右图是双向RNN模型,可以发现它的输出 层,既接受了从左向右传播的隐藏层的输 出,也接受了从右向左传播的隐藏层的输 出。
RNN—LSTM
ft (Wfx xt Wfhht1 bf ) (a) C 't tanh(WCx xt WChht1 bC ) (b) it (Wix xt Wihht1 bi ) (c) Ct ft *Ct1 it *C 't (d ) ot (Wox xt Wohht1 bo ) (e) ht ot * tanh(Ct ) ( f )
右图中的网络是seq2vec模型,可以 用于情感识别,文本分类等,主要 针对输入为序列信号,输出为向量 的模型建模
右图中的网络包含三个权值,分别 是U,W和V,最后损失函数采用的 是标签和输出的softmax交叉熵,其 实和最大似然函数最终推倒结果是 一致的。
RNN—vec2seq
右图是一个vec2seq模型,它的输入是 一个固定长度的向量,而输出是一个 序列化的信号,比如文本数据。这个 模型的输入x可以当作是循环神经网络 的额外输入,添加到每个隐藏神经元 中,同时每个时间步的输出y也会输入 到隐藏神经元。 在训练期间,下一个时间步的标签和 上一个时间步的输出构成交叉熵损失 函数,最终依旧采用BPTT算法进行训 练。 这样的模型可以用作image captioning 也就是看图说话。
每一个时间步计算都是用相同的激活函数和输入连接权以及循环连接权
RNN—Synced seq2seq
a(t) b Wh(t1) Ux(t) h(t) tanh(a(t) ) 2015-ReLU o(t) c Vh(t) y(t) soft max(o(t) )
L({x(1) ,..., x( )},{y(1) ,..., y( )}) 上图是隐藏神经元之间有循环连接,并且每一个