孙训方材料力学每章小结
- 格式:ppt
- 大小:644.50 KB
- 文档页数:37
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解
攻重浩精研学习网提供资料
第1章绪论及基本概念
1.1复习笔记
材料力学是固体力学的一个分支,是研究结构构件和机械零件承载能力的基础学科。
其主要任务是研究材料及构件在外力作用下的变形、受力和失效的规律,为合理设计构件提供有关强度、刚度、稳定性分析的理论和方法。
本章主要介绍了材料力学的基本概念,是整个材料力学内容的一个浓缩,后面章节的叙述都是本章的展开和延伸。
一、材料力学的任务(见表1-1-1)
表1-1-1材料力学的任务
二、可变形固体的性质及其基本假设(见表1-1-2)
表1-1-2可变形固体的性质及其基本假设
三、杆件变形的基本形式(见表1-1-3)
表1-1-3杆件变形的基本形式。
孙训方《材料力学》考研2021考研复习笔记和真题第1章绪论及基本概念1.1 复习笔记材料力学是固体力学的一个分支,是研究结构构件和机械零件承载能力的基础学科。
其主要任务是研究材料及构件在外力作用下的变形、受力和失效的规律,为合理设计构件提供有关强度、刚度、稳定性分析的理论和方法。
本章主要介绍了材料力学的基本概念,是整个材料力学内容的一个浓缩,后面章节的叙述都是本章的展开和延伸。
一、材料力学的任务(见表1-1-1)表1-1-1 材料力学的任务二、可变形固体的性质及其基本假设(见表1-1-2)表1-1-2 可变形固体的性质及其基本假设三、杆件变形的基本形式(见表1-1-3)表1-1-3 杆件变形的基本形式如图1-1-1所示,在σa-σm坐标系中(σa为交变应力的幅度,σm为平均应力),C1、C2两点均位于一条过原点O的直线上,设C1、C2两点对应的两个应力循环特征为r1、r2,最大应力分别为σmax1、σmax2,则()。
[哈尔滨工业大学2009年研]图1-1-1A.r1=r2,σmax1>σmax2B.r1=r2,σmax1<σmax2C.r1≠r2,σmax1>σmax2D.r1≠r2,σmax1<σmax2【答案】B查看答案【解析】在射线OC2上,σa+σm=σmax,且tanα=σa/σm=(1-r)/(1+r),因此,C1、C2的循环特征相同,且C2的最大应力比C1的大。
低碳钢试件拉伸时,其横截面上的应力公式:σ=F N/A,其中F N为轴力,A为横截面积,设σp为比例极限,σe为弹性极限,σs为屈服极限,则此应力公式适用于下列哪种情况?()[北京航空航天大学2001研]A.只适用于σ≤σpB.只适用于σ≤σeC.只适用于σ≤σsD.在试件断裂前都适用【答案】D查看答案【解析】应力为构件横截面上内力的分布,在试件断裂前,轴力一直存在。
5工程上通常以伸长率区分材料,对于塑性材料有四种结论,哪一个是正确?()[中国矿业大学2009研]A.δ<5%B.δ>5%C.δ<2%D.δ>2%【答案】B查看答案【解析】通常把断后伸长率δ>5%的材料称为塑性材料,把δ<2%~5%的材料称为脆性材料。
第12章能量法12.1 复习笔记由于弹性体的变形具有可逆性,因此外力在相应位移上做功在数值上等于在物体内积蓄的应变能。
利用功和能的概念求解可变形固体的位移、变形和内力等的方法,称为能量法。
能量法是有限元法求解固体力学问题的基础。
本章首先介绍了应变能和余能的概念及计算方法,在此基础上讨论了卡氏定理,最后介绍了能量法在求解超静定问题中的应用。
本章应重点掌握卡氏定理内容及能量法求解超静定问题的应用。
一、应变能和余能(见表12-1-1)表12-1-1 应变能和余能二、卡氏定理(见表12-1-2)表12-1-2 卡氏定理三、能量法求解超静定系统(见表12-1-3)表12-1-3 能量法求解超静定系统12.2 课后习题详解12-1 图12-2-1(a)、(b)所示各杆均由同一种材料制成,材料为线弹性,弹性模量为E。
各杆的长度相同。
试求各杆的应变能。
图12-2-1(a)图12-2-1(b )解:(1)图12-2-1中(a )杆的应变能为:222112212222222222231842112(2)24478Ni i i F l F l F l V EA EA EA l F F lE d E dF l Ed ==⨯+⎛⎫⋅⋅ ⎪⎝⎭=⨯+⋅⋅=∑επππ(2)图12-2-1中(b )杆上距离下端x 处截面上的轴力为:F N (x )=F +fx =F +(F/l )x ,故杆件的应变能为:2002220()d d 214d 23llN l F x V V xEAF F x F l l x EA Ed ==⎛⎫+ ⎪⎝⎭==⎰⎰⎰εεπ12-2 拉、压刚度为EA的等截面直杆,上端固定、下端与刚性支承面之间留有空隙Δ,在中间截面B处承受轴向力F作用,如图12-2-2所示。
杆材料为线弹性,当F>EAΔ/l时,下端支承面的反力为:F C=F/2-(Δ/l)(EA/2)。
于是,力F作用点的铅垂位移为:ΔB=(F-F C)l/EA=Fl/(2EA)+Δ/2。
孙训方版。
材料力学公式总结大全第一篇:孙训方版。
材料力学公式总结大全材料力学重点及其公式材料力学的任务(1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力:p=lim∆P=dP正应力、切应力。
dA∆A→0∆A变形与应变:线应变、切应变。
杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。
静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。
动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限极限应力理想情形。
σb破坏,塑性材料在其屈服极限σs时失效。
二者统称为[σ]=σs[σ]=σb塑性材料、脆性材料的许用应力分别为:n3,nb,强度条件:σmax=⎛N⎫Nmax⎪≤[σ]≤[σ]⎝A⎭maxA,等截面杆轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:∆l=l1-l,沿轴线方向的应变和横∆bb1-bNP∆l'ε===。
横向应变为:截面上的应力分别为:ε=,σ=,横向应AAlbb 变与轴向应变的关系为:ε'=-με。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即σ=Eε,这就是胡克定律。
E为弹性模量。
将应力与应变的表达式带入得:∆l=Nl EA静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
dφ。
物理关系——胡克定dxdφdφdφ2=Gρ2dA圆轴扭转时律τρ=Gγρ=Gρ。
第16章材料力学性能的进一步研究16.1 复习笔记前面介绍了材料在常温、静载(用准静态试验)拉伸、压缩时的力学性能。
本章进一步介绍了应变速率及应力速率对材料力学性能的影响;在高温或低温下,周期加载时材料的力学性能;在长期高温条件下,受恒定荷载作用时材料的蠕变和松弛规律;在高速冲击荷载下材料的冲击韧性;以及低应力脆断、材料的断裂韧性等。
一、应变速率及应力速率对材料力学性能的影响(见表16-1-1)表16-1-1 应变速率及应力速率对材料力学性能的影响二、温度和时间对材料力学性能的影响(见表16-1-2)表16-1-2 温度和时间对材料力学性能的影响三、冲击荷载下材料的力学性能·冲击韧性(见表16-1-3)表16-1-3 冲击荷载下材料的力学性能·冲击韧性四、低应力脆断·断裂韧性(见表16-1-4)表16-1-4 低应力脆断·断裂韧性16.2 课后习题详解16-1 含有长度为2a的I型贯穿裂纹的无限大平板,材料为30CrMnSiNiA,在远离裂纹处受均匀拉应力σ作用,如图16-2-1所示。
已知材料的平面应变断裂韧性K=,裂纹的临界长度a c=8.98mm。
试求裂纹发生失稳扩展时的拉应力Icσ值。
图16-2-1解:当裂纹发生失稳扩展时,裂纹达到临界长度a c ,根据脆断判据有:1Ic K K ==故此时拉应力MPa 500MPa ===σ16-2 用矩形截面纯弯曲梁来测定材料的平面应变断裂韧性值时,所用梁的高度为b =90mm ,施加在梁端的外力偶矩(每单位厚度梁上的值)M e =300kN·m/m ,裂纹深度为a =50mm 。
试按如下的公式计算K 1值:1K =其中,σ=6M e /b 2(单位厚度梁);α=1.1215-1.40(a/b )+7.33(a/b )2-13.08(a/b )3+14.0(a/b )4图16-2-2 解:在外力偶矩作用下,梁横截面上的最大正应力3226630010Pa 222.2MPa 0.09e M σb ⨯⨯=== 由题已知公式计算因数224505050501.125 1.407.3313.0814.0909090901.697α⎛⎫⎛⎫⎛⎫=−⨯+⨯−⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=故裂纹尖端的应力强度因子11.697222.2K==⨯=ασ16.3 名校考研真题详解本章不是考试重点,基本上没有涉及到考研试题,因此,读者简单了解即可。
第1章绪论及基本概念1.1 复习笔记材料力学是固体力学的一个分支,是研究结构构件和机械零件承载能力的基础学科。
其主要任务是研究材料及构件在外力作用下的变形、受力和失效的规律,为合理设计构件提供有关强度、刚度、稳定性分析的理论和方法。
本章主要介绍了材料力学的基本概念,是整个材料力学内容的一个浓缩,后面章节的叙述都是本章的展开和延伸。
一、材料力学的任务(见表1-1-1)表1-1-1 材料力学的任务二、可变形固体的性质及其基本假设(见表1-1-2)表1-1-2 可变形固体的性质及其基本假设三、杆件变形的基本形式(见表1-1-3)表1-1-3 杆件变形的基本形式1.2 课后习题详解本章无课后习题。
1.3 名校考研真题详解一、填空题1.强度是指构件抵抗______的能力。
[华南理工大学2016研]【答案】破坏2.构件正常工作应满足______、刚度和______的要求,设计构件时,还必须尽可能地合理选用材料和______,以节约资金或减轻构件自重。
[华中科技大学2006研]【答案】强度;稳定性;降低材料的消耗量二、选择题1.材料的力学性能通过()获得。
[华南理工大学2016研]A.理论分析B.数字计算C.实验测定D.数学推导【答案】C2.根据均匀、连续性假设,可以认为()。
[北京科技大学2012研]A.构件内的变形处处相同B.构件内的位移处处相同C.构件内的应力处处相同D.构件内的弹性模量处处相同【答案】C【解析】连续性假设认为组成固体的物质不留空隙地充满固体的体积,均匀性假设认为在固体内各处有相同的力学性能。
3.根据小变形假设,可以认为()。
[西安交通大学2005研]A.构件不变形B.构件不破坏C.构件仅发生弹性变形D.构件的变形远小于构件的原始尺寸【答案】D【解析】小变形假设即原始尺寸原理认为无论是变形或因变形引起的位移,都甚小于构件的原始尺寸。
4.铸铁的连续、均匀和各向同性假设在()适用。
[北京航空航天大学2005研] A.宏观(远大于晶粒)尺度B.细观(晶粒)尺度C.微观(原子)尺度D.以上三项均不适用【答案】A【解析】组成铸铁的各晶粒之间存在着空隙,并不连续;各晶粒的力学性能是有方向性的。