第三讲 空气动力学基础
- 格式:ppt
- 大小:16.17 MB
- 文档页数:12
空气动力学基础 The manuscript was revised on the evening of 2021我把Introduction to flight的第四章Basic aerodynamics略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。
这个文档内容涉及的气流都是无黏的(书134—228页),没有包含黏性研究的部分。
因为领域导论书对黏性没怎么研究,基本都是只给结论,所以就不总结了。
本文档包括两部分,一是一些基本方程,二是这些方程的一些应用。
我读书只是蜻蜓点水,对一些公式的理解可能有错误;写的只是大致的推导过程,难免有不细致严谨之处;对一些英文的翻译可能不标准,同时可能输入有误。
希望大家批评指正、私下交流。
真心希望我们共同为之润色添彩,使其更加准确无误。
同时,大家有什么学习资料都记得共享啊,让我们共同进步!大家可以再看看领域导论书,看了这个总结,再看书就比较简单了。
看书最好也看看例题,例题不仅是对公式的简单应用,而且有些还包含新的知识,能增进我们对公式的理解。
这些内容只能算是一些变来变去的简单代数问题,大家不要有压力。
不过有几条注意事项:1、注意公式的限定条件,避免错误地加以应用。
2、大物书上的理想气体方程是Pv=mRT,其中的MR是普适气体常量(universal gas constant),领域导论书上的P=ρRT是经过变换的等价形式,其中的R是个别气体常量(specific gas constant),等于普适气体常量R普适/M,大家变一下马上就懂了。
2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。
在一、基本方程——7、能量方程的推导中,v=1/ρ,这里的1应理解为单位V2也包含单位质量质量,后面的能量方程中的121,不然与h的量纲就不统一了;在二、公式应用——3、空速测定——C、高速亚声速流中,我们可以看出在本书中,Pv=RT,同样把大物书上的状R普适T中的m当成单位质量1,并利态方程Pv=mM用普适气体常量和个别气体常量的关系R个别=R普适/M,即可推出Pv=RT。
空气动力学基础理论及应用空气动力学是研究空气对运动物体产生影响的学科,它是航空、航天、汽车、建筑等领域的重要基础理论。
空气动力学研究的对象是运动物体在空气中受力和运动状态等问题,这些问题涉及空气流动、气体压力、动量、能量等物理量。
本文将从空气动力学的基础理论、空气动力学在航空领域的应用以及未来的发展趋势三个方面进行探讨。
一、空气动力学基础理论1.1 空气的基本物理性质空气是由各种气体混合在一起形成的,其中最主要的成分是氮气、氧气和二氧化碳。
空气的物理性质包括密度、粘度、温度等等。
1.2 空气流动的基本形式空气流动包括定常流动和非定常流动,定常流动是指空气流动状态不随时间变化或是很缓慢地随时间变化,如静止空气中飞机飞行时的气流;非定常流动是指空气流动状态随时间变化而变化,如气象条件不断变化导致的气流。
1.3 空气动力学力学模型空气动力学力学模型分为二维模型和三维模型,二维模型是指将空气流动看作平面二维的,可以用二维平面的流体力学模型来描述;三维模型则是指考虑空气流动在三个维度上的变化,需要用三维流体力学模型来描述。
1.4 推导气体静压力公式静压力是指空气在物体表面上所产生的压力,它可以用气体动力学的基本理论,即流体静力学的连续性方程、动量守恒方程和能量守恒方程来推导出。
例如,对于一个静止的物体而言,其表面上的静压力可以表示为:P = ρgh其中,P表示静压力,ρ表示空气密度,g表示重力加速度,h表示物体表面上某一点与大气之间的距离。
二、空气动力学在航空领域的应用2.1 飞机的气动设计飞机的气动设计是指根据空气动力学的基本理论,对飞机的机翼形状、机身结构等进行设计,以便能够有效地减小空气阻力,并且能够更好地实现飞机的稳定飞行。
气动设计一般包括很多方面的内容,如翼型选取、机身布局设计、飞行控制系统设计等等。
2.2 飞行稳定性和控制飞行稳定性和控制是指在飞机受到外来干扰时,如何通过飞机自身的特性来保持飞行的稳定性和控制性,以便能够平稳地飞行。
空气动力学基础知识什么是空气动力学空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。
以下是由店铺整理关于空气动力学基础知识的内容,希望大家喜欢!空气动力学的分类通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度、温度、压力和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。
从这个意义上讲,空气动力学可有两种分类法:1)根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。
通常大致以400千米/小时(这一数值接近于地面1atm,288.15K下0.3Ma的值)这一速度作为划分的界线。
在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。
大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。
这种对应于高速空气动力学的流动称为可压缩流动。
2)根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。
除了上述分类以外,空气动力学中还有一些边缘性的分支学科。
例如稀薄气体动力学、高温气体动力学等。
空气动力学的研究内容在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、升力线理论、升力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。
在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动(压缩波与膨胀波的基本关系模型及其函数模型)、锥型流,等等。
空气动力学的基础理论空气动力学是研究物体在空气中运动的科学,它对飞行器设计与性能优化具有重要意义。
本文将从空气动力学的基础理论入手,介绍气动力、流体力学以及相关的实验方法。
一、气动力学基本概念气动力学是研究运动物体与周围气流相互作用的学科,其中重要的概念包括气动力和气动力系数。
气动力是指空气对物体施加的力。
根据牛顿第二定律,物体所受的气动力与其质量和加速度成正比,与气流速度和密度有关。
气动力可分为升力和阻力两个方向,其中升力垂直于气流方向,使飞行器产生升力;阻力平行于气流方向,使飞行器受到阻碍。
气动力系数是将气动力与流体的速度、密度、物体特性等无量纲化的比值,是空气动力学研究中常用的参考指标。
常见的气动力系数有升力系数、阻力系数、升阻比等。
二、流体力学基本原理在空气中运动的物体受到空气流体的阻力和升力的影响,因此了解流体的基本原理对于理解空气动力学至关重要。
1. 理想流体模型理想流体模型假设流体是无黏性、无旋转、不可压缩的。
在此假设下,流体的运动可以通过欧拉方程或伯努利方程来描述。
欧拉方程描述了流体中的速度和压力分布。
通过欧拉方程,可以研究不可压缩理想流体的运动状态。
伯努利方程描述了流体在不同区域的速度、压力和高度之间的关系。
伯努利方程表明,当流体速度增大时,压力将下降,反之亦然。
2. 边界层理论在实际气流中,流体的黏性导致了边界层的存在。
边界层是沿着固体表面形成的流速逐渐变化的一层流体。
边界层理论通过分析边界层的速度分布和压力分布,研究物体与流体之间的摩擦力和压力分布。
边界层厚度和摩擦阻力是设计飞行器时需要考虑的重要因素之一。
三、空气动力学实验方法实验方法在研究空气动力学中起着关键作用,通过实验可以验证理论模型,并为飞行器的设计和改进提供依据。
1. 风洞实验风洞实验是模拟真实空气流动场景的方法之一。
通过在风洞中放置模型,可以获得模型在不同风速下的升力和阻力等数据,从而分析空气动力学性能。
2. 数值模拟数值模拟是使用计算机模拟和解析相关方程来研究空气动力学。
学航模零基础系列教程之空气动力学(三)CattleCattle带您进入航模的世界!Cattle与您一路同行,让我们从今天开始吧!(参考Martin Simons的 Model Aircraft Aerodynamics 4th)第二章伯努利定理当空气遇到任何物体,比如机翼,空气就会产生偏转,一些空气从机翼上表面通过,一些机翼从下表面通过。
在这个流动过程中会产生复杂的速度和压力变化,要产生升力,上下表面必须存在压差才可以。
伯努利定律:P + 1/2Ρv^2 = 常数经过任何物体的流动,只要是流线型的流动,就会产生相似的流体变形,同时伴随着速度和压力的变化。
升力来源在机翼上,压力最高点就是所谓的驻点,在驻点处是空气与前缘相遇的地方。
空气相对于机翼的速度减小到零,由伯努利定理知道该点压力最大。
上翼面和下翼面的空气必须从这个店由静止加速离开。
在一定的来流速度下,如果对称翼型的迎角增大的话,上下表面的压力差会一直增大到某个值。
一个有弯度的翼型,尽管弦线位置可能是几何零迎角,但平均压力和升力与对称翼型仍存在差异。
在某些几何迎角为负的位置上,上下表面的评价压力是可能相等的,因此大弯度翼型存在一个零升迎角,这是翼型的气动力零点。
尽管在这个迎角下没有产生升力,由于翼型弯度的存在,上下表面的特征是不一样的。
升力系数有一个明确的极限值。
如果迎角太大或是弯度增加太多的话,流线型就会被破坏并流动从机翼上分离。
分离改变了上下表面的压力差,升力被大幅度降低,机翼处于失速状态。
气流分离在小范围内是一种普遍现象,气流在上下表面可能分离液可能分离后再附着。
这就是所谓的“气泡分离”。
环流和附着涡气流以一定的角度流经翼型时会出现偏转,导致翼型前方的上洗和后方的下洗。
这个偏转的出现打破了气流的平衡。
流线的运动就像是一团旋转的空气柱,即一个涡,这样的涡将导致流动的偏转、上洗、下洗。
涡旋转速度的大小将决定产生多大的升力。
实际上流经翼型上下表面的气流并不会转圈,很多实验表面这个旋转的涡确实能产生升力。
空气动力学的基础知识空气动力学是研究流体力学中与气体运动有关的力和运动的学科。
空气动力学的研究对象是运动的气体,其中包括飞行器、汽车、建筑物、船舶、火箭等物体在气体中的运动、流动和受力等问题。
本文将从空气动力学的基础知识入手,为读者介绍空气动力学的相关内容。
流场和速度场空气动力学研究的第一个问题是流体的流动。
流体的流动可以用流场和速度场来描述。
流场是指各点流体运动状态(流速、流速方向、密度、温度等)的分布情况。
速度场是指各点流体的流动速度。
流体的运动状态决定了它受力的状态,因此分析流场和速度场是空气动力学研究的第一步。
流场和速度场的计算方法以及它们之间的关系是空气动力学中的基础问题。
流体的连续性方程和动量守恒方程空气动力学中研究流体的运动过程需要遵循连续性方程和动量守恒定律。
连续性方程是描述流体运动过程的基本方程之一,它表述了流体在单位时间内通过任何一定横截面积内的物质流量相等。
动量守恒方程则描述了流体受力过程中的运动状态,这个方程能够反映物体在流体中穿过一个受力区域时所受的阻力、压力、力矩等信息。
空气动力学中的雷诺数在空气动力学中,雷诺数是一个非常重要的概念。
它是空气动力学中的无量纲参数,决定了流体的稳定性和不稳定性,可以用于描述边界层和湍流状态。
简而言之,当雷诺数越大时,流体会越容易变得湍流,这会对空气动力学的研究和设计带来许多影响。
翼型和飞行器翼型是空气动力学中的一个重要概念,它是描述飞行器机翼截面形状的函数。
翼形的设计对飞行器的性能有着至关重要的影响。
它能够影响到飞机的升力、阻力、抗扭稳定性、滚转和俯仰稳定性等方面。
因此,研究翼型的设计和性能是空气动力学研究的重要方向。
结语空气动力学是一门重要的学科,涉及众多的物理和数学知识。
通过本文的介绍,我们可以了解到空气动力学中的一些基础知识,例如流场和速度场、连续性方程和动量守恒方程、雷诺数、翼型和飞行器等。
对于空气动力学的学习者来说,深入了解这些基础知识对于学习和掌握这门学科是非常有帮助的。