jason手册01叠后约束稀疏脉冲反演InverTracePlus中文培训教程8v4
- 格式:pdf
- 大小:13.87 MB
- 文档页数:73
RockTrace同时AVA 约束稀疏脉冲反演自从2000 年秋季推出以来,RockTrace 就对行业应用和集成PSTM 地震数据的方法产生了重大影响。
它是唯一的定量集成测井曲线弹性岩石物性和AVA 地震数据的技术,可以生成标定的定量岩石物性三维数据体。
RockTrace 以InverTrace Plus技术为基础,并将该技术扩展到了AVO 域。
在InverTrace Plus中,应用的约束以波阻抗(Z p) 为依据。
在RockTrace 模块中,目标是在波阻抗之外求解出横波阻抗(Z s) 和密度,因此,对这三个参数分别地设置约束条件。
在并行处理过程中,能够生成的弹性参数类型组合为:∙纵波阻抗、横波阻抗和密度∙纵波阻抗、纵/横波速度比和密度∙纵波时差、横波时差和密度∙纵波速度、横波速度和密度和InverTrace Plus一样,应用全局模式时,一个空间控制项被加到目标函数上,同时,一个相当大的地震道数据体被整体转换。
RockTrace反演应用多个不同角度叠加道集的地震数据体,并且生成三个弹性参数数据体。
该算法是InverTrace Plus模块整体多道反演算法的扩展。
它是以一个地震数据体作为输入信息,并且只生成一个阻抗数据体(上述数据体之一)。
通常,RockTrace 算法可以产生三个弹性参数数据体,并且保留了许多其它模块的原理和约束算法。
这是业界一项独特的技术,具有以下技术优势:∙反演得到的弹性参数是岩石的真实属性,与储层属性有关。
∙当采用Knott-Zoeppritz 方程式选项时,无任何物理近似假设。
∙允许振幅和相位随偏移距变化。
通过对每隔输入部分叠加数据体,计算唯一的子波来实现反演。
∙在反演过程中,弹性参数可以直接进行各自约束。
∙岩石物理关系可用于约束弹性参数对。
∙由于所有输入数据必须和单一的输出模型相一致,降低了噪音的影响。
∙最终的弹性参数模型可重构输入地震数据,这也是反演优化算法的一部分。
叠后约束稀疏脉冲反演中文培训教程一、叠后约束稀疏脉冲反演的基本原理叠后约束稀疏脉冲反演是一种地震反演方法,它利用地震波传播和反射的物理过程,通过对地震数据进行逆向建模,来获取地下介质的信息。
该方法的核心思想是通过寻找一种最优的模型,使得通过该模型建立的地震波场与观测到的地震数据尽可能吻合。
在叠后约束稀疏脉冲反演中,通常将地下介质的性质用参数化的方式表示,将地震波传播和反射的物理过程用数学模型描述,通过优化方法来求解最优的模型参数。
这些模型参数可以包括地下介质的速度、密度、衰减系数等参数,通过对这些参数的反演,可以获取到地下结构的详细信息。
叠后约束稀疏脉冲反演的关键之处在于它采用了稀疏性约束和地震波形约束。
稀疏性约束是指地下介质的参数在某种表示下是稀疏的,即它们可以被较少的非零系数表示。
地震波形约束是指通过对地震波传播和反射的物理过程进行数学建模,来约束模型参数的取值范围,使得反演得到的模型更符合地震数据的实际观测。
二、叠后约束稀疏脉冲反演的算法流程叠后约束稀疏脉冲反演的算法流程通常包括以下几个关键步骤:1. 数据预处理:对地震数据进行预处理,包括数据去噪、时域频域滤波等操作,以减小噪声对反演结果的影响。
2. 构建反演模型:将地下介质的性质参数化表示,并建立地震波传播和反射的数学模型。
3. 求解反演问题:利用最优化方法,求解使得通过模型建立的地震波场与实际观测数据吻合的最优模型参数。
4. 结果评估:对反演结果进行评估,包括地下结构的成像、模型参数的稳定性等。
5. 反演结果应用:将反演得到的地下结构信息应用于油气勘探、地质勘探等领域。
三、叠后约束稀疏脉冲反演的实际应用叠后约束稀疏脉冲反演在油气勘探、地质灾害预测、地下水资源开发等领域具有重要的应用价值。
在油气勘探中,通过叠后约束稀疏脉冲反演可以获取到油气藏的地下结构信息,帮助勘探人员准确地定位油气藏的位置、形态及大小。
在地质灾害预测中,叠后约束稀疏脉冲反演可以提供地下结构信息,帮助人们预测地震、泥石流等自然灾害的发生概率以及可能的影响范围。
JASON软件介绍RockTrace同时AVA 约束稀疏脉冲反演⾃从2000 年秋季推出以来,RockTrace 就对⾏业应⽤和集成PSTM 地震数据的⽅法产⽣了重⼤影响。
它是唯⼀的定量集成测井曲线弹性岩⽯物性和AVA 地震数据的技术,可以⽣成标定的定量岩⽯物性三维数据体。
RockTrace 以InverTrace Plus技术为基础,并将该技术扩展到了AVO 域。
在InverTrace Plus中,应⽤的约束以波阻抗(Z p) 为依据。
在RockTrace 模块中,⽬标是在波阻抗之外求解出横波阻抗(Z s) 和密度,因此,对这三个参数分别地设置约束条件。
在并⾏处理过程中,能够⽣成的弹性参数类型组合为:纵波阻抗、横波阻抗和密度纵波阻抗、纵/横波速度⽐和密度纵波时差、横波时差和密度纵波速度、横波速度和密度和InverTrace Plus⼀样,应⽤全局模式时,⼀个空间控制项被加到⽬标函数上,同时,⼀个相当⼤的地震道数据体被整体转换。
RockTrace反演应⽤多个不同⾓度叠加道集的地震数据体,并且⽣成三个弹性参数数据体。
该算法是InverTrace Plus模块整体多道反演算法的扩展。
它是以⼀个地震数据体作为输⼊信息,并且只⽣成⼀个阻抗数据体(上述数据体之⼀)。
通常,RockTrace 算法可以产⽣三个弹性参数数据体,并且保留了许多其它模块的原理和约束算法。
这是业界⼀项独特的技术,具有以下技术优势:反演得到的弹性参数是岩⽯的真实属性,与储层属性有关。
当采⽤Knott-Zoeppritz ⽅程式选项时,⽆任何物理近似假设。
允许振幅和相位随偏移距变化。
通过对每隔输⼊部分叠加数据体,计算唯⼀的⼦波来实现反演。
在反演过程中,弹性参数可以直接进⾏各⾃约束。
岩⽯物理关系可⽤于约束弹性参数对。
由于所有输⼊数据必须和单⼀的输出模型相⼀致,降低了噪⾳的影响。
最终的弹性参数模型可重构输⼊地震数据,这也是反演优化算法的⼀部分。
Jason软件培训资料Jason软件集合了油气勘探开发不同阶段的储层预测和油气藏描述技术,它致力于各种资料、各种认识的全面综合,提供符合各种资料、各种认识的储层预测和油气藏描述结果。
指导油气藏的勘探和开发,提高钻井成功率,降低风险。
主要模块Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
其中子波估算(Wavelets)和层位标定、地质框架模型(Earthmodel)、地震反演(Invertrace、Invertraceplus)、测井反演(Invermod)、地质统计模拟(Statmod)和数据分析变换(Functionmod)是主要模块和关键技术。
下面根据实际工作步骤来介绍Jason软件的主要模块和关键技术及应用注意事项。
一、数据加载数据加载顺序为地震→层位→测井→其它(如人文、子波等);输出可根据需要有选择性地输出。
注意事项:●地震数据类型(是2D还是3D)、线道号和XY坐标在SEG-Y道头中的正确位置、输入数据的字节数(至少为16位)。
●井数据输入文件的格式与所选的格式模板文件必须一致包括输入文件本身的声波和密度的单位(us/ft,us/m,g/cm3,kg/m3)、模板文件中深度的类型(测量深度、TVD等)和单位(m,ft等)。
二、子波估算和层位标定技术这部分工作是通过Modeling下的Wavelets…和Analysis下的Well log editing and seismic tie…两个模块完成的。
通过子波估算和井曲线编辑的交互迭代,由井旁地震道和井中的阻抗曲线估算出与地震最佳匹配的地震子波。
并实现子波估算、合成记录的制作和层位标定。
其技术特点是:同时估算子波的振幅谱和相位谱;子波估算和层位标定同时完成;方法多样,可处理有井和无井、单井和多井、直井和斜井;质量控制手段多样。
子波估算和层位标定技术的方法如下:1)计算理论子波(如Ricker)(Wavelets…→Edit→Create synthetic wavelet... )。
StatMod MC入门手册Chapter 1.工作流程Chapter 2.基本的输入输出数据输入数据输出数据岩性实现岩性概率体属性实现地质统计学参数岩石物理分析地层网格模型地震数据测井曲线……………………...5%...….………………..15%..……………………..5%……………………...50%……………………...10%….………………….15%百分数表示每个步骤所用时间占整个项目时间的百分比Stage 4:反演Stage 2:地质统计学参数分析Stage 3:模拟Stage 5:协模拟Stage 1: 项目准备Stage 6: 不确定性分析与风险评估Chapter 3.详细操作步骤操作步骤以StatMod MC培训数据为例第一步.首先完成一个高质量的叠后CSSI反演这一步的目的是为地质统计学提供一个好的研究基础, 这个“好”主要体现在:(1)好的井震标定, 目标区的相关值达到0.85以上;(2)好的叠后反演结果, 用来质控地质统计学模拟和反演结果, 是地质统计学反演结果横向预测准确度的参照物;(3)利用叠后反演结果进行砂体雕刻, 对目标区的岩性展布、比例有一个总体上正确的把握, 这些认识都是地质统计学的初始输入。
(说明:在提供的培训数据中已经为用户做了以上准备,用户可以从主界面中打开该培训数据所在工区, 然后用Map View看工区底图,用Section View查看地震数据、叠后CSSI反演数据、地质框架模型与层位数据以及井数据与子波 , 并用Well Editor检查井震标定情况)第二步. 数据准备●●井曲线重采样这一步将测井数据重采样至地质微层采样间隔,具体操作为:(1)JGW主界面→ Analysis→ Processing toolkit;(2)Input→ Data selection→ Data type:选Well, 点击Input file(s)右边List选择任意井(可以选多井),然后在弹出的界面Select logs中选择任意井曲线(可以多选),点击OK退出;(3)Parameters→ Resample log, 在弹出界面Processing toolkit中填写重采样间隔(注意s 与ms单位),点击OK退出;(4)Output→ Define process, 从Select from中选择Resample log, 点击››输入到右边的Process里面;(5)Output→ Generate, 在弹出的界面中填写输出路径和输出文件名,然后点击Generate,开始计算重采样的曲线。
Jason软件培训资料Jason软件集合了油气勘探开发不同阶段的储层预测和油气藏描述技术,它致力于各种资料、各种认识的全面综合,提供符合各种资料、各种认识的储层预测和油气藏描述结果。
指导油气藏的勘探和开发,提高钻井成功率,降低风险。
主要模块Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
其中子波估算(Wavelets)和层位标定、地质框架模型(Earthmodel)、地震反演(Invertrace、Invertraceplus)、测井反演(Invermod)、地质统计模拟(Statmod)和数据分析变换(Functionmod)是主要模块和关键技术。
下面根据实际工作步骤来介绍Jason软件的主要模块和关键技术及应用注意事项。
一、数据加载数据加载顺序为地震→层位→测井→其它(如人文、子波等);输出可根据需要有选择性地输出。
注意事项:●地震数据类型(是2D还是3D)、线道号和XY坐标在SEG-Y道头中的正确位置、输入数据的字节数(至少为16位)。
●井数据输入文件的格式与所选的格式模板文件必须一致包括输入文件本身的声波和密度的单位(us/ft,us/m,g/cm3,kg/m3)、模板文件中深度的类型(测量深度、TVD等)和单位(m,ft等)。
二、子波估算和层位标定技术这部分工作是通过Modeling下的Wavelets…和Analysis下的Well log editing and seismic tie…两个模块完成的。
通过子波估算和井曲线编辑的交互迭代,由井旁地震道和井中的阻抗曲线估算出与地震最佳匹配的地震子波。
并实现子波估算、合成记录的制作和层位标定。
其技术特点是:同时估算子波的振幅谱和相位谱;子波估算和层位标定同时完成;方法多样,可处理有井和无井、单井和多井、直井和斜井;质量控制手段多样。
子波估算和层位标定技术的方法如下:1)计算理论子波(如Ricker)(Wavelets…→Edit→Create synthetic wavelet... )。