单支点排桩支护结构设计示例讲解
- 格式:doc
- 大小:185.50 KB
- 文档页数:13
排桩支护设计与计算8.7.1概述基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
排桩支护设计与计算8.7.1概述基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
基坑支护结构设计一.基坑侧壁安全等级的确定基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成各项预定功能。
不同的基坑工程,其功能要求则不同。
为了区别对待各种不同的情况,《建筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧壁划分为不同的安全等级。
建筑基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。
建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基坑分级和变形监控值的规定如表1-2。
注:1.符合下列情况之一,为一级基坑:重要工程或支护结构做主体结构的一部分;开挖深度大于10m;与临近建筑物、重要设施的距离在开挖深度以内的基坑;基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标c、φ值。
对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚力两部分,其中表观粘聚力比真粘聚力要大的多。
而超固结土一旦遇水,表观粘聚力迅速下降至真粘聚力。
因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。
根据长春地区的工程经验,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指标。
平均重度:∑∑⋅=iiim hhγγ平均粘聚力:∑∑⋅=iiim hhcc平均内摩擦角:∑∑⋅=iiim hhφφ根据长春地区的工程经验,鉴于本工程的实际情况,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值如表(二)所示:三.荷载计算作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。
第四节排桩、地下连续墙支护结构设计排桩或地下连续墙式支护结构属柔性支挡结构,其支护结构的围护桩墙、内支撑或土层锚杆。
围护桩墙的计算内支撑的计算√支护结构的计算包括:一、围护桩墙的计算⏹根据经验、规范或内力计算初步拟定墙的深度及截面尺寸;⏹然后进行墙的稳定性验算和内力计算。
稳定性验算内力及变形计算(一)稳定性验算稳定性验算的内容:整体稳定性验算;坑底抗隆起稳定验算;抗渗验算;坑底土抗承压水验算。
参照普朗特尔和太沙基求地基极限承载力的γ2γ1抗隆起稳定安全系数,一般要求不小于1.7~2.5;坑底土抗承压水头稳定安全系数,一般不小于1.05;按平面问题来简化,计算宽度为每延米墙长或排桩中心距。
极限平衡法弹性支点法(竖向弹性地基梁法)•对于悬臂式及支点刚度较小的桩墙支护结构,由于水平变形大,坑底土抗力可视为被动土压力。
土压力按朗金理论计算。
•当支点刚度较大,桩墙水平位移较小时,坑底土体远未达极限状态,土抗力按m 法计算(力与变形成比例关系的弹性地基梁法)。
土压力按经验法考虑。
(二)内力及变形计算√按力的平衡求解,无法求得变形。
建立梁的挠曲方程求解。
可求得变形。
Ⅰ、极限平衡法假定作用于围护桩墙前后的土压力达到被动土压力和主动土压力,在此基础上进行力学简化,将超静定问题作为静定问题求解。
属于这种类型的方法有静力平衡法、等值梁法、太沙基塑性铰法、等弯矩法和等轴力法等。
1)不能考虑开挖及地下结构施工过程的不同工况对内力的影响。
2)只是一种近似的计算方法,支撑层数越多、土层越软、墙体刚度越大,则计算结果与实际的差别越大。
在使用极限平衡法时,需要结合工程经验对土压力和计算结果进行修正。
3)这种计算方法不考虑也不能计算围护桩墙的变形。
土的抗力与变形无关。
变形小,E P 未完全发挥•极限平衡法在力学上的缺陷Ⅱ、弹性支点法(竖向弹性地基梁法、侧向弹性地基反力法)1)墙后的荷载•可直接按朗肯主动土压力理论计算(即三角形分布土压力模式)见图(a);•也可按矩形分布的经验土压力模式计算见图(b)。
单支点排桩支护与双排桩支护的对比分析-工程论文单支点排桩支护与双排桩支护的对比分析闫超波YAN Chao-bo;徐世光XU Shi-guang;黄建国HUANG Jian-guo;胡石骏HU Shi-jun;巴俊杰BA Jun-jie(昆明理工大学国土资源工程学院,昆明650093)(Faculty of Land Resource Engineering of KUST,Kunming 650093,China)摘要:本文总结了目前将常用的单支点排桩支护和双排桩支护的计算理论,并通过对工程实例的计算结果进行对比分析,得出了双排桩支护对于单支点排桩具有更好的稳定性,可以适当的减小桩长,能有效的减小桩身弯矩等优点。
Abstract: This paper summarizes the calculation theories of single fulcrum soldier pile retaining and double soldier pile retaining commonly used in the current, conducts comparative analysis of calculation results of the engineering examples, and draws the conclusion that the stability of double soldier pile retaining is better than the single fulcrum soldier pile retaining, and the double soldier pile retaining can appropriately reduce the pile length and effectively reduce the bending moment.关键词:单支点排桩支护;双排桩支护;桩身弯矩;稳定性Key words: single fulcrum soldier pile retaining;double soldier pile retaining;pile moment;stability中图分类号:TU473.1 文献标识码:A文章编号:1006-4311(2015)06-0112-020 引言双排桩支护结构是由前、后两排平行的排桩通过连梁连接所组成的门式刚架支护结构,与单排桩悬臂式支护结构相比,双排桩支护结构具有更大的侧向刚度,可以明显减小基坑的侧向变形,因而支护的深度一般也更大,在一些实际工程中已经取得了较好的效果[1]。
排桩支护设计及计算排桩支护是一种常用的地下工程支护措施,广泛应用于基坑工程、地铁工程、桥梁工程等。
排桩支护设计及计算是确保地下结构施工安全和施工质量的重要环节。
本文将从排桩支护设计原理、设计步骤、计算方法以及设计注意事项等方面进行详细阐述。
一、排桩支护设计原理排桩支护是通过设置一定间距的垂直桩体来增加土的抗侧性能,从而抵抗地下结构施工期间可能引起的土体侧向变形和变位。
排桩支护设计原理主要包括以下几点:1.土体侧向力学行为的分析:通过土体的剪切强度、侧向压力分布、桩与土体的相互作用等参数的计算,分析土体在侧向荷载作用下的力学行为。
2.土的排桩支护效应:排桩支护能够增加土的整体抗剪强度,减小土体的侧向位移,提高土体的稳定性。
3.桩与土体的相互作用:桩与土体之间存在一定的相互作用,通过研究桩的剪切阻抗特性和土的侧向位移变形特性,进行排桩支护设计。
二、排桩支护设计步骤1.地质勘察:对施工场地进行地质勘察,掌握地质情况、土层特性,确定施工地段的荷载条件、地下水位等。
2.设置桩的类型与间距:根据工程要求确定采用的桩的类型,如钢筋混凝土桩、钢管桩等,并根据工程需求确定桩的间距。
3.排桩效应分析:通过合理的计算方法,分析排桩后土体的变形与位移情况,确定桩的稳定性和支护效果。
4.桩的计算与设计:根据排桩后的土体变形和位移情况,进行桩的计算与设计,确定桩的尺寸和数量。
5.施工方法的选择:根据地质条件、桩的类型和设计要求,选择适合的施工方法,包括静载试验、动力触探、振动沉桩等。
6.监测与检查:在施工过程中进行监测与检查,保证排桩支护的施工质量。
三、排桩支护设计计算方法排桩支护的设计计算主要包括桩的受力计算和土体的侧向位移计算。
一般常用的计算方法有以下几种:1.桩的受力计算方法:根据杆件受力平衡原理,计算桩的竖向荷载、弯矩和剪力等。
根据桩的受力情况,可以确定桩体的截面尺寸和钢筋配筋等。
2. 土体的侧向位移计算方法:根据土的力学特性,可以采用有限元方法、解析方法或经验公式等进行土体的侧向位移计算。
基坑支护结构设计一.基坑侧壁安全等级的确定基坑支护结构设计与其它建筑结构设计一样,要求在规定的时间和规定的条件下,完成各项预定功能。
不同的基坑工程,其功能要求则不同。
为了区别对待各种不同的情况,《建筑基坑支护技术规程》(JGJ120-99)根据支护结构破坏可能产生后果的严重程度,把基坑侧壁划分为不同的安全等级。
建筑基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。
建筑基坑分级的标准各种规范不尽相同,《建筑地基基础工程施工质量验收规范》对基坑分级和变形监控值的规定如表1-2。
注:1.符合下列情况之一,为一级基坑:重要工程或支护结构做主体结构的一部分;开挖深度大于10m;与临近建筑物、重要设施的距离在开挖深度以内的基坑;基坑范围内有历史文物、近代优秀建筑、重要管线等需严加保护的基坑。
2.三级基坑为开挖深度小于7m,且周围环境无特殊要求的基坑。
3.除一级和三级外的基坑属于二级基坑。
4.当周围已有的设施有特殊要求时,尚应符合这些要求。
基坑支护结构均应进行承载能力极限状态的计算;对于安全等级为一级的及对支护结构变形有限定的二级建筑基坑侧壁,尚应对基坑周边环境及支护结构变形进行验算。
二.计算参数的确定基坑工程支护设计的主要计算参数,包括土的重力密度γ及土的抗剪强度指标c、φ值。
对于超固结土,用常规试验方法进行剪切试验获得的粘聚力,包括真粘聚力和表观粘聚力两部分,其中表观粘聚力比真粘聚力要大的多。
而超固结土一旦遇水,表观粘聚力迅速下降至真粘聚力。
因此应对试验给出的粘聚力值进行折减后,才能用于基坑工程设计。
根据长春地区的工程经验,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值。
为了将土压力分布表为直线,,应求出基坑底面以上及基坑底面至桩端处的平均土性指标。
平均重度:∑∑⋅=iiim hhγγ平均粘聚力:∑∑⋅=iiim hhcc平均内摩擦角:∑∑⋅=iiim hhφφ根据长春地区的工程经验,鉴于本工程的实际情况,将c值乘以0.4~0.5的折减系数,给出设计计算参数c、φ和γ值如表(二)所示:三.荷载计算作用在支护结构的荷载包括:土压力、水压力、施工荷载、地面超载等。
①土压力:土压力是指土体作用在支护结构上的侧向压力,它是由土体的自重产生的。
②地面荷载:地面临时荷载一般包括建筑材料、临时堆放待运弃土及施工机械等。
地面临时荷载可按20~30KN/m2计算,它基本上可以包罗现场各种各样的临时荷载。
③水压力:在地下水位较高的地区,基坑内外存在着水位差,将对支护结构产生水压力。
《建筑基坑支护技术规程》中建议,对于粘性土可采用水压力与土压力合算的方法,即对作用在支护结构上的土压力,用土的天然重度和总应力抗剪强度指标进行计算,不另计水压力。
作用在支护结构上的荷载,可按《建筑基坑支护技术规程》给出的支护结构水平荷载标准值及水平抗力标准值计算表达式进行计算。
1.水平荷载标准值(主动土压力)《建筑基坑支护设计规程》中规定:对于粉土及粘性土,支护结构水平荷载标准值可按下式计算。
k c k e ai ik ai ajk ajk 2-=σ式中 σajk ——作用于深度zj 处的竖向应力标准值;σσσγk k ajk 0+=式中 σγk —计算点深度zj 处自重竖向应力;计算点位于基坑开挖面以上时:z j mj k γσγ=式中 γmj —深度zj 以上土的加权平均重度;z j —计算点深度。
计算点位于基坑开挖面以下时:h m h k γσγ=式中γmh —开挖面以上土的加权平均重度;σ0k —当支护结构外侧,地面作用满布附加荷载q 0时,基坑外侧任意点附加竖向应力标准值,可按下式确定:00q k =σc ik ——第i 层土粘聚力标准值; K ai ——第i 层土主动土压力系数。
K ai =tan 2(45°-Φik /2)式中 φik ——第i 层土的内摩擦角的标准值。
由于土压力呈直线变化,按上述公式计算主动土压力时,可取三个计算点,即基坑顶面处(Z=0)、基坑底面处(Z=H )、基坑底面以下(Z >H )。
当按上述公式计算的基坑开挖面以上水平荷载标准值小于零时,则取其值为零。
按上述公式计算主动土压力: ①z j =0时(基坑顶面处) σa0k =18.0×0+30=30KN/m2K ao =tan 2(45°-16°/2)=0.568 √K ao = tan (45°-16°/2)=0.754 c ik =11.3kpa e a0k =30×0.568-2×11.3×0.754=0 ②z j =11.2m 时(基坑底面处)为了将水平荷载分布表为直线,求zj ≤11.2m 范围内的平均土性指标, 平均重度:mh γ=(18×2.8+19.1×1.6+19.6×3.9+20.2×2.9)/11.2=19.3KN/m3平均粘聚力: c mh =(11.3×2.8+21.9×1.6+18.2×3.9+22.2×2.9)/11.2=18.0KN/m2 平均内摩擦角: φmh =(16.0×2.8+18.0×1.6+20.5×3.9+15.0×2.9)/11.2=17.6° 平均主动土压力系数:am K =tan2(45°-17.6°/2)=0.536732.0)2/6.1745(tan K am =︒-︒=ahk σ=19.3×11.2+30=246.2 KN/㎡e ahk =246.2×0.536-2×18.0×0.732=105.6KN/㎡ ③zj >11.2时(基坑底面以下)ajkσ=19.3×11.2+30=246.2 KN/m 22.水平抗力标准值(被动土压力)基坑内侧水平抗力标准值e pjk ,按下式计算K c K e pi ik pi pjk pjk 2+=σ式中pjk σ—作用于基坑底面以下深度z j 处的竖向应力标准值 pjkσ=γmj z jγmj ——深度z j 以上土的加权平均天然重度z j —基坑底面至计算点的距离piK ——第i 层土的被动土压力系数)2/45(tan ik 2pi K φ-︒=①z j =0时 (基坑底面处)σpjk =γmi Zj=0 c ik =22.2KN/㎡ Φjk =15.0° γjk =20.2KN/m3 √K=tan(45°+15°/2)=1.303 e pjk =0+2×22.2×1.303=57.9KN/m2 ②z j =9.0m 时(设hd=9m 桩端处)为了将水平抗力分布表为直线,求基坑底面以下zj=9m 范围内的平均土性指标 平均重度:m γ =(1.4×20.2+1.6×20.1+4.5×20.3+1.5×19.9)/9.0=20.2KN/m3 平均粘聚力:c m =(.4×22.2+1.6×20.2+4.5×37.8+1.5×42.5)/9.0 =33.0KN/m2 平均内摩擦角:Φm =(15.0×1.4+15.0×1.6+14.5×4.5+14.0×1.5)/9.0 =14.6°平均被动土压力系数: K pm =tan2(45+14.6/2)=1.674294.1)2/6.1445tan(K pm =︒+︒=σpjk =γmi Z j =20.2×9.0=181.8KN/m2四.单支点桩锚支护结构设计计算(等值梁法)《建筑基坑支护技术规程》规定,对单支点支护结构,可以用“等值梁”法确定其嵌固深度及结构内力。
1.“等值梁”法的基本原理“等值梁”法基本原理如图(3)所示:,若将ab 梁在c 点切断,梁为ab 梁上ac 段的“等值梁”。
ac 梁为静定结构,可按静力平衡条件求解ac 梁段的内力。
2.单支点桩锚支护结构的计算简图当桩的入土深度较深(hd=hmax )时,桩前、桩后均出现被动土压力,支护结构在土中处于嵌固状态,可视为上端简支,下端嵌固的超静定梁。
桩体中弯矩值大大减小,并出现正负两个方向的弯矩。
这种工作状态,所要求桩的截面模量较小,桩体入土部分的位移也较小,稳定性好,安全可靠。
固定端式锚桩,虽然比自由端式锚桩的入土深度大,但其桩体的最大弯矩值小,截面配筋量少,锚杆轴向拉力亦小,对桩与锚杆的设计均有利,而且造价相差不大。
因此,采用固定端式锚桩比自由端式锚桩更为合理。
单支点锚桩的锚点位置变化时,桩体沿深度方向的水平位移和弯矩则不同。
从理论上讲,随着锚点位置的降低,锚点处的弯矩值锚点降至某一位置时,有M1=M max ,现M1>M max 。
因此,当M1=M max 时,M1=M max 确定锚点的位置是最优的。
杆达到一定强度后才开挖,锚点设置深度应取h T0=0.4H 左右为宜。
示:3.“等值梁“法计算内力 (1)确定弯矩零点的位置用“等值梁”法计算单支点支护结构,首先要知道弯矩零点的位置。
研究表明:单支点支护结构的弯矩零点与基坑底面以下土压力为零的点位置相近,计算时可取该点作为弯矩零点。
设:基坑底面至弯矩零点的距离为根据 e a1k =e p1ke a1k =1.3(γmj h c1K pi +2c ik √K pi ) 可求得h C1h c1=(105.6/1.3-2×1.303)/(20.2×(2)计算支点力Tcl计算简图如图(4),根据T c1=(E a1h a1+E a2h a2-E p1h p1-E p2h p2)/(h T1+h(3)计算支点力Tcl (取桩间距Sa=1.2m 作为计算单元) 计算简图如图(3-7),根据∑Mc=0得 T c1=(E a1h a1+E a2h a2-E p1h p1-E p2h p2)/(h T1+h c1) E ai =1/2×105.6×11.2×1.2=709.6KN h a1=11.2/3+0.7=4.4m E a2=105.6×0.7×1.2=88.7KN h a2=0.7/2=0.35m E p1=75.3×0.7×1.2=63.3KN h p1=0.7/2=0.35m E p2=1/2(105.6-75.3)×0.7×1.2=12.7KN h p2=0.7/3=0.2mKN0.3967.02.72.07.1235.03.6335.07.884.46.709T cl =+⨯-⨯-⨯+⨯=(4)确定嵌固深度设计值确定单支点支护结构嵌固深度,其计算简图如图(4),根据极限平衡条件,并考虑一定的安全储备,按下式确定支护结构的嵌固深度设计值。