info([2,3],[4,0],[3,2])=0.693位 计算信息增益 info([9,5])- info([2,3],[4,0],[3,2]) =
0.247位 选择获得最大信息增益 的属性进行划分
划分过程的终止
当所有叶节点都是纯的。
因训练集包含两个具有相同属性集,但具有不同类 的实例。
ID3代表归纳决策树(induction decision—tree)版本 3,它是一种用来由数据构造决策树的递归过程。
lD3算法的步骤
1. 试探性地选择一个属性放置在根节点,并对该属 性的每个值产生一个分支。
2. 分裂根节点上的数据集,并移到子女节点,产生 一棵局部树(partial tree)。
决策树作用(2)
决策树的主要作用是揭示数据中的结构化信息。 决策树汇总了数据,并揭示了其中隐藏的结构:
规则:
如果血压高,则 采用药物A。
如果血压低,则 采用药物B。
如果血压正常。 年龄小于或等于 40,则采用药物 A,否则采用药 物B。
准确率、支持度、错误率
该例得到的规则和对应的准确率和支持度是:
如果血压高,则采用药物A(准确率100%,支持度 3/12)。
如果血压低,则采用药物B(准确率100%,支持度 3/12)。
如果血压正常并且年龄小于或等于40,则采用药 物A(准确率100%,支持度3/12)。
如果血压正常并且年龄大于40。则采用药物B(准 确率100%,支持度3/12)。
3. 对该划分的质量进行评估。 4. 对其他属性重复该过程。 5. 每个用于划分的属性产生一棵局部树。 6. 根据局部树的质量,选择一棵局部树。 7. 对选定的局部树的每个子女节点重复以上1-6步。 8. 这是一个递归过程。如果一个节点上的所有实例