不动点法求数列的通项公式
- 格式:pdf
- 大小:117.71 KB
- 文档页数:3
用不动点法求数列的通项公式
不动点法求数列的通项公式,属于数学当中的经典问题。
在数列
求解中,通项公式是根据一系列给定的数据,推导出整个数列通项的
一个重要方法,常用于数学教学中。
不动点法就是一种特殊的求解数
列通项公式的方法,也称为四平方定理,它是以π(取3.14)为精
度来进行计算的。
不动点法求数列的通项公式是基于一个给定数列,建立一个满足
条件的多项式,其本质上是一个多项式合成问题,通过证明不动点法
的公式有解,从而得到了一个关于数列的通项的求解公式。
不动点法的求解步骤:
1、首先将给定的数列表示为:x0, x1, x2,..., xn。
2、接着求出其差分序列,即:y0 = x1 - x0, y1 = x2 - x1,… yn-
1=xn - xn-1。
3、对差分序列求出n-1阶伴随矩阵:A = (aij)n-1 * (n-1),其系
数aij满足:aij(i≥j) = yi + 1 - yj,aij(i < j) = -(yi - yj)。
4、解半平方定理,即:det(A)= B^2 - 4AC = 0, 求出参数A,B,C,
其中A为半平方定理中的A,B为半平方定理中的B,C为半平方定理
中的C。
5、由A,B,C,求出数列的通项公式:an = x0 + nb + cn(n-1)/2。
总结一下,不动点法求数列的通项公式主要步骤:首先表示数列
为x0, x1, x2 ... xn;接着求出差分序列;依据差分序列求出伴随矩阵;然后解得半平方定理;最后根据参数求出数列的通项公式,即an
= x0 + nb + cn(n-1)/2。
斐波那契数列是一个非常著名的数列,它由如下的递归关系定义:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2) 对于n >= 2。
对于这个数列的通项公式(即直接计算第n项的公式而不需要计算之前所有项的值),存在一个非常著名的公式,称为Binet公式:F(n) = (φ^n - ψ^n) / √5,其中,φ= (1 + √5) / 2 约等于1.618033988749895...(黄金分割比),ψ = (1 - √5) / 2 约等于-0.618033988749895...。
这两个数实际上是方程x^2 - x - 1 = 0 的两个解。
不动点法是求解具有递归关系的数列通项的一种方法,它基于的思想是寻找一个函数的不动点(这里的不动点指的是满足f(x) = x的点),这在函数迭代和分形理论中非常常见。
但是,必须说明的是,斐波那契数列的通项公式并不是通过不动点法得出的。
不动点法在斐波那契数列的直接计算中并不是标准做法。
在数学中,不动点通常是指在迭代过程中不会改变的点。
例如,对于某个函数f(x),如果存在x*使得f(x*) = x*,则称x*为f的不动点。
但是对于斐波那契数列,我们通常不使用不动点法来求取其通项公式,因为现有的递推关系和Binet公式已经非常简洁且易于计算。
为了计算斐波那契数列的项,我们通常依赖于递归计算、Binet公式或者使用动态规划这类编程技术来避免重复计算已求出的项。
这些方法在实践中更加常见和有效。
要理解不动点的概念,一个简单的例子就是函数f(x) = x^2。
假设我们想要找到满足f(x) = x 的x值,我们可以简单求解方程x^2 = x,得到两个解x=0和x=1。
其中0和1就是这个函数的不动点。
不过这个例子和斐波那契数列的求解并没有直接关联。
总的来说,斐波那契数列的通项是通过数学推导得出的Binet公式,而不是通过不动点法,后者在其他类型的问题中更为常见,特别是在分析动态系统和迭代函数时。
不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2) b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。
巧用不动点法求数列的通项公式作者:孟兆福来源:《数理化学习·高一二版》2011年第07期在学习了数列之后,大家会经常遇到已知a1及递推公式a n+1=f(a n),求数列{a n}的通项公式的问题,很多题目令人感到非常棘手.本文将就此问题给出一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题,供大家参考.若数列{a n}的递推公式为a n+1=f(a n),把此式中的a n+1、a n均换成x得方程x=f(x).我们把方程x=f(x)的实数根x称为数列{a n}的不动点.利用数列的非零不动点,即可简便快捷地求出数列{a n}的通项公式.一、若f(a n)为整式,而{a n}又只有一个非零不动点x0,则可考虑用化简a n+1-x0=f(a n)-x0的方法求解.例1 若a1=-1,a n=2a n-1+3(n∈N*,且n≥2),求数列{a n}的通项公式.分析:由x=2x+3知{a n}仅有一个非零不动点-3,则a n-(-3)=2a n-1+3-(-3)=2a n-1+6.所以a n+3=2(a n-1+3)所以{a n+3}是以a1+3=2首项、2为公比的等比数列,则当n≥2时,有a n+3=2n,故a n=2n-3.又a1=-1也满足上式.所以{a n}的通项公式为a n=2n-3.例2 若a1=0,a n+1=n+2na n+1n(n∈N*),求数列{a n}的通项公式.分析:由x=n+2nx+1n知{a n}仅有一个非零不动点-12,则a n+1-(-12)=n+2na n+1n-(-12).所以a n+1+12=n+2n(a n+12),则a n+1+12n+2=a n+12n.所以a n+1+12(n+1)(n+2)=a n+12n(n+1),故{a n+12n(n+1)}是一个常数列.所以a n+12n(n+1)=a1+121×(1+1)=122=14.所以a n=n2+n-24.又a1=0也满足上式.所以{a n}的通项公式为a n=n2+n-24.二、若f(a n)为分式,而{a n}有两个相同的非零不动点x0,则可考虑用化简a n+1-x0=f(a n)-x0的方法求解例3 若a1=-1,a n=12-a n-1(n∈N*,且n≥2),求数列{a n}的通项公式.分析:由x=12-x得{a n}有两个相同的非零不动点1,则a n-1=12-a n-1-1=a n-1-12-a n-1.两边取倒数得1a n-1=2-a n-1a n-1-1=1a n-1-1-1.所以{1a n-1}是以1a1-1=-12为首项、-1为公差的等差数列,故当n≥2时, 1a n-1=-12+(n-1)•(-1)=12-n.所以a n=3-2n1-2n.又a1=-1也满足上式.所以{a n}的通项公式为a n=3-2n1-2n.黑龙江省大庆一中(163100)。
递推数列求通项公式不动点法大显神威讲解单不动点的其中两法递推数列是一种常见的数学问题,它通过前几项的关系来确定后续项的值。
求解递推数列的通项公式是一项重要的任务,可以帮助我们进一步理解数列的规律和性质。
其中,不动点法是一种常用的求解递推数列通项公式的方法,它有两种常见的形式:迭代法和不动点方程法。
迭代法是一种直接递推的方法,通过对之前的项进行迭代来得到后续项的值。
假设数列的通项公式为an = f(an-1),其中f(x)为一个函数,an代表数列的第n项。
迭代法的思路是从初始项开始,反复应用递推关系,直到找到符合条件的不动点,即满足an = f(an)的点。
一旦找到不动点,an的值将稳定在该点上,即an = f(an)。
以斐波那契数列为例,斐波那契数列的递推关系为an = an-1 + an-2,其中a1 = 1, a2 = 1、我们可以使用迭代法来求解斐波那契数列的通项公式。
首先,我们可以从初始项开始迭代计算:a3=a2+a1=1+1=2a4=a3+a2=2+1=3a5=a4+a3=3+2=5......通过持续迭代计算,我们可以发现斐波那契数列的值逐渐趋向于一个固定的比例,即不动点。
通过观察,我们可以发现当n趋向于无穷大时,an / an-1 的值趋近于黄金分割比1.618因此,我们可以得到斐波那契数列的通项公式为:an = (Φ^n - (-Φ)^(-n)) / √5其中Φ为黄金分割比(1+√5)/2,(-Φ)^(-n)表示(-Φ的n次方)的逆。
另一种常见的不动点法是不动点方程法。
和迭代法不同,不动点方程法通过建立一个等式来求解不动点。
假设数列的通项公式为an = f(an-1) = x,其中x为不动点。
我们可以将这个等式转化为一个不动点方程:an - f(an-1) = 0通过解这个不动点方程,我们可以求解出不动点x,从而得到数列的通项公式。
举一个简单的例子,假设数列的递推关系为an = 2an-1,初始值为a1 = 1、我们可以使用不动点方程法来求解该数列的通项公式。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: Θk x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b Θ11 21x x0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。
求数列通项的不动点法2015年10月31日meiyun 数海拾贝求数列的通项的基本方法有累加法和累乘法,等差数列与等比数列的通项公式就分别由累加法与累乘法对应得到的.对于一般的递推公式,如果可以通过适当的代数变形转化成可以使用累加法与累乘法的递推形式,则问题就得到的解决,不动点法就提供了这样的一个转化的方向.先从一种简单的情形入手:例1 若,,,求.分析 是一个一次函数,对于正比例函数的情形我们可以通过累乘法转化(即等比数列),于是我们令与递推公式对照得到,从而得到可以累乘的形式事实上,这里的就是递推公式对应的函数的不动点,即的根.对于由递推公式给出的数列,我们称的解为此数列的不动点.若为数列的不动点,有,则而中有因式.从而递推公式可以整理为=2a 1=3−2a n +1a n n ∈N ∗a n f (x )=3x −2−λ=3(−λ),a n +1a n λ=1−1=3(−1).a n +1a n λf (x )=3x −2x =3x −2=f ()a n +1a n x =f (x )αα=f (α)−α=f ()−f (α),a n +1a n f ()−f (α)a n x −α=g ()−αa n +1−αa n a n的形式.若为常数或者与无关,则由累乘法问题已经得到解决.比如若递推公式为,(),则为常数,就是前面的情形.下面我们来看更复杂的情形,对于递推公式为如何求数列的通项公式,给出具体的递推公式为例:例2 若,,,求.解 考虑递推公式对应的不动点,令解得.于是有两边取倒数化简得记得到于是就转化成前面的讲过的情形了.事实上,如果递推公式对应的不动点有两个,则可以通过不动点得到g ()a n a n =p +q a n +1a n p ,q ∈R g ()a n =,p ,q ,r ,s ∈R ,a n +1p +q a n r +sa n =2a 1=a n +13+1a n +3a n n ∈N ∗a n x =,3x +1x +3x =±1+1=,a n +14(+1)a n +3a n =+⋅.1+1a n +114121+1a n =b n 1+1a n =+.b n +112b n 14两个式子两式两边分别相除得于是得到解得在本题中是与相关的式子,无法直接累加累乘,但求倒数后就可以进一步整理,找到转化的方向.若特征根有两个,通过两式相除可以直接将消去,得到一个等比数列.不管是哪种处理方式,寻找不动点都是一个很好的递推公式的整理方向,引导我们去一步步进行代数变形,将一个未知的问题转化成我们已经解决的问题.除了这些情形之外,如果递推公式的形式为也可以尝试不动点法求数列的通项公式,大家可以自行尝试.最后给出一些练习题.+1=,a n +14(+1)a n +3a n −1=.a n +12(−1)a n +3a n =2⋅.+1a n +1−1a n +1+1a n −1a n =3⋅,+1a n −1a n 2n −1=.a n 3⋅+12n −13⋅−12n −1g ()a n a n a n =,r ,s ∈R ,a n +1p +q a 2n r +sa n 4−21.若,,求.2.若,,求.3.若,,求.4.(2011全国高考大纲卷理科第22题)函数,定义数列如下:,是过两点,的直线与轴交点的横坐标.(1)证明:;(2)求数列的通项公式.5.(2010东城高考一模理科第20题)已知数列满足,.(1)求证:;(2)求证:;(3)求数列的通项公式.参考答案1..2..3..=3a 1=a n +14−2a n +1a n a n =2a 1=a n +13−1a n +1a n a n =1a 1=a n +1+2a 2n 2+1a n a n f (x )=−2x −3x 2{}x n =2x 1x n +1P (4,5)(,f ())Q n x n x n PQ n x 2⩽<<3x n x n +1{}x n {}x n =4x 1=x n +1−3x 2n 2−4x n >3x n <x n +1x n {}x n =a n 2⋅−3n −12n −2−3n −12n −2=a n n +3n +1=a n +222n −122n 9⋅−1n −14.(1)略;(2).5.(1)(2)略;(3).注 由递推公式求数列通项公式的倒数法是不动点法的一种特殊情形.倒数法中,恰为数列的一个不动点.=x n 9⋅−15n −13⋅+15n −1=x n −13+12n −1−132n −10。
用不动点法求数列的通项定义:方程= X的根称为函数/(X)的不动点.利用递推数列/(X)的不动点,可将某些递推关系0” ==/("“」)所确左的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若f(x) = ax + b(a^O,a^\\ p是/(劝的不动点,©满足递推关系a n = f(%),(“ > 1),则a n-p = - /?),即{a n - p]是公比为a 的等比数列.证明:因为"是/(x)的不动点ap + b = p••• b-p = -ap由a n= a • a n_} + b得a n - p = a-a n_x +b-p =“("心-p)所以{a n-p}是公比为d的等比数列.定理2:设f(x) = ""+(c 丰 0,ad 一H 0), {a”}满足递推关系a… = f (a n_}), n > 1,cx + d初值条件q工_/(山)(1):若/(x)有两个相异的不动点p、q,则乞二£ = &・竺丄工(这里《=丄二2竺)〜一q Si -q "一qc1 1 2c(2):若/(兀)只有唯一不动点〃,则--- = -------- + k(这里k = U)a n一P 一P。
〃证明:由 /(%) = x得 /(牙)="入+ ” =小所以ex2 + (d - a)x - b = 0 cx + dP ==><q =J 一P j-q 叫T +h所以(1)因为pg是不动点,所以a _ pc qd b叫t +b eg + d(a - pc)g + b _ pd(a — gc)% 十b _ qdpd bqd _b a_qc g _ qa_qc(2)因为”是方程ex 2 +(d-a)x-b = 0的唯一解,所以cp2+(d-a)p-b = 0所以b _ pd = c]F 一 ap , p = -_ 所以2c_ aa n ^ +b _ (a — cp )5-i +b_pd _(u-cp)a fJ _{ +cp 2 - ap _ (a 一 cp^a^ 一 p)a ” 一 p = ---------- — p = -------------------------- = ------------------------------ = -----------------------+ d eg + d fl + 〃所以1 _ 1 5一]+〃_ 1 c(% - ”)+ 〃+ 3 _ c d + cp 1 _ 1 2c------ = ------ . --------- = ------ • ----------------- = ------- + ------- • ------- = --------— -----5 _ P u _ cp g - P u _ cp n a _ cp u — cp a n ^ - p a n ^ - p a + d2c 1 1令k=^—9 则一-一 =一-一 + k〃 _ P例1:设{给}满足绚=1卫叶=也匸三MW NS 求数列{心}的通项公式2例2:数列{〜}满足下列关系:⑷=2么色利=2d — ”4H0,求数列{心}的通项公式//y- 4- bx + C定理3:设函数f(x) = — ------------ ——(G HO,0HO)有两个不同的不动点且由ex + J知利=/(绻)确定着数列{心),那么当且仅当h = 0,e = 2a 时,⑺一"=(匕二I ),% 一勺 知一勺证明:・・・Xk 是f (x )的两个不动点耳田一州==叫^+少一如冷+ —町=叫:+ @_M )给 + (f __ 1小 冷+i 一吃 + bi* +c-x 2(eu n + /) cm ; + (b — %)冷+c-x 2f an ; + (Z? — ex 2)u tt +(e-一娅•> 2auj + (Z? - ex x )u n +(£_□)叮- byan/ + (Z? - ex 2 )u n +(e-a)x 2^ -bx 2ax^ +bx k +cM /-2X A +X 22即 c-x k f =(e —a)x k 2于是,H 2 [ “ | 2_心「W" a " aj b 一 ex. (e 一 一 bx 、 叮+——心+ ----------------------- =---- "a a・・・'HO ・・・方程组有唯一解b = 0上=2a1 x 22 -例3:已知数列{©}中宀=2如=——求数列{心}的通项.2®其实不动点法除了解决上而所考虑的求数列通项的几种情形,还可以解决如下问题:42 t例4:已知q >0,®工1且匕+i[ *,求数列{心}的通项.仇(勺「+1).4 x 2]解:作函数为/« =「二匸 懈方程f(x) = /得f(x)的不动点为4x( J T +1)X] =—1,勺=1,勺=-^-/,x 4 = $/•.取/? = l,q =—1,作如下代换:勺,+6%2+]r' *43分勺田+1 = 4。
用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为p 是)(x f 的不动点pb ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列.定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则qa pa k q a p a n n n n --⋅=----11(这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k pa p a n n +-=--111(这里da ck +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx (1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qca pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令d a c k +=2,则k pa p a n n +-=--111例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式定理3:设函数)0,0()(2≠≠+++=e a f ex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: k x 是)(x f 的两个不动点∴f ex c bx ax x k k kk +++=2即k k k bx x a e f x c --=-2)()2,1(=k ∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x a ex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b 1121x x 0≠∴方程组有唯一解ae b 2,0==例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题:例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解:作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换:42342342242241111(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n 已知曲线22:20(1,2,)n C x nx y n -+== .从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521nn nxx x x x y -⋅⋅⋅⋅<< 设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式;(3)若1p =,14q =,求{}n x 的前n 项和n S .已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()(12)()n n n n f a a a n f a +=-=' ,,.(1)求αβ,的值;(2)证明:对任意的正整数n ,都有n a α>;(3)记ln(12)n n n a b n a βα-==- ,,,求数列{}n b 的前n 项和nS 13陕西文21.(本小题满分12分)已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
巧用不动点法求数列的通项公式不动点法是解决函数方程和递归式问题的一种有效方法。
在数学中,如果一个函数f(x) 恰好等于x,那么x 就是这个函数的不动点。
巧用不动点法,我们也可以用来求解数列的通项公式。
通过这种方法,我们可以更加轻松地理解与求解数列的通项公式。
一、不动点法的概念及定理:不动点法早在古希腊数学家Euclid时代就已经被使用,但真正的发展是在20世纪50年代,康托尔和斯考特对其进行了重要的发展。
不动点法主要应用于非线性方程及函数不动点领域。
在数学中,一个函数的不动点是指一个值x,满足f(x) = x。
这个概念的重要性体现在不动点存在定理上。
这个定理告诉我们,任何连续、紧、单调的函数都有一个不动点。
这个定理的应用范围极广,包括了不少基本的方程难题。
二、利用不动点法求解数列的通项公式的思路:利用不动点法求解数列的通项公式,我们首先要找到数列中存在的不动点。
对于一个数列{a1, a2, a3, ...} ,我们可以对其进行递推求解,得到{a1, a2, a3, ...} 的确切关系式(称为递推式),然后你可以进行转化以便寻找不动点。
我们要利用某些方法来确定这个递推式的不动点,即一个数x等于这个数列中每一项。
(即满足a(x)=x)。
最终我们可以得到一个只含有x的方程,此方程就是这个数列的通项公式。
三、一个示例:举一个最简单的例子。
有一个数列{1, 2, 3, 4, 5, ...},这个数列的递推式为an = an-1 + 1,即每一项是前一项加1。
我们尝试用不动点法来计算这个数列的通项公式。
首先对这个数列进行递推,我们可以得到an = a1 + (n - 1),即第n项等于首项加上公差乘以n-1。
到这里我们已经成功地将递推式从" an = an-1 + 1 " 修改为" an = a1 + (n-1) "。
接下来,我们要寻找这个递推式的不动点。
将an+1 = a1 + n 代入an = a1 + (n - 1) 中,可以得到a1 + n = a1 + (n - 1) + 1 ,消去a1 ,我们可以得到n =n。
不动点法求数列通项原理
不动点法是一种常用的数学方法,它可以用来求解数列的通项。
它的原理就是让数列经过一次变换后,重复多次变换直到满足不动点的性质,从而求得通项。
不动点法的具体推导步骤如下:
(1)确定数列元素
将通项表示为n或x的某个多项式表达式。
(2)计算
根据多项式的定义,计算出x0(即第一项)、x1(即第二项)、x2(即第三项)、 (x)
(即第n项)。
(3)准备不动点
根据多项式的定义,将第n+1项用元素xn、xn-1、xn-2、…、x1、x0来表示,再把元素转式到xn表达式,得到不动点。
(4)寻找不动点
通过次方程求解找到不动点。
(5)求解多项式的值
当找到不动点后,将该不动点转移到x1中,通过次方程求出通项的多项式的表达式,得到数列的通项。
以上就是不动点法的基本原理。
它的优点是能够有效地将数列简化,并以有规律的数列表达式来求解数列的通项,比直接利用原数列推导方式更简单。
不动点法是一种推理方式,它既可以用来求解数列的通项,也可以用来求解其他复杂数学问题。
它可以将复杂问题简化,提高求解的效率,这使得不动点法广泛运用于科学技术领域。