新北师大版八年级数学下册第5章《分式与分式方程》教案
- 格式:doc
- 大小:334.00 KB
- 文档页数:36
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。
教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。
2.引入分式的概念,让学生举例说明分式的实际应用。
提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。
2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。
理论课(30分钟)1.分式的定义和性质。
2.分式的约分、通分和加减法。
3.分式与整式的加减法。
实践课(50分钟)1.分式的变形:分解、合并及简化。
2.分式方程的概念及解法。
3.通过实例让学生掌握分式方程的解法。
课堂总结(10分钟)1.小结本节课的重点内容。
2.引导学生对本节课的学习成果进行分享。
作业布置1.抄写本节课的重点内容以及实例。
2.完成课后练习。
教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。
在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。
北师大版八年级下册第五章分式与分式方程5.4 分式方程教学设计教学目标1.掌握分式方程的基本概念和解题方法;2.能够运用所学知识解决实际问题;3.培养学生的逻辑思维和分析问题的能力。
教学重难点教学重点1.分式方程的基本概念和解题方法;2.运用所学知识解决实际问题。
教学难点1.分式方程解题过程中的逆向思维;2.分式方程与实际问题的联系。
教学内容及方法教学内容1.分式方程的定义和基本性质;2.分式方程的解法;3.运用分式方程解决实际问题。
教学方法1.讲授与练习相结合;2.示范教学法;3.课堂讨论法。
教学过程设计第一步:导入新内容(10分钟)教师通过一道简单的例题引入分式方程的概念和解题方法,让学生了解分式方程解决实际问题的重要性。
第二步:系统讲解(30分钟)1.分式方程的定义和基本性质;2.分式方程的解法;3.运用分式方程解决实际问题。
第三步:课堂练习(30分钟)老师出一些练习题,通过课堂练习帮助学生更好地掌握分式方程的解题方法和应用。
第四步:课堂讨论(20分钟)老师邀请部分同学上台演示解题过程,其他学生可以就解题过程中遇到的问题进行讨论和交流。
第五步:课堂总结(10分钟)老师进行知识总结,梳理学习重点,让学生对本节课所学知识有更深层次的理解和掌握。
教学评估通过课堂练习和课堂讨论,教师可以全面了解学生对所学知识的掌握情况,进行课堂评估和针对性指导和提高。
教学资料教学资料包括教学课件、教材、练习册等。
教学课件包括教师准备的PPT课件、学生自己整理的个人笔记等。
教材是教师讲授的主要依据。
练习册是学生课后巩固所学知识的重要资料。
4 分式方程第1课时一、教学目标1.知识与技能(1)理解分式方程的概念;(2)能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义.2.过程与方法体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义.3.情感态度及价值观在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.二、教学重点、难点重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 难点:能根据实际问题中的等量关系列出分式方程.三、教具准备课件.四、教学过程(一)创设情境,引入新课[师]在这一章的第一节《认识分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x 2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1) 我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型.接下来,我们再来看几个这样的例子.(二)讲授新课列出刻画现实世界的数学模型——方程.(多媒体出示)1.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦 9 000 kg 和15000 kg .已知第一块试验田每公顷的产量比第二块少3 000 kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为x kg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程_________ ___.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生1]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积.[师]你能找出这一问题的所有等量关系吗?[生2]第一块试验田的面积=第二块试验田的面积.(a )[生3]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少千克呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg .[生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000.(3) [师]接下来,我们再来看一个问题.(多媒体出示)2.[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少?这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元.根据题意,可得方程____________.[师]我们先来审题,找到题中的等量关系.[生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c )[生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d )[师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢?[生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]很好!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法:设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程x 300-4=x 2480.(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y 300;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y ,根据题意,利用等量关系(c ),得方程2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,鼓励一下他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好. 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5) 上面所得到的方程有什么共同特点?[生]方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.(三)随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x +102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元.解:x 满足的方程是101×x+102000=200. 2.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,根据题意得 x x +-8040=41. (四)课堂小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程.(五)教学反思第2课时教学目标1.知识与技能(1)掌握解分式方程的一般步骤;(2)理解检验分式方程的根的必要性.2.过程与方法(1)通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤;(2)使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.3.情感态度及价值观(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度;(2)运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.二、教学重点、难点重点:(1)解分式方程的一般步骤;(2)检验分式方程的根的必要性.难点:明确解分式方程验根的必要性.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程:213-x +325+x =2-624-x [师生共解]解:去分母,方程两边同乘分母的最小公倍数6,得3(3x -1)+2(5x +2)=6×2-(4x -2),去括号,得9x -3+10x +4=12-4x +2,移项,得9x +10x +4x =12+2+3-4,合并同类项,得23x =13,系数化为1,得x =2313. (二)讲解新课,探索分式方程的解法[师]刚才我们一同回忆了解一元一次方程的步骤.下面我们来看一个分式方程. [例1]解方程:21-x =x3. (1) [师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?[生]可以.[师]同学们可以接着讨论,方程两边同乘什么样的整式(或数),可以去掉分母呢? [生]乘分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘x (x -2),得x (x -2)·21-x =x (x -2)·x3, 整理,得x =3(x -2). (2)[师]我们可以发现,采用去分母的方法把分式方程转化为了整式方程,而且是我们曾学过的一元一次方程.再往下解,我们就可以像解一元一次方程一样,解出x .即去括号,得x =3x -6.移项、合并同类项,得2x =6.系数化为1,得x =3.[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[师]x =3是由一元一次方程x =3(x -2)(2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解.[师]请同学们用同样的方法完成例2的解答.[例2]解方程:x 300-x2480=4. (由学生在练习本上试着完成,然后师生共同解答).解:方程两边同乘2x ,得600-480=8x.解这个方程,得x =15.检验:将x =15代入原方程,得左边=4,右边=4,左边=右边,所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.我这里还有一个题,我们再来一起解决一下.(多媒体出示,先隐藏小亮的解法)议一议: 解方程:32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并共同分析) [师]我们来看小亮同学的解法:32--x x =x-31-2. 解:方程两边同乘(x -3),得2-x =-1-2(x -3)解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解.[师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根.[师]它是去分母后得到的整式方程的根吗?[生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根,那么是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? 学生先思考,教师再讲解.[师]产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.(三)应用,升华1.解方程:(1)13-x =x 4;(2)1210-x +x 215-=2. 2.回顾,总结想一想:解分式方程一般需要经过哪几个步骤?[师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.3.解分式方程:(1)x 9000=300015000+x ; (2)x h 2=x a a -(a ,h 常数).(四)课堂小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.(五)教学反思第3课时一、教学目标1.知识与技能会利用分式方程的数学模型反映、解决现实情境中的实际问题.2.过程与方法经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力;3.情感态度及价值观(1)经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣;(2)培养学生的创新精神,从中获得成功的体验.二、教学重点、难点重点:(1)审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.(2)根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.(二)讲授新课做一做(多媒体出示)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一起来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1)[生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租?[生]问题也可以是:这两年每年房屋的租金各是多少?[师]很好,下面我们就来先解决第一个问题:每年各有多少间房屋出租?[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x 102000元.根据题意,得x 102000=x96000+500. 解这个方程,得x =12.经检验x =12是原方程的解,也符合题意.所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少?[生]根据第一问的答案可计算,得 第一年每间房屋的租金为1296000=8 000(元), 第二年每间房屋的租金为12102000=8 500(元). [师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x . 解得x = 8000.x +500=8 500(元).经检验,x =8 000是原分式方程的解,也符合题意.所以这两年每间房屋的租金分别为8 000元,8 500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例]某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢?[生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表).[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.[师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水每立方米收费为x 元,则1月份张家超出5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x55.15.17⨯- m 3,总用水量为5+x55.15.17⨯- m 3; 李家超出5 m 3部分的水费为(27.5-1.5×5)元,超出5 m 3的用水量为x55.15.27⨯- m 3,总用水量为(5+x55.15.27⨯-)m 3. 根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32. 解这个方程,得x =2.经检验x =2是所列方程的根.所以超出5 m 3部分的水每立方米收费2元.(三)随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本每本的价格各是多少?[师]我们先来找到题中的等量关系.[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本;硬皮本的价格=软皮本的价格×(1+21). [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题.[生]解:设软皮本每本的价格为x 元,则硬皮本每本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x )211(15++1 解得x =5.经检验x =5是原方程的根,也符合题意.所以(1+21)x =23×5=7.5(元). 答:软皮本每本的价格为5元,硬皮本每本的价格为7.5元.(四)课堂小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.(五)教学反思。
1 认识分式第1课时一、教学目标 1.知识与技能了解分式的概念,明确分式与整式的区别. 2.过程与方法(1)让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的有效数学模型;(2)理解分式有无意义、分式的值为零的条件,并能熟练求出. 3.情感态度及价值观培养学生观察、归纳、类比的思维,让学生学会自主探索、合作交流. 二、教学重点、难点 重点:了解分式的概念.难点:分式有无意义、分式的值为零的条件. 三、教具准备 课件. 四、教学过程 (一)创设情景面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2 400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷? (1)这一问题中有哪些等量关系?(2)如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要__________个月,实际完成一期工程用了__________个月;根据题意,可得方程___________________. 分析:(1)等量关系包括:实际每月固沙造林的面积=原计划每月固沙造林的面积+30公顷;原计划完成一期工程的时间-实际完成一期工程的时间=4个月.月)完成一期工程的时间(积实际每月固沙造林的面公顷=2400.(2),,3024002400+x x 4302400-2400=+x x .通过土地沙化问题,让学生探索问题中的数量关系,并用分式表示,进而认识分式,体会分式的意义,发展符号感. (二)做一做一箱苹果售价a 元,箱子与苹果的总质量为m kg ,箱子的质量为n kg ,则每千克苹果售价是多少元?进一步丰富分式的实际背景,使学生体会分式的意义. (三)议一议上面问题中出现了的这些代数式2400x ,240030x +,am n-,它们有什么共同特征?它们与整式有什么不同?整式A 除以整式B ,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,其中A 称为分式的分子,B 称为分式的分母.对于任意一个分式,分母都不能为零. 这里是对前面出现的分式的讨论,目的是让学生通过观察、归纳,总结出整式与分式的异同,从而获得分式的概念.教学时不宜直接给出定义让学生死记硬背. (四)巩固应用 例 对于分式aa 21+: (1)当a =1,2时,求分式aa 21+的值; (2)当a 取何值时,分式aa 21+有意义? 解:(1)当a =1时,;1121121=⨯+=+a a当a =2时,;43221221=⨯+=+a a (2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义. 由分母2a =0,得a =0,所以,当a 取零以外的任何实数时,分式aa 21+有意义. 对于例题(2),可以引导学生从两方面理解:其一,与分数类比(由特殊到一般);其二,字母a 本身是可以表示任何数的,但这里a 作为分母,要求它不能等于零(由一般到特殊). (五)课堂小结想一想:什么是分式?分式中的分母应注意些什么?通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解. (六)教学反思第2课时一、教学目标 1.知识与技能 (1)分式的基本性质;(2)利用分式的基本性质对分式进行“等值”变形; (3)了解分式约分的步骤和依据,掌握分式约分的方法; (4)使学生了解最简分式的意义,能将分式化为最简分式. 2.过程与方法(1)能类比分数的基本性质,推测出分式的基本性质; (2)培养学生加强事物之间的联系,提高数学运算能力. 3.情感态度及价值观通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣. 二、教学重点、难点重点:(1)分式的基本性质; (2)利用分式的基本性质约分; (3)将一个分式化简为最简分式. 难点:分子、分母是多项式的约分. 三、教具准备 课件. 四、教学过程(一)复习分数的基本性质,推想分式的基本性质. [师]我们来看如何做不同分母的分数的加法:21+ 31. [生]21+31=3231⨯⨯+2321⨯⨯=63+62=65. [师]这里将异分母化为同分母,21=3231⨯⨯=63, 31=2321⨯⨯=62.这是根据什么呢? [生]根据分数的基本性质:分数的分子与分母都乘(或除以)同一个不等于零的数,分数的值不变.[师]很好!分式是一般化了的分数,我们是否可以推想分式也有分数的这一类似的性质呢?(二)新课讲解 1.分式的基本性质 多媒体出示.[生](1)将6的分子、分母同时除以它们的最大公约数3得到.即6=36÷=2. 依据是分数的基本性质:分数的分子与分母都乘(或除以)同一个不等于零的数,分数的值不变. (2)分式a a 2与21相等,在分式a a 2中,a ≠0,所以a a 2=a a a a ÷÷2=21; 分式mn n 2与m n也是相等的.在分式mn n 2中,n ≠0,所以mn n 2=n mn n n ÷÷2=mn .[师]由此,你能推想出分式的基本性质吗?[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质: 分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变. [师]在运用此性质时,应特别注意什么?[生]应特别强调分式的分子、分母都乘(或除以)同一个不为零的整式中的“都”“同一个”“不为零”.[师]我们利用分数的基本性质可对一个分数进行等值变形.同样我们利用分式的基本性质也可以对分式进行等值变形.下面我们就来看一个例题.(多媒体出示)[生]在(1)中,因为y ≠0,利用分式的基本性质,在x2的分子、分母中同乘y ,即可得到右边,即x b 2=y x yb ⋅⋅2=xyby 2; [师]很好!在(1)中,题目告诉你y ≠0,因此我们可用分式的基本性质直接求得.可(2)中右边又是如何从左边得到的呢? [生]在(2)中,bx ax 可以分子、分母同除以x 得到,即bx ax =x bx x ax ÷÷=ba . [生]“x ”如果等于“0”,就不行. 在bx ax 中,x 不会为“0”,如果是“0”,bx ax 中分母就为“0”,分式bxax将无意义,所以(2)中虽然没有直接告诉我们x ≠0,但要由bxax 得到b a ,bx ax必须有意义,即bx ≠0由此可得b ≠0且x ≠0.[师]这位同学分析得很精辟! 2.分式的约分[师]利用分数的基本性质可以对分数进行化简.利用分式的基本性质也可以对分式化简. 我们不妨先来回忆如何对分数化简.[生]化简一个分数,首先找到分子、分母的最大公约数,然后利用分数的基本性质就可将分数化简.例如123,3和12的最大公约数是3,所以123=31233÷÷=41. [师]我们不妨仿照分数的化简,来推想对分式化简.(多媒体出示)做?[生]约去分子、分母中的公因式.(1)中a 2bc 可分解为ac ·(ab ).分母中也含有因式ab,因此利用分式的基本性质:ab bc a 2=)()(2ab ab ab bc a ÷÷=)()()(ab ab ab ab ac ÷÷⋅=ac. [师]我们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可.这样的公因式如何分离出来呢?同学们可小组讨论.[生]如果分子、分母是单项式,公因式应取系数的最大公约数,相同的字母取它们中最低次幂.[师]回答得很好.可(2)中的分式,分子、分母都是多项式,又如何化简呢? [生]通过对分子、分母因式分解,找到它们的公因式.[师]这个主意很好.现在同学们自己动手把第(2)题试着完成一下.[生]解:(2)12122+--x x x =2)1()1)(1(-+-x x x =11-+x x . [生]老师,我明白了,遇到分子、分母是多项式的分式,应先将它们分解因式,然后约去公有的因式.[师]在例3中,ab bc a 2=ac ,即分子、分母同时约去了整式ab ; 12122+--x x x =11-+x x ,即分子、分母同时约去了整式(x -1).把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分.下面我们亲自动手,再来化简几个分式.(多媒体出示)[生]解:(1)y x 220=)5()4(xy x ⋅=x4;(2))()(b a b b a a ++=ba.[师]在刚才化简第(1)题中的分式时,一位同学这样做的(多媒体出示).[生]我认为小颖的做法中,220x 中还有公因式5x ,没有化简完,也就是说没有化成最简结果. [师]很好!y x xy 2205如果化简成x41,说明化简的结果中已没有公因式,这种分式称为最简分式.因此,我们通常使结果成为最简分式或者整式. (三)巩固、提高 1.填空: (1)y x x -2=))(()(y x y x +-; (2))(1422=-+y y .1. 解:(1)因为y x x -2=))(()(2y x y x y x x +-+=))((222y x y x xy x +-+,所以括号里应填2x 2+2xy; (2)因为422-+y y =)2)(2(2-++y y y =21-y , 所以括号里应填y -2. 2.化简下列分式:(1)2332912y x y x ;(2)3)(y x yx --.2. 解:(1)2332912y x y x =)3()3()3()4(2222y x x y x y ⋅⋅=xy34;(2)3)(y x y x --=)()()(2y x y x y x -⋅--=2)(1y x -. (四)课堂小结[师]通过今天的学习,同学们有何收获?(鼓励学生积极回答)[生]数学知识之间是有内在联系的.利用分数的基本性质就可推想出分式的基本性质. [生]分式的约分和化简可联系分数的约分和化简. [生]化简分式时,结果一定要求最简. (五)教学反思。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案一. 教材分析《分式方程的概念及列分式方程》是北师大版数学八年级下册第5.4节的内容。
本节课主要让学生掌握分式方程的概念,学会如何列分式方程,并能够解简单的分式方程。
这一内容是学生学习了分式运算和一元一次方程的基础上进行的,为后续解决实际问题打下基础。
二. 学情分析学生在八年级上学期已经学习了分式的概念、分式的运算以及一元一次方程的解法,对于分式的基本概念和运算规则有一定的了解。
但部分学生在分式运算中还存在一定的困难,对于分式方程的理解和应用还需要加强。
此外,学生对于实际问题的解决能力有待提高。
三. 教学目标1.了解分式方程的概念,理解分式方程与一元一次方程的联系和区别。
2.学会列分式方程,并能解简单的分式方程。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:分式方程的概念,列分式方程的方法,解分式方程的步骤。
2.难点:理解分式方程与一元一次方程的联系和区别,解决实际问题中的分式方程。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学PPT2.教学素材(实际问题)七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。
通过分析,引入分式方程的概念。
2.呈现(10分钟)讲解分式方程的概念,解释分式方程与一元一次方程的联系和区别。
通过示例,展示如何列分式方程。
3.操练(10分钟)让学生分组讨论,尝试解决一些简单的实际问题,引导学生运用分式方程来解决问题。
每组选择一个问题,列出分式方程,并求解。
4.巩固(10分钟)选取部分学生的解题过程和答案,进行讲解和分析。
针对学生解题中出现的问题,进行讲解和指导。
5.拓展(10分钟)让学生尝试解决一些稍复杂的实际问题,引导学生运用所学的分式方程知识来解决问题。
5.4分式方程第1课时分式方程及其解法教学目标【知识与技能】1.理解并能够说出分式方程的意义;2.理解并掌握分式方程的解法步骤,掌握验根的方法.【过程与方法】经历探索分式方程的解法的过程,经历解分式方程产生增根和将分式方程转化为整式方程的过程,体会数学中的化归思想.【情感、态度与价值观】在建立分式方程的数学模型的过程中培养克服困难的勇气,并从中获得成就感,提高解决问题的能力.教学重难点【教学重点】理解并掌握分式方程的解法.【教学难点】解分式方程产生增根的原因.教学过程一、情境导入在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要2400x 个月,实际完成一期工程用了2400x+30个月.根据题意,可得方程2400 x −2400x+30=4.像2400x,2400x+30这种分母中含有字母的代数式是分式.而像2400x−2400x+30=4这样的方程我们是第一次遇到,它和我们学过的一元一次方程一样能刻画现实世界中的数量关系,是一种反映现实世界的数学模型.二、合作探究探究点1分式方程的意义典例1下列方程是分式方程的是()A.12−x3=0 B.4x=-2C.x2-1=3D.2x+1=3x[解析]观察知B项符合题意.[答案]B【技巧点拨】分母中含有未知数的方程叫做分式方程,可见,判断一个方程是否为分式方程,关键看分母里是否有未知数.下列方程:①x−35=1;②3x+1=2;③1+x5+x =12;④x 2+2x 2+1=5;⑤x π+x 2π=4.其中是分式方程的有 ( )A.①②B.②③C.③④D.②③④[答案] D探究点2 分式方程的解法典例2 解下列分式方程:(1)xx−1−2x−1x 2−1=1; (2)2+x 2−x +16x 2−4=-1.[解析] (1)去分母,得x (x +1)-(2x -1)=x 2-1,解得x =2.检验:当x =2时,x 2-1≠0,故分式方程的解为x =2.(2)去分母,得-(x +2)2+16=4-x 2,解得x =2.检验:当x =2时,2-x =0,故分式方程无解.探究点3 分式方程的增根典例3若分式方程3x−a x 2−2x +1x−2=2x 有增根,则实数a 的取值是 ( )A.0或2B.4C.8D.4或8[解析] 去分母,得3x -a +x =2(x -2),由题意得,分式方程的增根为0或2.当x =0时,-a =-4,解得a =4;当x =2时,8-a =0,解得a =8,故a 的值为4或8.[答案] D在将分式方程化为整式方程的过程中,若整式方程的根使分式方程的分母为零,那么这个根叫做分式方程的增根.产生增根的原因是在方程两边同乘了一个使分母为0的整式,因为解分式方程可能产生增根,所以解分式方程必须检验.检验的方法是检验所得的根是否使分式方程中分母的值等于0.若关于x 的分式方程m x 2−4−1x+2=0无解,则m = .[答案] 0或-4三、板书设计分式方程及其解法分式方程及其解法{ 分式方程的意义分式方程的解法步骤{ 转化解整检验结论增根及其产生的原因教学反思本节课中,让学生自己通过观察、类比的方法找到分式方程的解法,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.。
1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。
第五章 分式与分式方程1.认识分式(一)知识技能基础目标学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的.在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系.过程与方法目标在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想.在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.情感与价值观目标从实际生活情景出发,让学生经历用字母表示实际问题中数量关系的过程。
根据三维教学目标及新课程标准的要求,结合当前学生的心理特点以及现有的认知水平 教学重点1、了解分式的概念,明确分式和整式的区别;2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.教学难点分式有意义、无意义、值为零三者的区别教学方法师生共同讨论法。
教师引导,主要由学生分组讨论得出结果教学过程本节课共设计了 6个教学环节:知识准备——情景引入——自主探索——练习提高——课堂反馈——自我小结第一环节 知识准备活动内容:温故而知新问题:下列子中那些是整式?a , -3x 2y 3, 5x -1, x 2+xy +y 2, abc m a a y xy n m ,3,19,,2--活动目的:因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得分式的概念,所以必须熟练掌握整式的概念.注意事项:学生能够比较准确的找出哪些是整式,有些学生会简单的认为“分数”形式的代数式不是整式,其实这不是判别的关键,而是看分母中是不是含有字母。
第二环节 情景引入活动内容:以一个“土地沙化”的问题情景引入,让学生思考讨论,用式分式表达题目中的数量关系:问题情景(1):面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成一原计划的任务。
这一问题中有哪些等量关系?如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要 个月,实际完成一期工程用了 个月。
问题情景(2):新华书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,新华书店这种图书的库存量是多少?活动目的:让学生进一步经历探索实际问题中的数量关系的过程;通过问题情景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感.注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况教师可以给予适当的提示和引导.第三环节 自主探索活动内容:以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义.讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同? 活动目的: 让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.第四环节 练习提高x a bx x -+,32400,2400活动内容: 例题(1)当 a =1,2时,分别求分式 的值;解:(1)当 a =1时, (2)当 a =2时, (2)当 a 取何值时,分式 有意义?解:当分母的值为零时,分式没有意义,除此以外,分式都有意义.由分母2a =0,得a =0,所以,当a 取零以外的任何数时,分式 都有意义. 活动目的:让学生体会分式的意义,理解如果a 的取值使得分母的值为零,则分式没有意义,反之有意义.注意事项:通过例题讲解,让学生从两方面来理解,一是分式分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零。
学生基本能够通过计算出分式的值,但对于分式什么条件下有意义,一下子掌握还有一定的难度, 需要通过与分数进行类比,多举例才能理解的更深刻。
第五环节 课堂反馈活动内容:1、下列各式中,哪些是整式?哪些是分式?答:(2)、(4)是整式,(1)、(3)是分式.活动目的:考察学生对分式、整式概念的理解.注意事项:学生完成的较好,能抓住分式与整式概念的区别,准确的判断出分式、整式.活动内容:2、x 取什么值时,下列分式无意义?y x xy x x b a a b 221)4(41)3(2)2(,2)1(+-+-+a a 21+1121121=⨯+=+a a 43221221=⨯+=+a a a a 21+a a 21+解:(1)因为当分母的值为零时,分式没有意义.由2 x -3=0,得x =23 所以当x = 23 时, 分式无意义. (2)因为当分母的值为零时,分式没有意义.由5x +10=0,得x = -2所以当x = -2 时, 分式无意义.活动目的:让学生体会分式的意义,知道如果a 的取值使的分母的值为零,则分式没有意义,反之有意义.3、把甲、乙两种饮料按质量比x :y 混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料?活动目的:体会分式可以表示现实情景中的数量关系,分式是表示现实世界中的一类量的数学模型,学会列分式。
注意事项:学生通过类比分数的分母不能为零,基本能理解分式的分母也不能为零。
在学习中,有些学生错误的理解为只是分式的分母中的字母不为零,应该及时纠正,是整个分母不为零分母可能是单项式,也可能是多项式。
第六环节 课堂小结(一)活动内容这节课你有哪些收获?1、学习了分式的概念,掌握了整式与分式的异同.2、知道当分式的分母不等于零时分式才有意义.3、在学习新知识时,可把它与所学的旧知识比较,通过观察、类比、归纳它们的异同的方法来学习新知识.4、我们应该多种树,保护人类生存环境.(二)布置作业:完成《学考精练》相应练习教学反思1、概念的创新教学在学习分式概念时,避免传统教学中对于概念直接给出,叫学生死记硬背,忽略了32)1(-x x 1051)2(+-x x学生学的过程,也不考虑学生是否真正理解,本课时是让学生通过观察、归纳、总结整式与分式的异同,从而得出分式概念.2、注重能力培养新课标注重学生探索,创新、合作能力的培养,本课时观察分式与整式的异同时,就是采取学生自主探索,合作交流的形式.3、课堂反馈效果良好对学生学习效果的反馈采用有我校特色的“举反馈牌”的方法,能较全面的了解学生的学习情况,对不足之及时补充,有良好效果.4、需要加强的方面在学习中,要注意观察学生的情感变化,是否遇到困难,积极性、热情是否发挥出来,投入的程度有多少,是否每个学生都参与其中等等,作为教师应时刻关注这些,以便适时的引导他们,调动他们,鼓励他们.1.认识分式(二)知识与技能目标:学生在上节课了解了分式的概念,在小学学过分数的基本性质,所以可类比分数的基本性质来学习分式的基本性质,初步掌握了类比的学习方法,过程与方法目标:在相关的学习中初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力.情感态度与价值观目标:1.理解分式的基本性质并能利用性质进行分式的约分;2.通过对分式的基本性质的归纳,培养学生观察,类比,推理的能力;3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.教学重点:理解分式的基本性质并能利用性质进行分式的约分;教学难点:分式的基本性质的正确应用教学方法师生共同讨论法。
教师引导,主要由学生分组讨论得出结果教学过程本节课设计了六个环节:知识准备——情景引入——例题讲解——课堂反馈——课堂小结。
第一环节 知识准备活动内容:复习分数的基本性质. 问题:2163 的依据是什么?活动目的:通过分数的约分复习分数的基本性质,通过类比来学习分式的基本性质.注意事项:学生对于分数的基本性质掌握较好,基本能说出分数的分子分母同时乘以或除以同一个不为零的数,分数的值不变。
第二环节 情景引入活动内容:通过对上题的回答,来回答本题,寻求两者之间的联系.与同伴讨论交流,从而归纳出分式的基本性质.问题:你认为分式a a 63与21相等吗?mn m 2与mn 呢? 活动目的:让学生通过观察,类比,推理出分式的基本性质,并让学生明白类比的理由是字母可以表示任何数.注意事项:通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.第三环节 例题讲解活动内容:例1、下列等式的右边是怎样从左边得到的?(1))0(22≠=y xy by x b (2)ba bx ax = 例2、化简下列分式:(1)ab c ab 2 (2)12122+--x x x 活动目的:通过例1加深学生对分式的基本性质的理解和应用.例2让学生了解把一个分式的分子和分母的公因式约去,这种变形称为分式的约分,分子和分母已没有公因式,这样的分式称为最简分式.引导学生找出他们的公因式,并学会利用分式的基本性质进行约分,使结果为最简分式或整式.注意事项:有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式.有些学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底. 实际教学例1 下列等式的右边是怎样从左边得到的?(1))0(22≠=y xy by x b (2)ba bx ax = 第四环节 课堂反馈活动内容做一做1.填空(1)()()()yx y x y x x +-=-________2 (2)()_______1422=-+y y 2.化简(1)yx xy 2205 (2))()(b a b b a a ++ 议一议 在y x xy 2205时,米仓和阿呆出现了分歧,米仓认为y x xy 2205=2205xx ,而阿呆认为yx xy 2205=x xy x xy 41545=•,你对他们的做法有何看法?与同伴交流. 活动目的:通过做一做,和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正. 注意事项:在教学中让学生将约分的步骤分为这样几步,首先将找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式.最后看看结果是否为最简分式或整式.第五环节 课堂小结1、这节课你有哪些收获?注意事项:在小结时学生能总结出本节课的重点是分式的基本性质,利用它可将分式化简,教师还可引导学生归纳出分式约分的步骤一是确定分子和分母的公因式,二是利用分式的基本性质,将分子和分母的整体都除以公因式。
类比的学习方法是学习新知识时常用的方法,让学生熟悉和初步掌握这种方法。
2、布置作业:完成《学考精练》相应练习教学反思1.在分式的约分教学中,要及时发现学生的错误,并当作错误例题进行全班范围的分析,找出原因,让其他学生也认识到这种错误,不能只是改正答案.2.在让学生小组讨论之前应给学生一定的时间独立思考,不要让一些思维活跃的同学的回答代替了其他学生的思考,从而掩盖了其他学生的疑问和错误.教师应对学生的讨论给予引导,对学习困难的学生给予及时的帮助,是小组合作学习更具实效性.3.找公因式是约分的关键,应设计一些找公因式的练习,作为铺垫,这样学生可能对约分掌握得更好.2.分式的乘除法知识技能基础目标:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。