1焊接热过程
- 格式:ppt
- 大小:1.04 MB
- 文档页数:28
焊接热过程1、焊接热过程复杂性表现:①焊接热过程的局部性和不均匀性;②焊接热过程的瞬时性;③焊接热源的相对运动。
2、热量来源:电弧热、电阻热、相变潜热、变形热。
电弧热:利用气体介质的放电过程来产生热量,并熔化焊丝和加热工件,焊接的主要热源。
电阻热:焊接电流流过焊丝和工件时,有焊丝和工件本身电阻将电能转化为热能产生的热。
3、散热机构:①环境散热、②飞溅散热4、热传递方式:热传导、辐射、对流、焓迁移。
5、分析焊接热过程需处理的问题:①热源;②热量传输方式;③传质问题;④相变;⑤位移、⑥力学问题。
6、焊接热源:①按形式:电能、机械能、光辐射能、化学能。
②按种类:电弧焊热源、气焊热源、电阻焊热源、摩擦焊热源、电子束焊热源、激光焊热源、铝热剂焊热源。
7、构件几何尺寸简化:①半无限扩展的立方体、②无限扩展的板、③长度无限扩展的板。
8、焊接热源模型:点热源、线热源、面热源、高斯热源、双椭球热源、广义双椭球热源。
9、焊接温度场:焊接过程中,某一时刻所有空间各点温度的总计或分布。
用等温面(线)表示。
等温面:工件上具有相同温度的所有点的轨迹。
10、焊接热循环:指焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化,温度随时间由低而高,达到最大值后,又由高而低的变化。
简单说就是工件上某点的温度随时间的变化,它描述了该点在焊接过程中热源对其热作用的过程。
主要参数:①加热速度;②加热最高温度;③在相变以上温度停留时间;④冷却速度。
11、多层焊:长段多层焊(1m以上)、短段多层焊(50~400mm)(适合硬化倾向大和晶粒粗化倾向大的钢材焊接)12、热效率:熔化极焊接热效率>非熔化极,埋弧焊热效率>明弧焊,潜弧焊接热效率>明弧13、电极的熔化:是焊接电弧的重要功能之一,对焊接工艺过程、冶金过程、焊接缺欠的产生和焊接生产效率有很大影响。
14、电弧焊时加热和熔化电极的能量:电流流过焊丝的电阻热、电弧传给焊丝端部的热、化学反应热。
焊接热过程与熔池形态
本文将探讨焊接热过程与熔池形态的关系。
焊接热过程是指焊接过程中金属的加热和冷却过程,它对熔池的形态和性质有着重要的影响。
在焊接过程中,焊枪或电极产生的热量使工件加热到熔点以上,金属开始熔化形成熔池。
熔池的形态和性质直接影响焊缝的质量和强度。
熔池形态可以分为三种:球形熔池、扁平熔池和凸形熔池。
球形熔池是指熔池表面呈现出球形的形态,这种熔池容易使焊接出现气孔和夹杂物。
扁平熔池则是熔池表面呈现出扁平的形态,这种熔池容易使焊接出现焊缝凹陷和烧穿。
而凸形熔池则是熔池表面呈现出凸起的形态,这种熔池可以使焊缝填充更加充分,但也容易使焊接出现焊缝凸起和夹渣。
焊接热过程决定了熔池的形态和性质,因此焊接人员必须掌握正确的焊接参数,如焊接电流、电压、焊接速度等,以控制焊接热过程,从而获得理想的熔池形态和性质。
同时,焊接人员还需要掌握正确的焊接技巧,如焊接位置、角度、移动速度等,以确保焊接质量和焊接效率。
总之,焊接热过程和熔池形态是焊接质量的关键因素,必须得到高度重视和有效控制。
- 1 -。
焊接技术的基本原理焊接是一种常见的金属连接方法,广泛应用于制造业、建筑业以及航空航天等领域。
它通过将两个或多个金属材料加热至熔点,使其相互融合,形成一个坚固的连接。
焊接技术的基本原理涉及到热传导、金属熔化和凝固等过程。
1. 热传导焊接过程中,热传导起着至关重要的作用。
焊接电弧或火焰产生的高温会使接头区域的金属材料加热,然后通过热传导向周围的材料传递热量。
这种热传导过程会导致接头区域的金属材料温度升高,最终达到熔点。
2. 金属熔化当金属材料的温度达到熔点时,其固态结构发生变化,从而形成液态金属。
在焊接过程中,焊接材料(焊丝或焊条)通常会被加热至熔点,然后通过熔化的焊接材料填充接头区域,形成焊缝。
焊接材料的选择取决于所需的焊接强度、耐腐蚀性和其他特性。
3. 凝固一旦焊接材料被加热至熔点并填充接头区域,它会开始冷却并凝固。
凝固过程是焊接中非常关键的一步,它决定了焊接接头的质量和强度。
凝固过程中,焊接材料中的金属原子重新排列,形成结晶体,并与周围的金属材料相互连接。
这种结晶体的形成使焊缝具有良好的力学性能和耐腐蚀性。
除了上述基本原理,焊接技术还涉及到其他一些重要的概念和过程。
4. 焊接电弧焊接电弧是一种高温等离子体,由焊接电流在电极和工件之间产生。
通过控制电弧的位置和强度,可以实现对焊接过程的精确控制。
焊接电弧的稳定性对焊接质量和效率至关重要。
5. 焊接材料选择在实际焊接中,选择合适的焊接材料对焊接接头的质量和性能至关重要。
焊接材料的选择取决于所需的焊接强度、耐蚀性、耐高温性以及与被焊接材料的相容性。
常见的焊接材料包括焊丝、焊条和焊粉等。
6. 焊接技术的分类焊接技术可以根据焊接方式的不同进行分类。
常见的焊接技术包括电弧焊、气体焊、激光焊、摩擦焊等。
每种焊接技术都有其特定的应用领域和适用范围。
总之,焊接技术的基本原理涉及到热传导、金属熔化和凝固等过程。
理解这些原理对于掌握焊接技术并实现高质量的焊接非常重要。
焊接热循环概述一、焊接热循环的特点热能传递方式主要有传导、对流、辐射三种。
在利用电弧热进行焊接时,电弧热传递给焊件的方式是传导和辐射。
由于在焊接过程热源在不断的移动,不同的距离、不同的时刻焊件各点的温度都是不同的。
焊接温度场,是焊接过程中的某一瞬间在焊件上各点的温度分布焊接温度场能反映出焊件温度在某一瞬间在空间的分布情况,但不能说明焊件上各点温度随时间变化的情况。
这种反映焊件上的某一点,在焊接热源的作用下,其温度随着时间的变化由高到低的过程为焊接热循环。
焊接热循环的主要参数是加热速度、加热最高温度、禁止变温度以上的停留时间和冷却速度。
特征:1)虽然焊接过程加热温度高,加热速度和冷却速度都大,但是,加热速度比冷却速度更大。
2)焊件各点的热循环不同,越靠近焊缝中心位置,,峰值温度越高,加热温度和冷却温度也越大,反之亦然。
二、影响焊接热循环的温度的因素(1)焊接热输入:是综合焊接电流、电弧电压、焊接速度的参数,当焊接电流或电弧电压越大,而焊接速度不变或减小,则焊接热输入越大;当焊接速度越大,而焊接电流或电弧电压不变或减小,则焊接热输入越小。
由此,焊接热输入越大,在高温停留的时间就越长,焊后冷却速度也就变慢。
焊接热输入变小,在高温停留时间也变短,焊后的冷却速度将变快。
(2)焊接方法:焊接方法不同,加热速度、高温停留时间、焊后冷却速度及焊接热输入都有所不同。
不同焊接方法的热输入焊接方法焊接电流电弧电压焊接速度焊接热输入180 24 0.25 17280 焊条电弧焊(3)焊前预热在焊接热输入相同的情况下,焊前预热可以降低焊后冷却速度。
但是,不会增加在高温停留的时间。
所以焊前预热不会使焊弧组织晶粒粗化加剧,力学性能变差。
相反却可以避免焊缝组织淬硬。
(4)层间温度:层次温度与焊前预热的作用相同。
(5)其他因素:1)焊件厚度增加时,焊件在高温停留的时间减小,冷却速度加快。
2)接头形式的影响:由于接头的散热面的不同,冷却速度各不相同。
焊接热过程和冶金过程作者:李树聪来源:《装饰装修天地》2015年第12期摘要:在焊接过程中,被焊金属由于热的输入和传播,而经历加热、熔化(或达到热塑性状态)和随后的连续冷却过程,通常称之为焊接热过程。
本文就此做了简要的分析,希望能对实际的工作起到一定的指导作用。
关键词:焊接热过程;冶金过程;焊缝一、焊接热过程1.焊接热过程特点1.1局部集中性:焊件在焊接时不是整体被加热,而热源只是加热直接作用点附近的区域,加热和冷却极不均匀。
1.2焊接热源的运动性:焊接过程中热源相对于焊件是运动的,焊件受热的区域不断变化。
1.3瞬时性:在高度集中热源的作用下,加热速度极快,即在极短的时间内把大量的热能由热源传递给焊件,又由于加热的局部性和热源的移动而使冷却速度也很高。
1.4复合性:焊接热过程涉及到各种传热方式。
2.焊接热源(熔化焊)电弧热、化学热、电阻热、摩擦热、等离子弧、电子束、激光束。
3.焊接热循环在焊接过程中热源沿焊件移动时,焊件上某点的温度随时间由低到高,达到最大值后又由高到低的变化称为该点的焊接热循环。
在焊缝两侧不同距离的点,所经历的热循环是不同的,见图1-1。
<E:\123456\装饰装修天地201512\装饰装修天地2015-12源文件\装饰装修2015-12源文件\源文件\装饰装修15-12-17.tif>图1-1 距焊缝不同距离各点的热循环3.1焊接热循环的主要参数3.1.1 加热速度(vH)。
加热速度受许多因素的影响,如不同的焊接方法、不同的被焊金属、不同厚度及不同的焊接热输入等都会影响加热速度。
3.1.2 加热的最高温度(Tm)。
距焊缝远近不同的各点,加热的最高温度不同,见图1-1。
3.1.3 在相变温度以上的停留时间(tH)。
为便于分析研究,把相变温度以上的停留时间tH又分为加热过程的停留时间t’和冷却过程的停留时间t”,即tH = t’+ t”。
3.1.4 冷却速度(或冷却时间t8/5)。