风机叶轮空气动力学讲义
- 格式:ppt
- 大小:1.49 MB
- 文档页数:34
风力机空气动力学基础知识风力机空气动力学基础知识Wind Turbine Basics[本节为“水平轴风力发电机”与“升力型垂直轴风力机”与“阻力型垂直轴风力机”栏目共用]2013年4月(翼型升力动画增加片断)风能曾是蒸汽机发明之前最重要的动力,数千年前就有了帆船用于交通运输,后来有了风车用来磨面与抽水等。
近年来,由于传统能源逐渐枯竭、对环境污染严重,风能作为清洁的新能源得到人们的重视。
为方便风力机技术知识的学习,下面介绍一些风力机空气动力学的基础知识。
升力与阻力风就是流动的空气,一块薄平板放在流动的空气中会受到气流对它的作用力,我们把这个力分解为阻力与升力。
图1中F是平板受到的作用力,FD为阻力,FL为升力。
阻力与气流方向平行,升力与气流方向垂直。
图1-升力与阻力示意图我们先分析一下平板与气流方向垂直时的情况,见图2,此时平板受到的阻力最大,升力为零。
当平板静止时,阻力虽大但并未对平板做功;当平板在阻力作用下运动,气流才对平板做功;如果平板运动速度方向与气流相同,气流相对平板速度为零,则阻力为零,气流也没有对平板做功。
一般说来受阻力运动的平板当速度是气流速度的20%至50%时能获得较大的功率,阻力型风力机就是利用叶片受的阻力工作的。
图2-阻力的形成当平板与气流方向平行时,平板受到的作用力为零(阻力与升力都为零)。
当平板与气流方向有夹角时(见图3),气流遇到平板的向风面会转向斜下方,从而给平板一个压力,气流绕过平板上方时在平板的下风面会形成低压区,平板两面的压差就产生了侧向作用力F,该力可分解为阻力FD与升力FL。
图3-升力与阻力的形成下面是平板受气流作用产生升力与阻力的动画平板受来流产生升力与阻力的动画平板与气流方向的夹角称为攻角,当攻角较小时,平板受到的阻力FD较小;此时平板受到的作用力主要是升力FL,见图4。
图4-小攻角时升力大阻力小飞机、风筝能够升到空中就是依靠升力,升力型风力机就是靠叶片受到的升力工作的。
风力机叶轮设计与叶片空气动力学仿真分析一、概述作用在叶轮上的空气动力是风力机最主要的动力来源,也是造成各个零部件的主要的载荷来源。
要计算风力发电机组的载荷就必须先计算出空气作用在叶片上的作用力。
除了气动载荷,风力机叶片在风机工作中受到的作用力主要还受到惯性力,特别应该考虑重力、离心力和陀螺力等。
风力机的叶片设计分气动设计和结构设计两大部分,气动性能计算为气动设计结果提供评价和反馈,并为叶片的结构设计提供气动载荷等原始数据。
气动性能计算的准确性,直接影响叶片的气动性能和结构安全,从而影响风力机的运行效率和运行安全。
二、风力机叶片几何参数1.风力机叶片翼型几何参数和气流角翼型是组成风力机叶片的基本元素,因此,翼型的气动特性对风力机的性能起着决定性的作用。
以一个静止的翼型为例,其受到气流作用,风速为v,方向与翼型截面平行。
图1 翼型的几何参数和气流角翼型的尖尾(点B)称为后缘。
圆头上的A点称为前缘,距离后缘最远。
l——翼型的弦长,是两端点A、B连线方向上翼型的最大长度;C——翼型最大厚度,即弦长法线方向之翼型最大厚度;C——翼型相对厚度,CCl=,通常为10%~15%;翼型中线—从前缘点开始,与上、下表面相切诸圆之圆心的连线,一般为曲线;f——翼型中线最大弯度;f——翼型相对弯度,ffl =;α——攻角,是来流速度方向与弦线间的夹角;φo——零升力角,它是弦线与零升力线间的夹角;φ——升力角,来流速度方向与零升力线间的夹角。
α=φ+φ0 (2‐1)此处φ0是负值,α和φ是正值。
2..NACA四位数字翼型族NACA四位数字翼型分为对称翼型和有弯度翼型两种。
对称翼型即为基本厚度翼型,有弯度翼型由中弧线与基本厚度翼型迭加而成。
中弧线为两段抛物线,在中弧线最高点二者水平相切。
四位数字翼型的表达形式为NACAXXXX第一个数字表示最大相对弯度的百倍数值;第二个数字表示最大弯度相对位置的十倍数值;最后两个数字表示最大相对厚度t的百倍数值。
风力发电机运行的空气动力学原理解析风力发电机是一种利用风能转化为电能的设备,利用空气动力学原理进行运行。
空气动力学是研究空气在物体表面流动时所产生的力学效应的学科,其中涉及到的流体力学、空气动力学和结构力学等知识领域。
本文将从风力发电机的构成和原理、空气动力学原理以及风力发电机的运行过程等方面对其运行原理进行分析和解析。
首先,风力发电机由风轮、主轴、发电机以及塔架等构成。
其中,风轮是最重要的部件,它是通过空气动力学原理将风能转换为机械能。
风轮主要由叶片、主轴承和转子组成,其中叶片是最关键的部分。
在运行过程中,当风流通过风轮的叶片时,由于叶片的形状和倾斜角度,会使得风流产生一定的压力差,从而使风轮转动。
风轮的转动通过主轴传递给发电机,由发电机将机械能转化为电能。
其次,风力发电机的运行离不开空气动力学原理的支持。
当风流通过风轮的叶片时,由于风流的高速流动和叶片的形状等因素,会在叶片上产生压力差。
根据伯努利定律,当流体速度增加时,压力就会下降,而风轮叶片的形状和倾斜角度使得上表面的流速较快,下表面的流速较慢,从而产生了压力差。
此时,风流将从高压区域流向低压区域,推动风轮转动。
这就是风力发电机利用空气动力学原理来转换风能的过程。
风力发电机使用的是无驱动翼型,即在风流作用下产生升力来推动转子转动。
翼型的选择非常关键,不同的翼型会有不同的气动性能,影响着风力发电机的效率和输出功率。
一般而言,翼型的厚度比例愈小,气动性能愈好,当然翼型的选择还要结合具体的风力工况。
在实际应用中,常用的翼型有NACA系列翼型、稳定翼型等。
最后,风力发电机的运行过程可以简单概括为:当风力达到一定速度时,风轮开始转动,这时发电机开始工作,将机械能转化为电能。
随着风力的增大,风轮的转速也会增加,进而提高了发电机的输出功率。
另外,为了保证风力发电机的安全运行,还需要考虑风轮的稳定性和抗风性能。
在强风条件下,风力发电机会自动启动风刹系统,将风轮停止旋转,以避免因风力过大导致设备损坏。
第四章风力发电的空气动力学原理风机叶片在空气中的受力特性与飞机的机翼在空气中的受力相类似,所以对风机叶片的空气动力学研究很多是借鉴了对飞机的翼型的空气动力学的研究技术以及飞机翼型的制造技术。
飞机在空气中运动所引起的作用于飞机上的空气动力取决于空气的物理属性,飞机的几何形状、飞行姿态以及飞机与空气之间的相对速度,因此在讨论空气动力的产生及其变化规律之前,首先来研究空气的基本属性。
空气动力学是关于气流特性的学说,相对于固体而言气体的特性。
空气动力学定律,尤其是旋涡、推力、正面阻力和升力使得飞机可以飞行。
相同的定律对于滑翔也很重要。
空气动力学是一门复杂的科学。
并非在每种具体情况下都可以通过假设计算对特定现象作数字上或理论上的精确说明,因而要利用风洞试验结果。
所以空气动力学也是一门以经验为依据的科学。
气体和液体统称为流体。
气体和液体同固体相比较,分子间引力较小,分子运动较强烈,分子没有一定的排列规律,这就决定了气体和液体具有共同的特性,不能保持一定形状,而具有流动性。
从力学性质来看,固体具有抵抗压力、拉力和切力的能力。
因而在外力作用下,通常发生较小的变形,而且到了一定程度后变形就停止。
流体由于不能保持一定形状,所以它不能抵抗切力。
当他受到切力作用时,就要发生连续不断变形(即流动)。
这就是流体同固体在力学性质上的显著区别。
气体和液体除了具有上述的共同特性外,还有如下的不同特性:液体的分子跟分子的有效直径差不多是相等的,当对液体加压时,由于分子距离稍有缩小,出现强大的分子斥力来抵抗外压力,这就是说:液体的分子距离很难缩小,可以认为液体具有一定体积,因此通常成液体为不可压缩流体。
一般来说,气体分子间距离很大,例如常温常压下空气的分子距离为3×10-7,其分子有效直径的数量级为10-8厘米。
可见分子距离比分子有效直径大得很多。
这样,当分子距离缩小很多时,才会出现分子斥力。
因此,通常称气体为可压缩流体。
第三空气动力学新型风力机的设计与开发技术
第一章风力机的设计基础
风力机依靠叶轮汲取风能,叶轮直接决定风力机的、重要性能指标-----风能利用系数。
叶轮性能的好坏则取决于叶轮上叶片的数量和外形设计。
现代风轮叶片的平面形状通常是接近矩形的直叶片,尖削度不大而展弦比比较大。
这样叶片的展向流动是次要的,叶片的气动特性很大程度上取决于叶片的翼剖面形状及其所处的相对位置!也即翼剖面的气动特性是研究叶片性能的关键。
研究绕翼剖面流动比较简单,易于观察、实验、理论推导与分析,同时翼剖面气动特性也是探讨复杂情况的基础。
空气动力学提供了对翼剖而作深入细致研究的理论基础,提供了丰富的翼剖面气动性能试验数据和理论计算方法!为风力机的气动研究和气动设计提供了依据。
近代风力机叶片广泛采用了机翼翼剖面!大大提高了风力机的风能利用系数。
第二节低速翼型空气动力学基础。