单支点排桩支护结构设计示例
- 格式:doc
- 大小:241.50 KB
- 文档页数:26
排桩支护设计与计算8.7.1概述基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
排桩支护设计与计算8.7.1概述基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
第四节排桩、地下连续墙支护结构设计排桩或地下连续墙式支护结构属柔性支挡结构,其支护结构的围护桩墙、内支撑或土层锚杆。
围护桩墙的计算内支撑的计算√支护结构的计算包括:一、围护桩墙的计算⏹根据经验、规范或内力计算初步拟定墙的深度及截面尺寸;⏹然后进行墙的稳定性验算和内力计算。
稳定性验算内力及变形计算(一)稳定性验算稳定性验算的内容:整体稳定性验算;坑底抗隆起稳定验算;抗渗验算;坑底土抗承压水验算。
参照普朗特尔和太沙基求地基极限承载力的γ2γ1抗隆起稳定安全系数,一般要求不小于1.7~2.5;坑底土抗承压水头稳定安全系数,一般不小于1.05;按平面问题来简化,计算宽度为每延米墙长或排桩中心距。
极限平衡法弹性支点法(竖向弹性地基梁法)•对于悬臂式及支点刚度较小的桩墙支护结构,由于水平变形大,坑底土抗力可视为被动土压力。
土压力按朗金理论计算。
•当支点刚度较大,桩墙水平位移较小时,坑底土体远未达极限状态,土抗力按m 法计算(力与变形成比例关系的弹性地基梁法)。
土压力按经验法考虑。
(二)内力及变形计算√按力的平衡求解,无法求得变形。
建立梁的挠曲方程求解。
可求得变形。
Ⅰ、极限平衡法假定作用于围护桩墙前后的土压力达到被动土压力和主动土压力,在此基础上进行力学简化,将超静定问题作为静定问题求解。
属于这种类型的方法有静力平衡法、等值梁法、太沙基塑性铰法、等弯矩法和等轴力法等。
1)不能考虑开挖及地下结构施工过程的不同工况对内力的影响。
2)只是一种近似的计算方法,支撑层数越多、土层越软、墙体刚度越大,则计算结果与实际的差别越大。
在使用极限平衡法时,需要结合工程经验对土压力和计算结果进行修正。
3)这种计算方法不考虑也不能计算围护桩墙的变形。
土的抗力与变形无关。
变形小,E P 未完全发挥•极限平衡法在力学上的缺陷Ⅱ、弹性支点法(竖向弹性地基梁法、侧向弹性地基反力法)1)墙后的荷载•可直接按朗肯主动土压力理论计算(即三角形分布土压力模式)见图(a);•也可按矩形分布的经验土压力模式计算见图(b)。
第一章设计方案综合说明1.1 概述1.1.1 工程概况拟建南大微结构国家实验室工程位于南京市金银街以西,其南临南大生命科学院大楼,西侧为住宅楼。
拟建建筑物地面以上6层,地下2层,总建筑面积69533m2,建筑±0.00相当于绝对标高17.25m,整平后地面标高为17.00m,其它标高均以此为准,地下室负二层底板顶标高为-7.75m,基坑开挖深度为8.50m,框架结构。
1.1.2 基坑周边环境条件基坑北面和东面均为马路,最近距离为15 m,下设通讯电缆、煤气管线等设施。
西侧为居民住宅楼,楼高五层,其最近距离为10.5 m,南侧为南大生命科学院大楼,最近距离为12.5 m。
1.1.3 工程水文地质条件拟建场区地貌单元为阶地,地形较平坦,场地西侧有坳沟分布,东侧有暗塘分布。
在基坑支护影响范围内,自上而下有下列土层:①层杂填土:灰色,稍密,主要由碎石、碎砖、建筑垃圾组成,硬质含量30-60%,填龄大于5年。
①-2层素填土:灰黄~灰色,粉质粘土为主,可塑~软塑,混少量碎砖粒,炉渣,填龄大于10年。
①-3层淤泥质填土:灰黑色,流塑,稍具臭味,含腐植物。
②-1层粉质粘土:灰黄~灰色,可塑~软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
②-2层淤泥质粉质粘土~淤泥:灰色,流塑,含腐植物,稍有光泽,无摇震反应,干强度低,韧性低。
②-3层粉质粘土:灰色,软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-1层粉质粘土:黄褐色,可塑~硬塑,含少量铁锰结核,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-2层粉质粘土:黄褐色,可塑,局部软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-3层粉质粘土:黄褐色,可塑~硬塑,稍有光泽,无摇震反应,干强度中等,韧性中等,含铁锰结核及灰色高岭土团块。
④-1层粉质粘土混卵砾石:黄褐色,由硬塑粉质粘土,稍密卵砾石及中粗砂组成,卵砾石为浑圆~次圆状,主要成分为石英岩,粒径4~50mm,含量约30%。
单排小桩复合桩墙支护结构设计计算方法
小桩复合桩墙支护结构设计计算方法:
1. 选择方案:在确定支护结构的类型、深度、宽度和材料后,根据工
程量和经济效益,选择支护结构和防护措施。
2. 确定桩土参数:确定桩型、桩臂等参数,计算施工时杆件抗拔力和
推力,确定桩土参数,包括桩臂深度、桩身直径、桩土标贯积量等。
3. 材料分析:分析桩型和材料,确定桩子长度,主桩箍筋组张紧计算,分析桩柱和桩土耐力的变化情况;计算桩头距地面表面最大拔深。
4. 桩柱总计价:对桩柱根据配筋采用计算方法进行总计价,明确桩柱
能承受的可靠土压力。
5. 桩和土体参数计算:计算桩和土体硬度、配筋比和土体各类参数,
根据实际土体参数计算桩柱耐力指标。
6. 杆件全抗拔计算:根据计算的桩臂深度,杆件直径等参数,采用抗
拔试验方法,计算桩柱抗拔力,和杆件全抗拔计算;
7. 砼混凝土抗压强度:根据混凝土试件屈服强度,采用数据计算砼混
凝土抗压强度,以确定桩身抗推荷载能力及桩土应力状态。
8. 桩头拔出计算:根据桩头周边状态和土层实测参数,对有关推力值进行计算;把推力值反推桩头拔出计算,确定桩头拔出的最大值。
9. 工程安全系数计算:计算桩柱的抗推荷载能力和拔深计价,求出工程安全系数,判断支护结构是否达到规定要求。
基坑支护结构设计一.基坑侧壁安全等级的确定基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成各项预定功能。
不同的基坑工程,其功能要求则不同。
为了区别对待各种不同的情况,《建筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧壁划分为不同的安全等级。
建筑基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。
建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基坑分级和变形监控值的规定如表1-2。
注:1.符合下列情况之一,为一级基坑:重要工程或支护结构做主体结构的一部分;开挖深度大于10m;与临近建筑物、重要设施的距离在开挖深度以内的基坑;基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标c、φ值。
对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚力两部分,其中表观粘聚力比真粘聚力要大的多。
而超固结土一旦遇水,表观粘聚力迅速下降至真粘聚力。
因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。
根据长春地区的工程经验,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指标。
平均重度:∑∑⋅=iiim hhγγ平均粘聚力:∑∑⋅=iiim hhcc平均内摩擦角:∑∑⋅=iiim hhφφ根据长春地区的工程经验,鉴于本工程的实际情况,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值如表(二)所示:三.荷载计算作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。
单支点排桩支护与双排桩支护的对比分析-工程论文单支点排桩支护与双排桩支护的对比分析闫超波YAN Chao-bo;徐世光XU Shi-guang;黄建国HUANG Jian-guo;胡石骏HU Shi-jun;巴俊杰BA Jun-jie(昆明理工大学国土资源工程学院,昆明650093)(Faculty of Land Resource Engineering of KUST,Kunming 650093,China)摘要:本文总结了目前将常用的单支点排桩支护和双排桩支护的计算理论,并通过对工程实例的计算结果进行对比分析,得出了双排桩支护对于单支点排桩具有更好的稳定性,可以适当的减小桩长,能有效的减小桩身弯矩等优点。
Abstract: This paper summarizes the calculation theories of single fulcrum soldier pile retaining and double soldier pile retaining commonly used in the current, conducts comparative analysis of calculation results of the engineering examples, and draws the conclusion that the stability of double soldier pile retaining is better than the single fulcrum soldier pile retaining, and the double soldier pile retaining can appropriately reduce the pile length and effectively reduce the bending moment.关键词:单支点排桩支护;双排桩支护;桩身弯矩;稳定性Key words: single fulcrum soldier pile retaining;double soldier pile retaining;pile moment;stability中图分类号:TU473.1 文献标识码:A文章编号:1006-4311(2015)06-0112-020 引言双排桩支护结构是由前、后两排平行的排桩通过连梁连接所组成的门式刚架支护结构,与单排桩悬臂式支护结构相比,双排桩支护结构具有更大的侧向刚度,可以明显减小基坑的侧向变形,因而支护的深度一般也更大,在一些实际工程中已经取得了较好的效果[1]。
深基坑支护设计 3设计单位:X X X 设计院设计人:X X X设计时间:2016-04-11 11:55:10----------------------------------------------------------------------[ 支护方案 ]----------------------------------------------------------------------排桩支护----------------------------------------------------------------------[ 基本信息 ][ 放坡信息 ][ 超载信息 ][ 附加水平力信息 ][ 土层信息 ][ 土层参数 ][ 支锚信息 ][ 土压力模型及系数调整 ]----------------------------------------------------------------------[ 工况信息 ][ 设计结果 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 结构计算 ]----------------------------------------------------------------------各工况:内力位移包络图:地表沉降图:----------------------------------------------------------------------[ 冠梁选筋结果 ][ 环梁选筋结果 ][ 截面计算 ]----------------------------------------------------------------------钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500[ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:有效应力法条分法中的土条宽度: 0.40m滑裂面数据整体稳定安全系数 K s = 1.619圆弧半径(m) R = 15.313圆心坐标X(m) X = -0.492圆心坐标Y(m) Y = 7.058----------------------------------------------------------------------[ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
====Word行业资料分享--可编辑版本--双击可删====第一章设计方案综合说明1.1 概述.1 工程概况拟建南大微结构国家实验室工程位于南京市金银街以西,其南临南大生命科学院大楼,西侧为住宅楼。
拟建建筑物地面以上6层,地下2层,总建筑面积69533m2,建筑±.25m,整平后地面标高为17.00m,其它标高均以此为准,地下室负二层底板顶标高为-7.75mm,框架结构。
1. 基坑周边环境条件基坑北面和东面均为马路,最近距离为15 m,下设通讯电缆、煤气管线等设施。
西侧为居民住宅楼,楼高五层,其最近距离为 m,南侧为南大生命科学院大楼,最近距离为12.5 m。
工程水文地质条件拟建场区地貌单元为阶地,地形较平坦,场地西侧有坳沟分布,东侧有暗塘分布。
在基坑支护影响范围内,自上而下有下列土层:①层杂填土:灰色,稍密,主要由碎石、碎砖、建筑垃圾组成,硬质含量30-60%,填龄大于5年。
①-2层素填土:灰黄~灰色,粉质粘土为主,可塑~软塑,混少量碎砖粒,炉渣,填龄大于10年。
①-3层淤泥质填土:灰黑色,流塑,稍具臭味,含腐植物。
②-1层粉质粘土:灰黄~灰色,可塑~软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
②-2层淤泥质粉质粘土~淤泥:灰色,流塑,含腐植物,稍有光泽,无摇震反应,干强度低,韧性低。
②-3层粉质粘土:灰色,软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-1层粉质粘土:黄褐色,可塑~硬塑,含少量铁锰结核,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-2层粉质粘土:黄褐色,可塑,局部软塑,稍有光泽,无摇震反应,干强度中等,韧性中等。
③-3层粉质粘土:黄褐色,可塑~硬塑,稍有光泽,无摇震反应,干强度中等,韧性中等,含铁锰结核及灰色高岭土团块。
④-1层粉质粘土混卵砾石:黄褐色,由硬塑粉质粘土,稍密卵砾石及中粗砂组成,卵砾石为浑圆~次圆状,主要成分为石英岩,粒径4~50mm,含量约30%。
基坑支护结构设计一.基坑侧壁安全等级的确定基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成各项预定功能。
不同的基坑工程,其功能要求则不同。
为了区别对待各种不同的情况,《建筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧壁划分为不同的安全等级。
建筑基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。
基坑侧壁安全等级及重要性系数表1建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基坑分级和变形监控值的规定如表1-2。
基坑变形监控值(cm)表2注:1.符合下列情况之一,为一级基坑:重要工程或支护结构做主体结构的一部分;开挖深度大于10m;与临近建筑物、重要设施的距离在开挖深度以内的基坑;基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标c、φ值。
对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚力两部分,其中表观粘聚力比真粘聚力要大的多。
而超固结土一旦遇水,表观粘聚力迅速下降至真粘聚力。
因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。
根据长春地区的工程经验,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指标。
平均重度:∑∑⋅=iiim hhγγ平均粘聚力:∑∑⋅=iiim hhcc平均内摩擦角:∑∑⋅=iiim hhφφ根据长春地区的工程经验,鉴于本工程的实际情况,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值如表(二)所示:三.荷载计算作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。
单支点排桩支护结构设计示例基坑支护结构设计一.基坑侧壁安全等级的确定基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成各项预定功能。
不同的基坑工程,其功能要求则不同。
为了区别对待各种不同的情况,《建筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧壁划分为不同的安全等级。
建筑基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。
基坑侧壁安全等级及重要性系数表1建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基坑分级和变形监控值的规定如表1-2。
基坑变形监控值(cm)表2注:1.符合下列情况之一,为一级基坑:重要工程或支护结构做主体结构的一部分;开挖深度大于10m;与临近建筑物、重要设施的距离在开挖深度以内的基坑;基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标c、φ值。
对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚力两部分,其中表观粘聚力比真粘聚力要大的多。
而超固结土一旦遇水,表观粘聚力迅速下降至真粘聚力。
因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。
根据长春地区的工程经验,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指标。
平均重度:∑∑⋅=iii m h h γγ 平均粘聚力:∑∑⋅=ii i m h h c c 平均内摩擦角:∑∑⋅=ii i m h h φφ根据长春地区的工程经验,鉴于本工程的实际情况,将c 值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值如表(二)所示:某基坑工程主要计算参数 表3三.荷载计算作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。
①土压力:土压力是指土体作用在支护结构上的侧向压力,它是由土体的自重产生的。
②地面荷载:地面临时荷载一般包括建筑材料、临时堆放待运弃土及施工机械等。
地面临时荷载可按20~30KN/m2计算,它基本上可以包罗现场各种各样的临时荷载。
③水压力:在地下水位较高的地区,基坑内外存在着水位差,将对支护结构产生水压力。
《建筑基坑支护技术规程》中建议,对于粘性土可采用水压力与土压力合算的方法,即对作用在支护结构上的土压力,用土的天然重度和总应力抗剪强度指标进行计算,不另计水压力。
作用在支护结构上的荷载,可按《建筑基坑支护技术规程》给出的支护结构水平荷载标准值及水平抗力标准值计算表达式进行计算。
1.水平荷载标准值(主动土压力) 《建筑基坑支护设计规程》中规定:对于粉土及粘性土,支护结构水平荷载标准值可按下式计算。
k c k e ai ik ai ajk ajk 2-=σ式中 σajk ——作用于深度zj 处的竖向应力标准值;σσσγk k ajk 0+=式中 σγk —计算点深度zj 处自重竖向应力;计算点位于基坑开挖面以上时:z j mj k γσγ=式中 γmj —深度zj 以上土的加权平均重度;z j —计算点深度。
计算点位于基坑开挖面以下时:h mh k γσγ=式中γm h —开挖面以上土的加权平均重度;σ0k —当支护结构外侧,地面作用满布附加荷载q 0时,基坑外侧任意点附加竖向应力标准值,可按下式确定:0q k =σc ik ——第i 层土粘聚力标准值; K ai ——第i 层土主动土压力系数。
K ai =tan 2(45°-Φik /2)式中 φik ——第i 层土的内摩擦角的标准值。
由于土压力呈直线变化,按上述公式计算主动土压力时,可取三个计算点,即基坑顶面处(Z=0)、基坑底面处(Z=H )、基坑底面以下(Z >H )。
当按上述公式计算的基坑开挖面以上水平荷载标准值小于零时,则取其值为零。
按上述公式计算主动土压力: ①z j =0时(基坑顶面处) σa0k =18.0×0+30=30KN/m2 K ao =tan 2(45°-16°/2)=0.568 √K ao = tan (45°-16°/2)=0.754 c ik =11.3kpae a0k =30×0.568-2×11.3×0.754=0②z j =11.2m 时(基坑底面处)为了将水平荷载分布表为直线,求zj ≤11.2m 范围内的平均土性指标,平均重度:mhγ=(18×2.8+19.1×1.6+19.6×3.9+20.2×2.9)/11.2=19.3KN/m3平均粘聚力:c mh =(11.3×2.8+21.9×1.6+18.2×3.9+22.2×2.9)/11.2=18.0KN/m2平均内摩擦角: φmh =(16.0×2.8+18.0×1.6+20.5×3.9+15.0×2.9)/11.2=17.6°平均主动土压力系数:amK =tan2(45°-17.6°/2)=0.536 732.0)2/6.1745(tan K am =︒-︒=ahkσ=19.3×11.2+30=246.2 KN/㎡e ahk =246.2×0.536-2×18.0×0.732=105.6KN/㎡ ③zj >11.2时(基坑底面以下)ajkσ=19.3×11.2+30=246.2 KN/m 2e ajk =246.2×0.536-2×2 2.水平抗力标准值(被动土压力) 基坑内侧水平抗力标准值e pjk ,按下式计算K c K e pi ik pi pjk pjk 2+=σ式中pjkσ—作用于基坑底面以下深度z j 处的竖向应力标准值pjkσ=γmj z jγmj ——深度z j 以上土的加权平均天然重度 z j —基坑底面至计算点的距离piK ——第i 层土的被动土压力系数)2/45(tan ik 2pi K φ-︒=①z j =0时 (基坑底面处) σpjk =γmi Zj=0 c ik =22.2KN/㎡ Φjk =15.0° γjk =20.2KN/m3√K=tan(45°+15°/2)=1.303e pjk =0+2×22.2×1.303=57.9KN/m2 ②z j =9.0m 时(设hd=9m 桩端处) 为了将水平抗力分布表为直线,求基坑底面以下zj=9m 范围内的平均土性指标平均重度:m γ =(1.4×20.2+1.6×20.1+4.5×20.3+1.5×19.9)/9.0=20.2KN/m3 平均粘聚力:c m =(.4×22.2+1.6×20.2+4.5×37.8+1.5×42.5)/9.0=33.0KN/m2 平均内摩擦角:Φm =(15.0×1.4+15.0×1.6+14.5×4.5+14.0×1.5)/9.0=14.6°平均被动土压力系数: K pm =tan2(45+14.6/2)=1.674294.1)2/6.1445tan(K pm =︒+︒=σpjk =γmi Z j =20.2×9.0=181.8KN/m2 e pjk =181.8×1.674+2×33.0×1.294=389.7KN/㎡四.单支点桩锚支护结构设计计算(等值梁法)《建筑基坑支护技术规程》规定,对单支点支护结构,可以用“等值梁”法确定其嵌固深度及结构内力。
,其弯矩图的正负弯矩在c点转折,若将ab梁在c点切断,并于c点置一自由支承,形成ac梁,则梁上的弯矩将保持不变,即称ac梁为ab梁上ac段的“等值梁”。
ac梁为静定结构,可按静力平衡条件求解ac 梁段的内力。
2.单支点桩锚支护结构的计算简图当桩的入土深度较深(hd=hmax)时,桩前、桩后均出现被动土压力,支护结构在土中处于嵌固状态,可视为上端简支,下端嵌固的超静定梁。
桩体中弯矩值大大减小,并出现正负两个方向的弯矩。
这种工作状态,所要求桩的截面模量较小,桩体入土部分的位移也较小,稳定性好,安全可靠。
固定端式锚桩,虽然比自由端式锚桩的入土深度大,但其桩体的最大弯矩值小,截面配筋量少,锚杆轴向拉力亦小,对桩与锚杆的设计均有利,而且造价相差不大。
因此,采用固定端式锚桩比自由端式锚桩更为合理。
值M1值M max减小,T1锚点降至某一位置时,有M1=M max,若继续降低则出现M1>M max。
因此,当M1=M max时,M max为最小,同时锚桩的入土深度及造价比也达到最小。
故根据M1=M max确定锚点的位置是最优的。
但在实际工程中,常常为了抢工期,不能等待锚杆达到一定强度后才开挖,。
因此,确定锚点设置深度应留有一定余地,不能太大,以保证安全。
综合考虑支护结构变形和受力两方面的因素,单支点锚桩的锚点设置深度应取h T0=0.4H 左右为宜。
单支点桩锚支护结构的计算简图,如图(3)所示:3.“等值梁“法计算内力(1)确定弯矩零点的位置用“等值梁”法计算单支点支护结构,首先要知道弯矩零点的位置。
矩零点。
点的距离为hcl,根据e a1k=e p1ke a1k=1.3(γmj h c1K pi+2c ik√K pi)可求得h C1h c1=(105.6/1.3-2× 1.303)/(20.2×1.689)=0.7m(2)计算支点力Tcl计算简图如图(4),根据∑Mc=0得T c1=(E a1h a1+E a2h a2-E p1h p1-E p2h p2)/(h T1+h c1)(3)计算支点力Tcl (取桩间距Sa=1.2m作为计算单元)计算简图如图(3-7),根据∑Mc=0图(3-7)得T c1=(E a1h a1+E a2h a2-E p1h p1-E p2h p2)/(h T1+h c1)E ai=1/2×105.6×11.2×1.2=709.6KNh a1=11.2/3+0.7=4.4mE a2=105.6×0.7×1.2=88.7KN h a2=0.7/2=0.35mE p1=75.3×0.7×1.2=63.3KN h p1=0.7/2=0.35mE p2=1/2(105.6-75.3)×0.7×1.2=12.7KN h p2=0.7/3=0.2mKN0.3967.02.72.07.1235.03.6335.07.884.46.709T cl =+⨯-⨯-⨯+⨯=(4)确定嵌固深度设计值确定单支点支护结构嵌固深度,其计算简图如图(4),根据极限平衡条件,并考虑一定的安全储备,按下式确定支护结构的嵌固深度设计值。