘振是轴流风机在一定飞行数的范围内,能量的交换和分配不能使失稳波得到正确的发展或能量消除,使失稳波幅度不断放大或比最大放大后瞬间降为零。
3.2 喘振原因轴流风机喘振的出现是由于转子和固定壳体之间的交互作用和迎角的大小不匹配,造成弹性不均匀或流体动力学不稳定的问题。
风机失速、喘振、抢风防范措施660MW机组风机失速、喘振、抢风一、动调风机失速、喘振、抢风的定义与区别失速:是动调风机固有的结构特性,在运行中行成的一种流体动力现象。
失速时风机的全压、风量、振动、风机电流等参数突变后不发生波动,就地伴随着异常的闷声。
单风机或并列运行时的风机均会出现失速,风机失速时不一定喘振。
喘振:是动调风机性能与管道阻力耦合后振荡特性的一种表现形式,喘振时风机的压力和流量周期性地反复变化,电流、动叶开度也摆来摆去,轴承振动明显增大并伴随着强烈的噪声,单风机或并列运行时的风均会出现喘振。
风机喘振时肯定失速。
抢风:在动调风机并联运行时,风机本身未失速也未喘振,随着管路特性阻力的变化,会出现一台风机出力、电流特别大,另一台风机出力、电流特别小的现象,若稍加调节则情况刚好相反,原来出力大的反而减小。
如此反复,使之不能正常并联运行。
一次风机,送风机、引风机失速的现象1、风机电流减小且稳定,明显低于正常运行动叶开度。
2、风机全压(风机出口+进口)减小且稳定,轴承振动X向、Y 向振幅呈增大趋势。
3、就地听风机运行声音,有异常的闷声。
4、一次风机失速时,两台风机电流明显偏差(10A以上),两台风机出口风压降低,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。
5、送风机失速时,两台风机电流明显偏差(20A以上),两台风机出口风压降低,总风量降低,两台风机动叶会自动开大,炉膛压力波动大。
6、引风机失速时,两台风机电流明显偏差(30A以上),两台风机出口风压降低,全压明显降低,两台风机动叶会自动开大,炉膛压力波动大。
一次风机,送风机、引风机失速的处理1、一次风机失速的处理1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF 方式运行。
降低失速一次风机动叶开度至25%左右,或听到失速一次风机无闷声为止。
注意未失速一次风机的电流不超额定值。
2)快速减负荷500MW,保留3-4台磨煤机运行。
旋转失速与喘振故障的机理与诊断(一)普及工业设备管理技术/工业设备人的精神角落旋转失速与喘振是高速离心压缩机特有的一种振动故障。
这种故障是由于流体流动分离造成的,设备本身一般没有明显的结构缺陷,因而不需要停工检修,通过调节流量即可使振动减至允许值。
当旋转脱离进一步发展为喘振时,不仅会引起机组效率下降,而且还会对机器造成严重危害。
喘振会导致机器内部密封件、轴承等损坏,严重的甚至会导致转子弯曲、联轴器损坏。
喘振是离心压缩机等流体机械运行最恶劣、最危险的工况之一,对机器危害很大。
对这种危害性极大但又不需要停机即可处理的故障,最能显示出状态监测与故障诊断工作的作用与效益。
一、旋转失速的机理与特征1.旋转失速旋转失速的机理首先由H.W.Emmons在1995年提出。
旋转失速的形成过程大致如下。
离心压缩机的叶轮结构、尺寸都是按额定流量设计的,当压缩机在正常流量下工作时,气体进入叶轮的方向β1与叶片进口安装角βS一致,气体可以平稳地进人叶轮,如图1(a)所示,此时,气流相对速度为ω1,入口径向流速为C1。
当进人叶轮的气体流量小于额定流量时,气体进人叶轮的径向速度减少为C1′气体进人叶轮的相对速度的方向角相应的减少到β1′,因而与叶片进口安装角βS不相一致。
此时气体将冲击叶片的工作面(凸面),在叶片的凹面附近形成气流旋涡,旋涡逐渐增多使流道有效流通面积减小。
由于制造、安装维护或运行工况等方面的原因,进人压缩机的气流在各个流道中的分配并不均匀,气流旋涡的多少也有差别。
如果某一流道中[图1(b)中的流道2]气流旋涡较多,则通过这个流道的气量就要减少,多余的气量将转向邻近流道(流道1和3)。
在折向前面的流道(流道1)时,因为进人的气体冲在叶片的凹面上,原来凹面上的气流旋涡有一部分被冲掉,这个流道里的气流会趋于畅通。
而折向后面流道(流道3)的气流则冲在叶片的凸面上,使得叶片凹面处的气流产生更多的旋涡,堵塞了流道的有效流通面积,迫使流道中的气流又折向邻近的流道。
关于风机失速及喘振的分析我厂在生产过程中,曾经出现过一次风机失速,影响风机的安全、稳定运行,因此此类现象的发生和处理进行进一步的分析和探讨,以便在遇到相同的事故时,能有效、及时的预防和处理。
失速和喘振发生的原因:风机在正常工况时,冲角很小,气流绕过机翼型叶片保持流线状态,当气流与叶片冲角>0超过某一临界值时,叶片背面的流动工况开始恶化,在叶片的背面出现漩涡区,即所谓的“失速”,冲角大于临界值越多,失速现象越严重,流体的阻力越大,使叶片受阻,同时风机风压也随之迅速降低。
风机的叶片在安装过程中,由于各种的原因使叶片不可能油完全相同的形状和安装角,因此,当运行工况变化而使流动方向发生改变时,各个叶片的冲角就不可能完全相同,正是因为这样,在发生失速现象时不是每个叶片都同时发生失速,风机进行到不稳定工况里运行时,叶轮将产生数个旋转失速区,叶片每经过一个失速区就会受到一次激振力的作用,使叶片发生共振。
严重时可导致叶片的断裂。
由于失速的产生,使得风管中的压力大于风机的出口压力,因此,气流回流后压力差正常后,风机有正常工作向风管送风,当风管内的压力到达一定值后,风机的出风又受阻,从而又出现倒流,如此反复风管出现周期性的振荡,这样的现象叫“喘振”。
失速是喘振的前因,喘振是失速恶化的进一步表现,但失速不一定会发生喘振,喘振还和管路的阻力特性有关。
对于一次风机、送风机和引风机发生失速和喘振的危险性有:1.引起炉膛负压波动。
2.造成被迫降负荷。
3.严重时会引起锅炉MFT。
4.造成风机本体振动加剧,造成设备损坏。
5. 炉内燃烧不稳。
事故可能发生的原因:1.快速增减负荷。
2.风机动叶开度较大时。
3.空预器堵灰严重时。
4.并风机操作时。
5.两台风机电流偏差较大。
6.炉膛内燃烧不稳。
7.风机动叶或挡板的执行机构故障。
8.受热面、空预器严重积灰或烟气系统挡板误关,引起系统阻力增大,造成风机动叶开度与进入的风量、烟气量不相适应,使风机进入喘振区。
660MW机组风机失速、喘振、抢风一、动调风机失速、喘振、抢风的定义与区别失速:是动调风机固有的结构特性,在运行中行成的一种流体动力现象。
失速时风机的全压、风量、振动、风机电流等参数突变后不发生波动,就地伴随着异常的闷声。
单风机或并列运行时的风机均会出现失速,风机失速时不一定喘振。
喘振:是动调风机性能与管道阻力耦合后振荡特性的一种表现形式,喘振时风机的压力和流量周期性地反复变化,电流、动叶开度也摆来摆去,轴承振动明显增大并伴随着强烈的噪声,单风机或并列运行时的风均会出现喘振。
风机喘振时肯定失速。
抢风:在动调风机并联运行时,风机本身未失速也未喘振,随着管路特性阻力的变化,会出现一台风机出力、电流特别大,另一台风机出力、电流特别小的现象,若稍加调节则情况刚好相反,原来出力大的反而减小。
如此反复,使之不能正常并联运行。
一次风机,送风机、引风机失速的现象1、风机电流减小且稳定,明显低于正常运行动叶开度。
2、风机全压(风机出口+进口)减小且稳定,轴承振动X向、Y向振幅呈增大趋势。
3、就地听风机运行声音,有异常的闷声。
4、一次风机失速时,两台风机电流明显偏差(10A以上),两台风机出口风压降低,一次风母管压力与炉膛压差降低,两台风机动叶会自动开大,炉膛压力波动大。
5、送风机失速时,两台风机电流明显偏差(20A以上),两台风机出口风压降低,总风量降低,两台风机动叶会自动开大,炉膛压力波动大。
6、引风机失速时,两台风机电流明显偏差(30A以上),两台风机出口风压降低,全压明显降低,两台风机动叶会自动开大,炉膛压力波动大。
一次风机,送风机、引风机失速的处理1、一次风机失速的处理1)立即将两台一次风机动叶解除自动,CCS自动退出,机组TF方式运行。
降低失速一次风机动叶开度至25%左右,或听到失速一次风机无闷声为止。
注意未失速一次风机的电流不超额定值。
2)快速减负荷500MW,保留3-4台磨煤机运行。
及时投入油枪。
注意炉膛负压、除氧器水位,必要时手动干预。
风机的失速和喘振一、失速在轴流风机中,当流量减少到某一小流量时,会因在叶片上脱流而造成失速,这是轴流风机所特有的不稳定现象。
失速是动叶附近的一种压力脉动,动叶会受到一种周期性的作用力而导致振动和低频噪声,若振动频率与叶片自振频率接近或相等,那么叶片将会很快遭受破坏。
由流体力学知,当速度为v的直线平行流以某一冲角(翼弦与来流方向的夹角)绕流二元孤立翼型(机翼)时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小。
因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼型上形成一个向上的作用力。
如果绕流体是理想流体,则这个力和来流方向垂直,称为升力,其大小由儒可夫斯基升力公式确定:F L=ρυ∞ΓΓ-速度环量ρ-绕流流体的密度其方向是在来流速度方向沿速度环量的反方向转90°来确定。
轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头、和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。
实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。
这两种不正常工况是不同的,但是它们又有一定的关系。
轴流风机叶片前后的压差,在其它都不变的情况下,其压差的大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成比例,不同的叶片叶型有不同的临界冲角值。
翼型的冲角不超过临界值,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”,如图3-13。
图3-13 正常工况时的气体流动图5-15 正常工况时的气体流动图3-14 脱流工况时的气体流动泵与风机进入不稳定工况区,其叶片上将产生旋转脱流,可能使叶片发生共振,造成叶片疲劳断裂。
现以轴流式风机为例说明旋转脱流及其引起的振动。
90 EPEM 2020.5发电运维Power Operation1 引风机出现喘振和失速异常的现象分析1.1异常机理分析叶片气流冲角是指叶片的面与气流之间的夹角,当处于正常状况下引风机的冲角较小,气流能够绕过翼型叶片保持流线状态,当气流与叶片进口角出现一定偏离时,会形成正冲角,之后正冲角度越大,一旦超过临界值会使叶片背面流动处于恶化并使得边界层受到破坏,在叶片背面位置会出现涡流区域。
一旦引角超过临界值且该值偏离度越大,则表明失速更加严重,甚至还会从一定程度上增加流体阻力,堵塞流道,降低风速、风机风压,使其进入不稳定状态,即出现喘振等异常现象。
风机处于不稳定区域时会引起压力、风量以及电流大幅度增加以及风机剧烈振动,管道振动等均被称为是喘振现象。
对于高压、大容量风机来说,其产生喘振危害是比较大的,会影响轴承以及设备的使用寿命,同时对于锅炉安全运行来说也会受到直接影响。
总之风机喘振中失速是关键因素,而风机出现失速却不一定会导致喘振的发生。
1.2 引风机的喘振、失速危害性分析在失速区域内风机会长时间运行,导致叶片断裂,其他部件也会受到一定程度的损伤,失速之后会导致喘振的现象发生,如果管道系统容积与阻力几乎一致,则在失速压力降低时,风机的出口管道压力会高于其压力产生而使气流出现倒流,快速降低管道压力,并且风机又会向管道中进行气体输送,但由于气体流量较小而风机面临失速,会使气流又出现倒流的问题。
随着引风机喘振的发生会从一定引风机失速、喘振的异常分析及处理措施山东省龙口市东海工业园东海热电厂 杨海利摘要:针对锅炉引风机在实际运行中存在的喘振异常和失速问题进行原因分析,获得在处于低负荷状态下引风机落入不稳定区和调节滞后的原因,给予相应的解决措施和预防措施,确保其实现正常运行。
关键词:锅炉;引风机;失速;喘振;措施程度上影响风机参数,使其发生剧烈振动,在短时间内破坏风机设备,因此需要使风机立即停止运行。
风机处于失速喘振的过程中会对炉膛压力产生较大波动,使锅炉燃烧状态不稳定,尤其在处于高负荷状态时会使风机出现跳闸或者机组RB 降出力、火灾等事故,在风机处于喘振过程中时,风机的风压、风量以及电动机电流会发生较大波动,形成电流气流冲击,并且从一定程度上加剧振动,产生较大的噪声。
摘要:阐述了轴流通风机失速与喘振的形成机理,结合2×600MW机组一次风机的喘振问题,分析了失速与喘振的原因,同时还制定了检查及整改措施。
关键词:轴流式通风机失速喘振中图分类号:TH432.1 文献标识码:B文章编号:1006-8155(2007)03-0000-00Analysis on Stall and Surge of Variax Blade Adjustable Axial Fl ow Fan and Improvement MeasureAbstract: The formation principle of stall and surge for axial fl ow fan was elucidated, analyze the reason of stall and surge bonding the surge problem of 2*600MW primary fan, at one time, draw the measure of check and improvement.Key Words: Axial fl ow fan Stall Surge0 引言由于动叶可调轴流通风机具有体积小、质量轻、低负荷区域效率较高、调节范围宽广、反应速度快等优点,近十年来,国内大型火力发电厂已普遍采用动叶可调轴流通风机。
因为轴流通风机具有驼峰形性能曲线这一特点,理论上决定了风机存在不稳定区。
风机并不是在任何工作点都能稳定运行,当风机工作点移至不稳定区时就有可能引发风机失速及喘振等现象的发生。
笔者针对扬州第二发电有限责任公司二期扩建工程2×600MW 机组一次风机在安装、调试期间发生的失速问题,对失速与喘振的原理进行了分析,并提出了相应检查和整改措施,以及风机在正常运行过程中如何避免失速与喘振的发生。
1 轴流通风机失速与喘振的关系1.1 失速目前,一般轴流通风机通常采用高效的扭曲机翼型叶片,当气流沿叶片进口端流入时,气流就沿着叶片两端分成上下两股,处于正常工况时,冲角为零或很小(气流方向与叶片叶弦的夹角α即为冲角),气流则绕过机翼型叶片而保持流线平稳的状态,如图1a所示。
当气流与叶片进口形成正冲角时,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况则开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1b所示。
冲角α大于临界值越多,失速现象就越严重,流体的流动阻力也就越大,严重时还会使叶道阻塞,同时风机风压也会随之迅速降低。
风机的叶片在制造及安装过程中,由于各种客观因素的存在,使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。
当某一叶片进口处的冲角α 达到临界值时,就可能首先在该叶片上发生失速,并非是所有叶片都会同时发生失速,失速可能会发生在一个或几个区域,该区域内也可能包括一个或多个叶片。
由于失速区不是静止的,它会从一个叶片向另一个叶片或一组叶片扩散,如图2所示。
假定产生的流动阻塞首先从叶道23开始,其部分气流只能分别流进叶道12和34, 使叶道1 2的气流冲角减小 , 叶道34的冲角增大 , 以至于叶道 34 也发生阻塞 , 并逐个向叶道45、56 … 传播 , 如图2所示。
试验表明:脱流的传播速度ω′小于叶片运转的角速度ω;因此,在绝对运动中,脱流区以Δω =ω′-ω速度旋转,方向与叶轮旋转方向相同,这种现象称为旋转脱流或旋转失速。
风机进入到不稳定工况区运行时,叶轮内将会产生一个或数个旋转失速区。
叶片每经过一次失速区就会受到一次激振力的作用,从而会使叶片产生共振;此时,叶片的动应力增加,严重时还会导致风机叶片断裂,造成设备重大损毁事故。
1.2 影响冲角大小的因素通常风机是定转速运行的,即叶片周向线速度可以看作是一定值,这样影响叶片冲角大小的因素就是气流速度与叶片的安装角。
由图3可看出,当叶片安装角β(图3中虚线代表的角度)一定时,如果气流速度c 越小,则冲角α(图3中虚线与相对速度w的夹角)就越大,产生失速的可能性也就越大。
当气流速度c一定时,如果叶片安装角β减小,则冲角α也减小;当气流速度c很小时,只要叶片安装角β很小,气流冲角α也很小。
因此,当风机刚刚启动或低负荷运行时(前提是管道的进、出口风门此时应处于全开状态),风机失速的可能性将会减小甚至消失。
同样,对于动叶可调风机,当风机发生失速时,关小失速风机的动叶角度,可以减小气流的冲角,从而使风机逐步摆脱失速状态。
当然,还可以明显地看出,对于叶片高度方向而言,线速度u是沿叶片高度方向逐渐增大的,在气流速度c一定的情况下,冲角α会随着叶片高度方向逐渐增大,以至于在叶顶区域形成旋转脱流;因此,随着叶片高度的方向逐渐减小,叶片安装角β可以避免因叶高引起的旋转脱流。
目前,动叶可调轴流风机常用的扭曲叶片就是基于这个道理(见图4)。
1.3 喘振一般轴流通风机性能曲线的左半部,都存在一个马鞍形的区域(这是风机的固有特性,但轴流通风机相对比较敏感),在此区段运行时有时会出现风机的流量、压头(反映在风机驱动电机的电流)的大幅度脉动风机及系统风道都会产生强烈的振动、噪声显著增高等不正常工况,一般称之为“喘振”,这一不稳定工作区称为喘振区。
实际上,喘振仅仅是不稳定工作区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。
风机喘振的主要表现为风量、出口风压(电机电流)出现大幅度波动,剧烈振动和异常噪声。
1.4 失速与喘振的区别及联系风机的失速与喘振的发生都是在p-Q性能曲线左侧的不稳定区域,所以它们是密切相关的。
但是失速与喘振有着本质的区别:失速发生在图5所示p-Q性能曲线峰值K以左的整个不稳定区域;而喘振只发生在p-Q性能曲线向右上方的倾斜部分,其压力降低是失速造成的,可以说失速是喘振发生的根本诱因。
旋转脱流的发生只取决于叶轮本身、叶片结构、进入叶轮的气流情况等因素,与风道系统的容量、形状等无关,但却与风道系统的布置形式有关。
失速发生时, 尽管叶轮附近的工况有波动, 但风机的流量、压力和功率是基本稳定的, 风机可以继续运行。
当风机发生喘振时,风机的流量、压力(和功率)产生脉动或大幅度的脉动,同时伴有非常明显的噪声,喘振时的振动有时是很剧烈的,能损坏风机与管道系统。
所以喘振发生时,风机无法正常运行。
风机在喘振区工作时,流量急剧波动,其气流产生的撞击,使风机发生强烈的振动,噪声增大,而且风压不断变化,风机的容量与压头越大,则喘振的危害性越大,故风机产生喘振应具备下述条件:(1)机的工作点落在具有驼峰形p-Q 性能曲线的不稳定区域内;(2)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;(3)整个循环的频率与系统的气流振荡频率合拍时,产生共振。
2 一次风机调试及运行情况2.1 一次风机主要结构参数扬州第二发电有限责任公司二期工程一次风机由沈阳鼓风机(集团)有限公司设计制造,其主要参数见表1。
表1 一次风机主要性能参数型号AST-1792/1120形式双级动调轴流风机TB 工况流量118.06 m3/sTB 工况全压升13532 Pa转速1490r/min轴功率1835kW2.2 一次风机发生的两次失速情况2.2.1 一次风机3B 发生的失速2006年10月19日,3#机组负荷150MW,一次风机3A、3B处于自动调节状态。
运行过程中发现,两台一次风机动叶开度逐渐开足,而一次风母管压力变化不大,同时一次风机3B振动上升,经就地检查,发现一次风机3B有异声,同时一次风机外壳温度也较高,判断一次风机3B发生失速,经手动将一次风机动叶关小至60%后,一次风压又明显上升,振动值也回落,一次风机3B恢复正常。
2.2.2 一次风机3A 发生的失速2006年10月24日,3#机组负荷600MW,运行中给煤机3A突然跳闸,手动停运磨煤机3A后,关闭磨煤机出口关断阀,一次风流量下降约105kg/h,导致一次风机出口压力上升(从8.84 kPa 上升至9.25kPa ),一次风机3A电流从66A 下降至61A,振动从52mm上升至86mm,出口温度从30°C 上升至35°C ,并仍有上升的趋势,就地检查,一次风机3A伴有异常声响。
判断一次风机3A发生失速后,手动关小一次风机3A的动叶开度,一次风机出口压力又缓慢回升,此时逐步关小正常运行的一次风机3B动叶开度,降低背压,以有助于发生失速的一次风机3A尽快脱离失速区。
最终,一次风机3A恢复正常。
2.3 一次风机性能试验为避免一次风机发生失速及喘振,扬州二电进行了一次风机失速性能试验,试验数据见表2。
表2 一次风机失速性能试验数据3A 一次风机单位工况1 工况2 工况3动叶开度% 51.53 65 85风机电流 A 56.44 66.72 88.39出口风压kPa 8.5 9.6 11.73B 一次风机单位工况4 工况5 工况6动叶开度% 54.7 64.84 85.57风机电流 A 71.09 83.13 113.24出口风压kPa 9.9 11.3 13.02.4 一次风机失速问题的检查与整改2.4.1一次风机3A与3B叶片的真实角度偏差调整从表2可明显看出,两台风机在执行机构同样的开度之下,电流存在较大的偏差,可以推断出两台风机的叶片真实开度与叶片角度盘的显示存在的误差较大。
这导致两台风机的真实工作点偏离了设计工作点,其中3A的工作点向左偏移,3B向右偏移,因而3A更易失速。
从失速时的出口风压也可以看出,3A确实更容易失速。
2.4.2 一次风机前、后两级叶片角度的偏差调整一次风机的前、后两级叶片的角度存在一定的偏差,经现场实地检查发现,由于安装问题,其角度偏差值约在2°~3°之间;叶片角度的偏差过大,将导致前、后两级叶轮之间出现“抢风”现象,其结果是导致风机实际失速线的下移。
因此,需控制其偏差在1°以内。
2.4.3 一次风机同级叶片的偏差调整根据1.1 所述,一次风机同级叶片存在的角度偏差,是旋转脱流现象的主要诱发因素。
当同级叶片存在较大的角度偏差时,风机实际失速线将会有较大幅度下移,从而导致风机在“理论稳定区”内发生失速,因此,需控制其偏差在2°以内。
2.4.4 一次风机叶顶动静间隙的偏差调整一次风机叶顶的动静间隙设计标准较高。
但在检查中发现,实际风机叶顶的动静间隙在5~6.5 ㎜之间(这主要是风筒在运输及吊装过程中变形所致),而设计标准要求为3~4.6 ㎜。
过大的动静间隙将导致风机背压的降低,从而使实际工作点上移,易引发失速。
因此,需将叶顶的动静间隙控制在技术要求的范围之内。