复变函数07-复数级数和幂级数
- 格式:ppt
- 大小:534.50 KB
- 文档页数:33
(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。
②一个复数等于零,当且仅当它的实部与虚部同时等于零。
③称复数x+iy 和x-iy 互为共轭复数。
2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。
(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值 ()Arg z =()arg z +2k π 3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。
(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。
(二) 复数的运算 1.加减法:若1112,z x iy z x=+=+,则()()121212z z x x i yy±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
第四章复变函数的级数本章介绍复变函数级数的概念,重点是Taylor级数及其展开,解析函数零点的孤立性及唯一性定理.§4.1复数项级数1 复数列的极限2 复数项级数4.1.2 复数项级数!!++++=∑∞=n n n αααα211为复数项级数.称nnk k n S αααα+++==∑=!211为该级数的前n 项部分和.设是复数列, 则称{}{}n n n a ib α=+级数收敛与发散的概念定义4.2如果级数!!++++=∑∞=n n n αααα211的部分和数列收敛于复数S , 则称级数收敛, {}n S 这时称S 为级数的和, 并记做1.nn S α∞==∑如果不收敛,则称级数发散.{}n S复数项级数与实数项级数收敛的关系定理4.2 级数收敛的充要11()n n n n n a ib α∞∞===+∑∑条件是都收敛, 并且11, n n n n a b ∞∞==∑∑111.nn n n n n a i b α∞∞∞====+∑∑∑证明由及定理4.1, 易证.11,nnn k k k k S a i b ===+∑∑说明复数项级数的收敛问题!两个实数项级数的收敛问题级数收敛的必要条件lim 0.n n α→∞=推论4.1如果级数收敛, 则1n n α∞=∑证明由定理4.2及实数项级数收敛的必要条件知, lim 0, lim 0n n n n a b →∞→∞==lim 0.n n α→∞=重要结论:发散.1lim 0n n n n αα∞→∞=≠⇒∑于是在判别级数的敛散性时, 可先考察lim 0.n n α→∞=?为复变函数项级数.121()()()()nn n fz f z f z f z ∞==++++∑L L)()()()(21z f z f z f z S n n +++=!为该级数前n 项的部分和.设是定义在区域D 上的复变函数列, {}()n f z 称4.1.3 函数项级数的概念!!++++=)()()()(21z f z f z f z S n 称为该级数在区域D 上的和函数.如果对级数收敛, 即0,z D ∈01()n n f z ∞=∑00lim ()(),n n S z S z →∞=则称级数在点收敛, 且是级数和.1()n n f z ∞=∑0z 0()S z 如果级数在D 内处处收敛, 则称其在1()n n f z ∞=∑区域D 内收敛. 此时级数的和是函数和定理4.6(优级数判别法)121()(1,2,),.|()|,(1,2,)()n n n n n n f z n E a a a E f z a n f z E ∞==++++≤=∑L L L L 设在点集上有定义且是一收敛的正项级数 设在上 那么复函数级数在上一致收敛.12(1)n a a a ++++L L 级数称为优级数;注:(2) 优级数判定的一致收敛级数是绝对一致收敛.1,.()(),{()}()(),()()n n n n E f z E f z f z ES z f z S z f z E ∞=∑ 设表示区域闭区域或简单曲线 设在上连续,复函数级数或复序列在上一致收敛于或那么或在上连续.定理4.71()(1,2,)(),{()}()(),n n n n f z n C f z f z C S z f z ∞==∑L 设在简单曲线上连续,并且复函数级数或复序列在上一致收敛于或那么定理4.81()(),lim ()().n CCn n CCn f z dz S z dz f z dz f z dz +∞=→∞==∑∫∫∫∫ 或11()(1,2,).(),{()},(),{()}.n n n n n n n f z n D f z f z D f z f z D ∞=∞==∑∑L 设定义于区域内 若复函数级数或复序列在内任一有界闭集上一致收敛则称复函数级数或复序列在内内闭一致收敛定义4.5注,D D 在内弱内闭于在内一致收敛一致收敛11()(()),()(()),.n n n n n n f z f z D f z f z D ∞∞==∑∑即若或在内一致收敛则或在内内闭一致收敛反之不真如1||1n n z z ∞=<∑不在内,但一致收敛内闭一致收敛.1()(1,2,)(),{()}()(),()(),1,2,n n n n f z n D f z f z D S z f z S z f z D D k ∞===∑L L设定义于区域内解析,且复函数级数或复序列在内内闭一致收敛于或那么或在内解析且在内对定理4.9()()1()()()(),()lim ().k k n n k k n n S z f z fz f z +∞=→∞==∑ 或§4.2 幂级数1 幂级数的概念2 幂级数的敛散性3 幂级数的性质设是定义在区域D 上的复变函数列, {}()n f z 4.2.1 幂级数的概念2010200()()()nnn c z z c c z z c z z ∞=−=+−+−+∑当或时,110()()n n n f z c z z −−=−11()n n n f z c z−−=函数项级数的形式为0(),nn c z z ++−+L L 1()nn fz ∞=∑对复变函数级数20121,nnn n n c zc c z c z c z ∞==+++++∑L L 这类函数项级数称为幂级数.或的特殊情形00z =收敛圆与收敛半径(1) 对所有的正实数都收敛.级数在复平面内绝对收敛.(2) 对所有的正实数都发散.级数在复平面内除原点外处处发散.(3) 既存在使级数发散的正实数, 也存在使级数收敛的正实数.设时, 级数收敛;时, 级数发散. 如图:z α=z β=由Abel 定理, 幂级数收敛情况有三种:0nn n c z ∞=∑幂级数()nnn c z z ∞=−∑的收敛范围是因此,事实上, 幂级数在收敛圆周上敛散性的讨问题:幂级数在收敛圆周上的敛散性如何?以为中心的圆域.0z z =收敛半径根据前面所述的三种情形, 分别, 0, .R +∞规定为论比较复杂, 没有一般的结论, 要对具体级数进行具体分析.作业8第174页,第四章习题(一):1; 2; 3; 4;习题(二):1;2.。
复变函数知识点一、复数的基本概念。
1. 复数的定义。
- 设x,y∈ R,称z = x+iy为复数,其中i为虚数单位,满足i^2=- 1。
x称为复数z的实部,记作x = Re(z);y称为复数z的虚部,记作y = Im(z)。
2. 复数的相等。
- 两个复数z_1=x_1+iy_1和z_2=x_2+iy_2相等,当且仅当x_1=x_2且y_1=y_2。
3. 复数的共轭。
- 对于复数z = x + iy,其共轭复数¯z=x-iy。
共轭复数具有性质:z¯z=x^2+y^2,Re(z)=frac{z + ¯z}{2},Im(z)=frac{z-¯z}{2i}等。
二、复数的四则运算。
1. 加法与减法。
- 设z_1=x_1+iy_1,z_2=x_2+iy_2,则z_1± z_2=(x_1± x_2)+i(y_1± y_2)。
2. 乘法。
- z_1z_2=(x_1+iy_1)(x_2+iy_2)=x_1x_2-y_1y_2+i(x_1y_2+x_2y_1)。
3. 除法。
- frac{z_1}{z_2}=frac{x_1+iy_1}{x_2+iy_2}=frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+ifrac{x_2y_1-x_1y_2}{x_2^2+y_2^2}(z_2≠0)。
三、复数的几何表示。
1. 复平面。
- 复数z = x+iy可以用复平面上的点(x,y)来表示,其中x轴称为实轴,y轴称为虚轴。
2. 复数的模与辐角。
- 复数z = x + iy的模| z|=√(x^2)+y^{2},它表示复数z在复平面上对应的点到原点的距离。
- 复数z≠0的辐角θ满足z=| z|(cosθ + isinθ),辐角不唯一,Arg(z)=θ + 2kπ,k∈ Z,其中θ∈(-π,π]称为z的主辐角,记作θ = arg(z)。