抽样技术重点复习概念
- 格式:doc
- 大小:51.00 KB
- 文档页数:1
抽样期末知识点汇总一.绪论(一)抽样调查抽样调查是指非全面调查的总称。
只要是从研究的对象中抽取部分单位加以调查,用来说明全体,就统称为抽样调查。
(广义)选样方法:非概率抽样&概率抽样1.非概率抽样抽样方法:目的抽样、判断抽样、任意抽样、方便抽样、配额抽样(盖洛普民意测验、自愿样本原因:(1)受客观条件限制,无法进行严格的随机抽样。
(2)为了快速获得调查结果。
(3)在调查对象不确定,或无法确定的情况下采用,例如,对某一突发(偶然)事件进行现场调查等。
(4)总体各单位间离散程度不大,且调查员具有丰富的调查经验时。
优点:成本低,而且容易完成;缺点:不能对估计的精度作出客观、准确的说明。
2.概率抽样(狭义抽样调查)按照概率统计的原理,从研究的总体中按随机原则来抽选样本,通过对样本的调查获取数据,以此来对总体的特征作出估计推断;对推断中可能出现的抽样误差可以从概率的意义上加以控制。
特点:(1)对于一个具体的调查,要求总体中的每一个单元都有一个已知的非零概率被抽中。
(2)抽取样本的方法必须是随机的。
(3)根据样本来计算估计值的方法,应符合抽样的方法确定合适的估计量。
(4)能够以一定的概率控制抽样误差的范围。
概率抽样:等概率抽样&不等概率抽样(二)抽样调查的常用概念1. 目标总体:可简称为总体,是指所要研究对象的全体,或者说是希望从中获取信息的总体,它是由研究对象中所有性质相同的个体所组成,组成总体的各个个体称作总体单元或单位。
2.抽样总体:指从中抽取样本的总体。
3.抽样框:抽样总体的具体表现。
通常抽样框是一份包含所有抽样单元的名单。
4.总体参数:总体的特征。
5. 统计量(估计量):样本观察值的函数。
6.抽样误差:由于抽样的非全面性和随机性所引起的偶然性误差。
7.非抽样误差:由随机抽样的偶然性因素以外的原因所引起的误差。
8.抽样误差表现形式:抽样实际误差、抽样标准误和抽样极限误差。
9. 抽样标准误(S ),抽样方差(V ),V=S 210.偏差:样本估计量的数学期望与总体真值间的离差,ˆˆE()-()ˆB θθθ=。
一、主要概念、术语1、(作为数据收集方法的)观察研究,普查与抽样调查,实验设计在观察研究中,把观察到的事实都记录下来,而不考虑或很少考虑它们对总体的代表性。
在普查与抽样调查中,基于样本代表性的观念,把对总体或样本中的每一个成员进行观察得到的事实记录下来。
在实验设计中,涉及实验条件的控制。
2、非概率抽样;判断抽样,方便抽样,自愿样本,配额抽样,滚雪球抽样○偶遇抽样(方便抽样)(便利样本)〖含义〗事先不预定样本,碰到即问或自动回答者。
○判断抽样(立意样本)〖含义〗基于调研者对总体的了解和经验,从总体中抽选"有代表性的""典型的"单位作为样本。
○配额抽样〖含义〗按母体某些特征予以配置样本,但抽样时却由调查员任意抽取。
○滚雪球抽样(滚式样本)(辐射样本)〖含义〗利用样本寻找样本目标总体:所要研究对象的全体抽样总体:从中抽取样本的总体在实践中并非皆一致。
3、概率抽样;有限总体,样本及其四种类型,选取概率;抽样设计;抽样单位,目标单位,抽样框○抽样单元:一个抽样单元或直接是抽样总体中的一个个体的具体表现或其对应之物,或是抽样总体中的一个个体集的具体表现或其对应之物。
抽样单元可以有层次结构:初级单元由二级单元构成…○抽样框:由抽样单元组成,是抽样总体的具体表现或其对应之物。
常有名录框,区域框,自然框;可为多重抽样框 12 , , , M F F F F◎概率抽样(Probability Sampling)样本以随机方式取出,即:对每一个可能的样本,预先确定一选取概率。
* s * p s4、均方误差(MSE),估计量的方差,估计量的偏差5、抽样误差,非抽样误差6、SRSWOR(数学定义,直观定义)7、样本的三种形式8、分层抽样,分层随机抽样9、样本的代表性10、按比例分配样本,奈曼分配,最优分配11、查特吉法,12、事后分层13、简单估计,(分别、联合)比率估计,(分别、联合)回归估计,14、(总体、样本)回归系数15、整群抽样,群内相关系数,设计效应16、有放回不等概率抽样,抽取概率,PPS抽样,HH估计17、不放回不等概率抽样,(一阶、二阶)包含概率, PS抽样,HT估计,布鲁尔法,水野法,耶茨-格伦迪法,Raj估计量二、主要问题1、抽样调查主要有哪些作用?2、抽查调查与普查相互关系如何?表现在哪些方面?3、抽样框有哪些主要类型?试各举一例。
高一必修二数学知识点抽样抽样是统计学中的一项重要技术工具,它可以通过对部分个体进行观察和研究,来推断整体的特征和性质。
在高一必修二数学课程中,我们学习了许多与抽样相关的知识点,本文将对这些知识点进行梳理和总结。
一、抽样方法1. 简单随机抽样简单随机抽样是最常用的一种抽样方法,它是指从总体中随机地抽取若干个个体,使得每个个体被抽取的概率相等。
例如,我们要调查某班级学生的身高,可以使用简单随机抽样方法,先给每个学生编号,然后通过随机抽取编号的方式来选择样本。
2. 系统抽样系统抽样是在总体中按照一定的规则选择样本的方法。
例如,我们要调查某超市一天内的销售情况,可以选择每隔一定时间(如每小时)记录一次销售额,这样得到的样本就是按照系统抽样方法选择的。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中分别进行抽样的方法。
例如,我们要调查某城市不同年龄段人口的健康情况,可以先将人口按年龄分层,然后从每个年龄段中分别进行抽样。
4. 整群抽样整群抽样是将总体划分为若干个互不重叠的群组,选择部分群组进行抽样的方法。
例如,我们要调查某地区的农田面积情况,可以将该地区的农田划分为不同的农场,然后从不同的农场中进行抽样。
二、样本容量与抽样误差样本容量是指进行抽样研究时所选择的样本的大小。
样本容量的大小直接影响到推断性统计的可靠性。
通常情况下,样本容量越大,推断结果越可靠。
确定样本容量时需要考虑抽样误差。
抽样误差是指使用样本估计总体参数时,由于样本的随机性而引起的估计误差。
抽样误差的大小与样本容量、总体的变异程度等因素有关。
在实际抽样研究中,我们需要根据抽样误差的允许范围来确定合适的样本容量。
三、抽样调查的应用抽样调查在各个领域都有广泛的应用,尤其在社会调查、市场调研、医学研究等方面起着重要的作用。
例如,通过抽样调查可以估计某种药物的副作用发生率、了解市场上某种产品的受欢迎程度、探究某个社会问题的普遍性等。
调查:通过使用明确的概念、方法和程序,依据专门设计的调查方案知道的方式,从一个总体全部或部分单元中搜集感兴趣的指标信息,并将这些信息综合整理成数据系列的有关活动。
抽样调查:是调查应用最常见的模式,是一种非全面的调查,它是指从研究对象的全体(总体)中抽取一部分单元作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
这是广义的抽样调查的概念抽样调查步骤:调查目标确定、抽样框选择、抽样方案设计、问卷设计、数据收集、数据编码和录入、审核与插补、参数估计、数据分析和调查结果的表述、数据分布、撰写调查报告简单随机抽样:也称纯随机抽样,是从抽样框内的N个抽样单元中随机的、一个一个的抽取n个单元作为样本,在每次抽选中,所有未入样的待选单元入选样本的概率都想等,这n个被抽中的单元就构成了简单随机样本。
简单随机样本也可以一次从总体(抽样框)中同时抽出,这时全部可能样本中的每一个样本被抽中的概率也需要相等。
分层抽样:是将抽样单元按某种特征或某种规划分为不同的层,然后从不同的层中独立、随机地抽取样本,将各层的样本结合起来,对总体的目标量进行估计。
分层随机抽样:如果每层中的抽样都是独立地按照简单随机抽样进行的,那么这样的分层抽样称为分层随即抽样,所得的样本称为分层随即样本。
整群抽样:将总体中的若干个基本单元合并为组,这样的组称为群。
抽样时直接抽取群,然后对中选群中的所有基本单元全部实施调查,这样的抽样方法称为整群抽样。
多阶段抽样:采用类似整群抽样的方法,首先抽取群,但不是调查群内的所有基本单元,而是再进一步抽样,从选中的群中抽取出若干个基本单元进行调查,因为取得这些接受调查的基本单元需要两个步骤,所以将这种抽样方式成为两阶段抽样。
这里,群是初级抽样单元,第二阶段抽取的是基本抽样单元。
将这种方法推广,使抽样的段数增多,就称为多阶段抽样。
系统抽样:将总体中的所有单元(抽样单元)按一定顺序排列,在规定的范围内随机抽取一个单元作为初始单元,然后按事先规定好的规则确定其他样本单元,这种抽样方法称为系统抽样。
抽样技术期末考前点题整理【第一章绪论】一、概念类1、非概率抽样有哪些常见的类型?答:(1)判断选样(2)方便抽样(3)自愿样本(4)配额抽样2、抽样调查的作用有哪些?答:(1)节约费用(2)时效性强(3)可以承担全面调查无法胜任的项目(4)有助于提高调查数据的质量3、抽样调查与普查之间的关系是什么?答:(1)抽样调查可以作为普查的补充(2)抽样调查可以对全面统计资料进行评估和修正(3)利用抽样调查可以进行深层次的分析(4)利用抽样调查可以提前获得总体目标量的估计(5)普查可以为抽样框提供资料4、目标总体和抽样总体之间的关系是什么?答:(1)目标总体:是指所研究对象的全体,或者是研究人员希望从中获取信息的总体,它由研究对象中所有性质相同的个体所组成,组成目标总体的个体称作总体单元或单位。
(2)抽样总体:是指从中抽取样本的总体。
(3)关系:通常情况下,抽样总体应与目标总体完全一致,但实践中二者常不一致。
5、什么是抽样框?其有哪些类型?一个好的抽样框的基本标准是什么?答:(1)什么是:抽样总体的具体表现是抽样框。
通常,抽样框是一份包含所有抽样单元的名单。
给每个抽样单元编上一个号码,就可以按一定的随机化程序进行抽样。
对抽样框的基本要求是其应该具有抽样单元名称和地理位置信息,以便调查人员能够找到被选中的单元。
(2)类型[1] 名录框[2[ 区域框[3] 自然框(3)基本标准[1] 抽样框与目标总体保持一致[2] 能够提供与调查目的有关的尽可能多的准确、完整的辅助信息6、什么是抽样误差和非抽样误差?抽样误差的表现形式有哪些?答:(1)抽样误差:是指由抽取样本的随机性所造成的样本值与总体值之间的差异。
只要采用抽样调查,抽样误差就不可避免。
(2)非抽样误差:是相对于抽样误差而言的。
它的产生不是由于抽样误差的随机性,而是由于其他多种原因引起的估计值与总体参数之间的差异。
(3)抽样误差的表现形式[1] 抽样实际误差[2] 抽样标准误[3] 抽样极限误差7、抽样调查的步骤有哪些?答:(1)第一步:确定调研问题(2)第二步:设计抽样方案(3)第三步:问卷设计(4)第四步:实施调查过程(5)第五步:数据分析处理(6)第六步:撰写调研报告8、与非概率抽样相比,概率抽样有哪些优点?答:(1)样本的抽取遵循随机性原则(2)可以运用概率估计的方法对总体数量特征进行推断(3)抽样误差可以计算并加以控制9、概率抽样的特点有哪些? 答:(1)按一定的概率以随机原则抽取样本(2)每个单元被抽中的概率是已知的或者是可以计算出来的(3)当用样本量对总体目标量进行估计时,要考虑到该样本被抽样的概率【第二章 简单随机抽样】一、概念类1、简单随机抽样的抽取规则是什么? 答:(1)按随机原则取样,在取样时排除任何主观因素选择抽样单元,避免任何先入为主的倾向性,防止出现系统误差。
抽样方法知识点总结抽样方法复习知识点抽样方法知识点总结正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
抽样方法知识点总结一:简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
抽样方法知识点总结二:活用随机抽样系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)抽样方法知识点总结三:系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
抽样方法知识点总结四:分层抽样当已知总体有差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常常将总体分为几个部分,然后按照各个部分所占比例进行抽样,这种抽样叫做分层抽样,其中所分层的各部分叫做层“抽样方法知识点总结”。
抽样设计知识点总结一、抽样的定义抽样是指从总体中选取一部分个体作为样本进行研究的过程。
总体是指研究对象的全体,而样本是从总体中选取的部分个体。
在实际的研究中,很难对整个总体进行研究,因此需要通过抽样的方法来选取代表性的样本,从而对总体进行推断。
二、抽样的类型1. 无偏抽样:无偏抽样是指在进行抽样时,每个个体被选取为样本的概率是相等的。
常见的无偏抽样方法有简单随机抽样、分层抽样、整群抽样等。
2. 有偏抽样:有偏抽样是指在进行抽样时,每个个体被选取为样本的概率是不相等的。
有偏抽样在实际的研究中很少使用,因为这种抽样方法可能会导致样本的代表性受到影响,从而影响到研究结果的可靠性。
三、抽样误差抽样误差是指由于抽样方法不恰当或者由于抽取样本所造成的误差。
抽样误差的大小直接影响到研究结果的可信度,因此在进行抽样设计时,需要注意尽量减小抽样误差。
常见的抽样误差有抽样偏差、非抽样误差等。
四、抽样设计的步骤1. 确定研究目的:在进行抽样设计时,首先需要明确研究的目的和问题,以便确定所需的样本类型和抽样方法。
2. 确定研究总体:确定研究总体的范围和特征,以便在抽样时准确地选取代表性样本。
3. 选择抽样方法:根据研究目的和研究总体的特点,选择合适的抽样方法,如简单随机抽样、分层抽样、整群抽样等。
4. 确定样本量:确定所需的样本量是抽样设计的关键步骤,样本量的大小直接影响到研究结果的可靠性。
5. 进行抽样实施:在确定了抽样方法和样本量后,就需要进行实际的抽样实施,从而得到代表性的样本。
6. 分析抽样结果:对抽样所得的样本进行分析,以评估样本的代表性和有效性,从而为研究结果的推断提供依据。
五、抽样设计的注意事项1. 样本的代表性:抽样设计的最终目的是获取代表性的样本,以此推断整个总体的特征。
因此在进行抽样设计时,需要注意保证样本的代表性。
2. 样本的可靠性:样本的可靠性是指样本所反映的总体特征与总体本身实际特征之间的一致性。
抽样知识点总结一、抽样的基本概念1.1 总体和样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
总体是研究的对象,样本是研究的实际观察单位。
1.2 抽样误差抽样误差是指由于抽样方法所导致的样本与总体之间的偏差。
抽样误差分为随机误差和系统误差两种,随机误差是由抽样本身的不确定性所引起,系统误差是由于抽样方法的偏差或者样本数据的不准确性所引起。
1.3 抽样分布抽样分布是一组样本统计量的概率分布,它反映了在不同样本情况下的统计量的变动情况。
1.4 抽样方法常见的抽样方法包括简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样等。
不同的抽样方法适用于不同的研究问题和数据特点。
二、抽样的基本原则2.1 代表性原则样本应当具有代表性,即能够准确地反映总体的特征和变动情况。
2.2 随机性原则抽样过程应当具有一定的随机性,以消除个体之间的偏好或者主观意愿。
2.3 独立性原则各个样本之间应当是相互独立的,互不影响,以确保样本数据的独立性和可靠性。
2.4 信息量原则样本应当具有足够的信息量,即能够为研究问题提供充足的数据支持。
三、抽样的实施步骤3.1 确定研究目标首先需要确定研究问题,明确所需的样本特征和数据信息。
3.2 制定抽样方案根据研究目标和总体特征,选择合适的抽样方法,并确定抽样的规模和抽样的程序。
3.3 抽取样本按照抽样方案进行抽样,获取符合要求的样本数据。
3.4 数据分析与推断对抽样数据进行分析和推断,从而得出关于总体特征和规律的结论。
3.5 结果解释与应用根据抽样研究的结论和推断结果,进行结果的解释和应用,为决策和实践提供支持和参考。
四、抽样的应用4.1 统计调查抽样是统计调查中常用的一种数据收集方法,可以节省人力物力,减小成本,提高工作效率。
4.2 市场调查在市场营销中,抽样可以帮助企业更加准确地了解消费者的需求和偏好,指导产品开发和促销策略。
4.3 健康调查抽样在健康调查中发挥着重要作用,可以了解社会群体的健康状况和问题,为政府和企业提供决策支持。
八年级数学抽样知识点归纳
八年级数学抽样知识点归纳
1.抽样调查
广义的抽样调查:是从研究对象的全体(总体)中抽取一部分单位作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
从总体中抽取样本的方法看,抽取方法可以分为两类:一类是非随机抽样(非概率抽样);一类是随机抽样(概率抽样),狭义上的抽样就是随机抽样。
2.随机抽样(概率抽样)
随机抽样是从总体中按随机原则抽取样本,并依据样本观察值对总体的数量特征取得具有一定可靠性的推断,从而达到对总体的认识。
随机抽样的`特点:1.所谓随机原则就是在抽取样本时排除主观上有意识地抽取调查单元,使每个单元都以一个事先已知的非零概率有机会被抽中。
2.每个单元被抽中的概率是已知的,或是可以计算出来的,按照给定的入样概率通过一定的随机化程序进行抽样。
3.估计量不仅与样本单元的观测值有关,也与其入样概率有关。
随机抽样的主要优点是:随机抽样比非随机抽样更具有客观性,而且随机抽样可以依据调查结果计算抽样误差,从而得到对总体目标量进行推断的可靠程度。
小学抽样知识点总结抽样是统计学中的一项重要概念,它指的是从总体中抽取一部分个体进行观察或者实验,从而得到对总体特征的估计或者推断。
在实际应用中,抽样是非常常见的方法,尤其在调查、研究和统计分析中。
因此,小学生也应该了解和掌握相关的抽样知识,以便在日常生活中更好地应用这些知识。
一、抽样的基本概念1. 总体和样本总体是指研究对象的全部个体的集合,而样本是从总体中抽取的一部分个体。
在统计学中,总体通常是一个很大的集合,我们很难对其进行全面观测或者测试,因此我们会从总体中抽取一部分个体进行观察或者实验,从而得到总体特征的估计或者推断。
2. 抽样方法抽样方法是指从总体中抽取样本的具体方法,主要包括简单随机抽样、分层抽样、整群抽样、系统抽样等。
不同的抽样方法适用于不同的实际情况,我们需要根据研究目的和总体特点来选择合适的抽样方法。
3. 误差和置信度在抽样过程中,由于样本的限制和抽样方法的随机性,我们得到的样本估计值与总体真值之间会存在一定的偏差,这种偏差称为抽样误差。
为了度量样本估计值与总体真值之间的差异,我们通常会使用置信度来描述,它是指样本估计值与总体真值之间的可信程度。
二、常用的抽样方法1. 简单随机抽样简单随机抽样是指从总体中按照简单随机抽样的方法随机抽取样本个体,使得每一个个体被抽取为样本的概率相等。
这样可以保证样本具有代表性,从而能够对总体特征进行较为准确的估计。
2. 分层抽样分层抽样是指根据总体的某些特征将总体分成若干层,然后在每一层中按照简单随机抽样的方法抽取样本个体。
这种方法可以保证样本在各个层次上都具有代表性,适用于各层次人群特征不同的情况。
3. 整群抽样整群抽样是指将总体分成若干个群体,然后随机抽取若干个群体作为样本。
这种方法可以减少抽样成本,适用于群体特征类似的情况。
4. 系统抽样系统抽样是指按照一定的规律从总体中抽取样本个体,例如每隔k个个体抽取一个样本。
这种方法适用于总体是有序的情况,可以减小随机性带来的误差。
抽样技术知识点总结一、引言抽样是统计学的重要内容之一,它是指从总体中选取出一部分个体,通过对这部分个体的观察和研究来推断总体的性质和规律的一种统计方法。
抽样技术的合理性和科学性对于统计结果的准确性和可靠性具有重要的保障作用。
抽样技术的研究涉及概率论、数理统计等领域,是统计学中的一个重要分支。
二、抽样技术的基本概念1. 总体和样本总体是指研究对象的全体,样本是指从总体中抽取出来的一部分个体。
抽样研究的目的是通过对样本进行观察和研究,得出关于总体的统计推断。
2. 抽样误差抽样误差是指由于抽样方法的随机性和样本容量的有限性而导致的估计值与总体参数之间的差异。
减小抽样误差是抽样研究的一个重要目标。
3. 抽样框架抽样框架是指总体中每一个个体在抽样过程中都有明确的身份和位置的集合,这是进行抽样的前提条件之一。
4. 抽样概率抽样概率是指进行抽样的每一个个体被选中的概率。
抽样概率对于抽样结果的合理性和可靠性具有重要的影响。
三、抽样方法1. 简单随机抽样简单随机抽样是指从总体中按完全随机的原则抽取出相同容量的样本的方法。
简单随机抽样是抽样方法中最基本的一种方法,它具有抽样误差小、可比较性强的特点。
2. 分层抽样分层抽样是指将总体按照某种特征分成若干层,然后从每一层中分别抽取样本的方法。
分层抽样能够有效地减小抽样误差,提高估计的准确性。
3. 整群抽样整群抽样是指将总体按照某种特征分成若干群,然后选择其中的若干群作为样本的方法。
整群抽样能够简化抽样过程,提高抽样效率。
4. 系统抽样系统抽样是指按照一定规则从总体中选择个体的方法。
系统抽样能够简化抽样过程,减小抽样误差。
5. 整群分层抽样整群分层抽样是指将总体按照某种特征首先分成若干群,然后再从每一群中按照某种分层方法抽取样本的方法。
整群分层抽样是一种比较复杂的抽样方法,但具有较高的抽样精度。
6. 多阶段抽样多阶段抽样是指在抽样过程中采用多个抽样阶段的方法。
多阶段抽样能够逐步缩小抽样范围,提高抽样效率。
抽样设计知识点总结抽样设计是研究中常用的一种调查方法,在统计学和市场研究领域有着广泛的应用。
本文将总结抽样设计的基本概念、常见的抽样方法以及其优缺点,以帮助读者全面了解抽样设计的知识点。
以下是对抽样设计的详细总结:一、抽样设计的基本概念抽样设计是指在研究中通过对样本的选择和观察来对总体进行推断的过程。
其目的是通过从总体中抽取一部分个体进行观察和研究,从而推断出总体的特征和性质。
二、简单随机抽样简单随机抽样是指从总体中以等概率的方式随机选择样本的方法。
在简单随机抽样中,每个个体被选择为样本的概率是相等的,且相互之间是独立的。
简单随机抽样具有理论上的可行性和可重复性,但是在总体分布不均匀或者样本容量较大时,可能存在样本代表性不足的问题。
三、分层抽样分层抽样是将总体按照某些特征进行划分,然后在每个层次中进行独立的抽样。
分层抽样可以提高样本的代表性,并减小样本误差。
在分层抽样中,要根据总体的特征和目标确定划分的层次和样本容量,以确保每个层次都能充分代表总体。
四、整群抽样整群抽样是将总体按照某些特征划分为若干个互不重叠的群组,然后从选定的群组中进行全员抽样或随机抽样。
整群抽样能够简化抽样过程,减少抽样误差。
但是要注意群内的个体异质性,以保证样本的代表性。
五、多阶段抽样多阶段抽样又称为层级抽样,是将总体按照多个层次进行分层抽样的方法。
每个层次的样本数量和抽样方式可以根据实际情况进行调整,以提高样本的效率和代表性。
多阶段抽样常用于大规模调查和复杂样本选择的研究中。
六、配额抽样配额抽样是根据总体中各类别的比例,按照某些特征设定的配额进行抽样的方法。
配额抽样通常比较适用于面对有限数量的个体,且可以根据特定需求确定配额比例。
但是配额抽样不能保证每个个体被选择为样本的概率是相等的,可能导致样本的偏倚。
七、系统抽样系统抽样是按照某种规则从总体中依次选择样本的方法。
在系统抽样中,可以根据需要选择第一个样本的位置,然后按照固定的间隔选择后续的样本。
抽样检的基础必学知识点
抽样检的基础知识点包括以下内容:
1. 抽样方法:在进行抽样检时,需要选择适当的抽样方法,常见的抽
样方法有简单随机抽样、系统抽样、分层抽样、整群抽样等。
2. 抽样误差:抽样误差是指抽样所引入的估计误差,其大小通常取决
于样本容量的大小和抽样方法的选择。
抽样误差越小,样本代表性越好,估计结果越可靠。
3. 样本容量:样本容量是指进行抽样检的样本数量,通常样本容量越大,估计结果越可靠。
样本容量的确定需要考虑抽样误差允许范围、
资源和时间等因素。
4. 抽样分布:抽样分布是指某一统计量在大量独立抽样情况下的分布。
常见的抽样分布有正态分布、t分布、卡方分布等。
根据不同的情况选择适当的抽样分布进行参数估计和假设检验。
5. 抽样误差的控制:为了减小抽样误差,可以采取增加样本容量、改
进抽样方法、增加抽样次数等方法进行控制。
合理选择抽样方法和样
本容量可以有效控制抽样误差。
以上是抽样检的基础必学知识点,通过学习这些知识点可以帮助我们
正确进行抽样检,得到可靠的估计结果。
高中抽样知识点总结一、概念抽样是指从研究对象中抽取一部分代表性的样本进行观察和测量,用以推断总体特征的一种统计方法。
在实际研究中,总体往往是巨大而复杂的,很难进行全面的观察和测量,因此需要从总体中抽取一部分样本进行研究。
抽样是统计学中的重要概念,在各个领域的实证研究中都有着广泛的应用。
二、抽样原则1. 代表性:样本应当具有代表性,能够反映总体的特征。
2. 随机性:抽样过程应当是随机的,每个元素都有被抽中的可能性,不应当存在抽样偏差。
3. 独立性:每个样本应当是相互独立的,即一个样本的抽取不应当影响其他样本的抽取。
4. 样本大小:样本大小应当足够大,以确保能够准确地反映总体特征。
5. 抽样方法:抽样方法应当符合研究目的和数据类型的特点,选择适合的抽样方法。
三、抽样方法1. 随机抽样:是指通过简单随机抽样、分层随机抽样、整群随机抽样等方法进行样本抽取,以确保样本具有代表性和随机性。
2. 整群抽样:是指将总体按一定特征划分成若干类群,然后从这些类群中随机抽取若干类群作为样本。
3. 有系统抽样:是指按照一定的系统规则从总体中抽取样本,例如每隔若干个元素抽取一个样本。
4. 整群抽样:是指将总体按某种标准划分成若干类群,然后从这些类群中随机抽取若干类群作为样本。
5. 概率抽样:是指按照已知概率分布进行抽样,例如使用伯努利分布进行抽样。
6. 非概率抽样:是指不按照已知概率分布进行抽样,例如方便抽样、判断抽样等方法。
四、抽样误差在抽样过程中,由于各种原因可能导致样本与总体之间存在一定的差异,这种差异称为抽样误差。
抽样误差是抽样过程中的重要问题,对研究结果的准确性和可信度都有着重要影响。
五、样本容量样本容量是指抽取的样本数量,样本容量的大小直接影响到抽样结果的精确度和可信度。
一般来说,样本容量越大,抽样结果的可信度越高。
根据总体的大小和特征,确定合适的样本容量是抽样过程中的重要问题。
六、应用抽样方法在社会科学、自然科学、工程技术等领域都有着广泛的应用,是进行实证研究的基础方法。
调查:通过使用明确的概念、方法和程序,依据专门设计的调查方案知道的方式,从一个总体全部或部分单元中搜集感兴趣的指标信息,并将这些信息综合整理成数据系列的有关活动。
抽样调查:是调查应用最常见的模式,是一种非全面的调查,它是指从研究对象的全体(总体)中抽取一部分单元作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
这是广义的抽样调查的概念
抽样调查步骤:调查目标确定、抽样框选择、抽样方案设计、问卷设计、数据收集、数据编码和录入、审核与插补、参数估计、数据分析和调查结果的表述、数据分布、撰写调查报告
简单随机抽样:也称纯随机抽样,是从抽样框内的N个抽样单元中随机的、一个一个的抽取n个单元作为样本,在每次抽选中,所有未入样的待选单元入选样本的概率都想等,这n个被抽中的单元就构成了简单随机样本。
简单随机样本也可以一次从总体(抽样框)中同时抽出,这时全部可能样本中的每一个样本被抽中的概率也需要相等。
分层抽样:是将抽样单元按某种特征或某种规划分为不同的层,然后从不同的层中独立、随机地抽取样本,将各层的样本结合起来,对总体的目标量进行估计。
分层随机抽样:如果每层中的抽样都是独立地按照简单随机抽样进行的,那么这样的分层抽样称为分层随即抽样,所得的样本称为分层随即样本。
整群抽样:将总体中的若干个基本单元合并为组,这样的组称为群。
抽样时直接抽取群,然后对中选群中的所有基本单元全部实施调查,这样的抽样方法称为整群抽样。
多阶段抽样:采用类似整群抽样的方法,首先抽取群,但不是调查群内的所有基本单元,而是再进一步抽样,从选中的群中抽取出若干个基本单元进行调查,因为取得这些接受调查的基本单元需要两个步骤,所以将这种抽样方式成为两阶段抽样。
这里,群是初级抽样单元,第二阶段抽取的是基本抽样单元。
将这种方法推广,使抽样的段数增多,就称为多阶段抽样。
系统抽样:将总体中的所有单元(抽样单元)按一定顺序排列,在规定的范围内随机抽取一个单元作为初始单元,然后按事先规定好的规则确定其他样本单元,这种抽样方法称为系统抽样。
简单估计:在没有总体其他相关辅助变量信息可以利用的情况下,用样本特征直接估计总体特征,且样本特征与预估的总体特征除了写法之分外,完全同形同构,简单易记,因此有简单线性估计的名称,简称为简单估计。
比率估计:设对有两个调查变量Y 和X 的总体进行简单随机抽样,分别以y,x表示样本总值,以y,x表示样本均值,以µ//
R y x y x
==为样本比率,用
µR作为总体比率R的估计称为的比率估计
回归估计:在简单随机抽样下,总体均值和总体总值Y的回归估计量定义为:
()()
tr
y y X x y x X
ββ
=+-=--
µ
lr lr
Y N y
=其中Y,X分别为调查变量、辅助变量的样本均值,X是辅助变量的总体均值,β称为回归系数。
不等概抽样:如果总体中每个单元进入样本的可能性是不相等的,则这种随机抽样方式就称为不等概率随机抽样,简称不等概率抽样。
非抽样误差:除抽样误差以外的,由于各种原因引起的误差。
非抽样误差的分类:抽样框误差(由不完善的抽样框引起的误差);无回答误差(由于种种原因没有从被调查单元获得调查结果,造成调查数据的缺失);计量误差(所获得的调查数据与其真值之间不一致造成的误差)。