焊接冶金原理02焊接热过程2
- 格式:pptx
- 大小:9.41 MB
- 文档页数:10
绪论一、焊接过程的物理本质1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
焊接热过程和冶金过程作者:李树聪来源:《装饰装修天地》2015年第12期摘要:在焊接过程中,被焊金属由于热的输入和传播,而经历加热、熔化(或达到热塑性状态)和随后的连续冷却过程,通常称之为焊接热过程。
本文就此做了简要的分析,希望能对实际的工作起到一定的指导作用。
关键词:焊接热过程;冶金过程;焊缝一、焊接热过程1.焊接热过程特点1.1局部集中性:焊件在焊接时不是整体被加热,而热源只是加热直接作用点附近的区域,加热和冷却极不均匀。
1.2焊接热源的运动性:焊接过程中热源相对于焊件是运动的,焊件受热的区域不断变化。
1.3瞬时性:在高度集中热源的作用下,加热速度极快,即在极短的时间内把大量的热能由热源传递给焊件,又由于加热的局部性和热源的移动而使冷却速度也很高。
1.4复合性:焊接热过程涉及到各种传热方式。
2.焊接热源(熔化焊)电弧热、化学热、电阻热、摩擦热、等离子弧、电子束、激光束。
3.焊接热循环在焊接过程中热源沿焊件移动时,焊件上某点的温度随时间由低到高,达到最大值后又由高到低的变化称为该点的焊接热循环。
在焊缝两侧不同距离的点,所经历的热循环是不同的,见图1-1。
<E:\123456\装饰装修天地201512\装饰装修天地2015-12源文件\装饰装修2015-12源文件\源文件\装饰装修15-12-17.tif>图1-1 距焊缝不同距离各点的热循环3.1焊接热循环的主要参数3.1.1 加热速度(vH)。
加热速度受许多因素的影响,如不同的焊接方法、不同的被焊金属、不同厚度及不同的焊接热输入等都会影响加热速度。
3.1.2 加热的最高温度(Tm)。
距焊缝远近不同的各点,加热的最高温度不同,见图1-1。
3.1.3 在相变温度以上的停留时间(tH)。
为便于分析研究,把相变温度以上的停留时间tH又分为加热过程的停留时间t’和冷却过程的停留时间t”,即tH = t’+ t”。
3.1.4 冷却速度(或冷却时间t8/5)。
焊接冶金原理
焊接是一种常见的金属加工方法,它通过加热金属至熔点并使其相互融合,从
而实现金属件的连接。
而焊接的成功与否,很大程度上取决于焊接冶金原理的理解和应用。
焊接冶金原理是指在焊接过程中,金属材料的熔化、凝固和结构变化等现象的
规律性原理。
首先,焊接时金属材料会受到高温的影响,金属在高温下会发生熔化,形成液态金属。
这种液态金属在接触面上相互融合,形成焊接接头。
其次,金属在冷却过程中会发生凝固,形成焊缝。
在这个过程中,金属的晶体结构会发生变化,从而影响焊接接头的性能。
在焊接冶金原理的指导下,焊接过程中需要控制好焊接温度、焊接速度和焊接
压力等参数,以确保焊接接头的质量。
同时,还需要选择合适的焊接材料和焊接方法,以满足不同金属材料的焊接需求。
除了焊接过程中的控制,对焊接接头的检测和分析也是焊接冶金原理的重要内容。
通过金相分析、力学性能测试和断口分析等方法,可以了解焊接接头的组织结构、力学性能和断裂原因,从而为焊接质量的改进提供依据。
总之,焊接冶金原理是焊接技术的基础和核心,它对于提高焊接质量、确保焊
接接头性能和推动焊接技术的发展具有重要意义。
只有深入理解和应用焊接冶金原理,才能够更好地进行焊接工作,满足不同行业的需求。