牛顿运动定律的两类问题
- 格式:doc
- 大小:407.50 KB
- 文档页数:5
动力学的两类基本问题 ◎知识梳理 应用牛顿运动定律求解的问题主要有两类:一类是已知受力情况求运动情况;另一类是已知运动情况求受力情况.在这两类问题中,加速度是联系力和运动的桥梁,受力分析是解决问题的关键.◎例题评析【例11】 质量为m =2 kg 的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F 1=6 N 的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F 2μ=0.1,取g =10 m/s 2,问:(1)木块在奇数秒和偶数秒内各做什么运动?(2)经过多长时间,木块位移的大小等于40.25 m?【分析与解答】:以木块为研究对象,它在竖直方向受力平衡,水平方向仅受推力F 1(或F 2)和摩擦力F f 的作用.由牛顿第二定律可判断出木块在奇数秒内和偶数秒内的运动,结合运动学公式,即可求出运动时间.(1)木块在奇数秒内的加速度为a 1=m F F f -1=m mg F -μ1=21021.06⨯⨯- m/s 2=2 m/s 2 木块在偶数秒内的加速度为a 2=m F F f -2=m mg F -μ2=21021.02⨯⨯- m/s 2=0 所以,木块在奇数秒内做a =a 1=2 m/s 2的匀加速直线运动,在偶数秒内做匀速直线运动.(2)在第1 s 内木块向右的位移为s 1=21at 2=21×2×12 m=1 m 至第1 s 末木块的速度v 1=at =2×1 m/s=2 m/s在第2 s 内,木块以第1 s 末的速度向右做匀速运动,在第2 s 内木块的位移为 s 2=v 1t =2×1 m=2 m至第2 s 末木块的速度v 2=v 1=2 m/s在第3 s 内,木块向右做初速度等于2 m/s 的匀加速运动,在第3 s 内的位移为s 3=v 2t +21at 2=2×1 m+21×2×12 m=3 m 至第3 s 末木块的速度v 3=v 2+at =2 m/s+2×1 m/s=4 m/s在第4 s 内,木块以第3 s 末的速度向右做匀速运动,在第4 s 内木块的位移为s 4=v 2t =4×1 m=4 m至第4 s 末木块的速度v 4=v 2=4 m/s……由此可见,从第1 s 起,连续各秒内木块的位移是从1开始的一个自然数列.因此,在n s 内的总位移为s n =1+2+3+…+n =21)(+n n 当s n =40.25 m 时,n 的值为8<nn =8,则8 s 内木块的位移共为s 8=2188)(+ m=36 m 至第8 s 末,木块的速度为v 8=8 m/s.设第8 s 后,木块还需向右运动的时间为t x ,对应的位移为s x =40.25 m -36 m=4.25 m ,由s x =v 8t x +21at x 2,即4.25=8t x +21×2t x 2 解得t x =0.5 s所以,木块位移大小等于40.25 m 时,需运动的时间T =8 s+0.5 s=8.5 s.[点评]:(1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定律求加速度,再根据运动规律求运动情况.(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.【例12】 如图所示,在倾角θ=37°的足够长的固定的斜面上,有一质量m =1 kg 的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细线的拉力F =9.6 N的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s.(sin37°=0.6,g 取10 m/s 2)【分析与解答】:本题为典型的已知物体受力求物体运动情况的动力学问题,物体运动过程较为复杂,应分阶段进行过程分析,并找出各过程的相关量,从而将各过程有机地串接在一起.第一阶段:在最初2 s 内,物体在F =9.6 N 拉力作用下,从静止开始沿斜面做匀加速运动,据受力分析图3-2-4可知:沿斜面方向:F -mg sin θ-F f =ma 1沿垂直斜面方向:F N =mg cos θ且F f =μF N由①②③得:a 1=mmg mg F θμθcos sin --=2 m/s 2 2 s 末绳断时瞬时速度v 1=a 1t 1=4 m/s.第二阶段:从撤去F 到物体继续沿斜面向上运动到达速度为零的过程,设加速度为a 2, 则a 2=mmg mg )(θμθcos sin +-=-7.6 m/s 2 设从断绳到物体到达最高点所需时间为t 2据运动学公式v 2=v 1+a 2t 2所以t 2=210a v -=0.53 s 第三阶段:物体从最高点沿斜面下滑,在第三阶段物体加速度为a 3,所需时间为t 3.由牛顿第二定律可知:a 3=g sin θ-μg cos θ=4.4 m/s 2,速度达到v 3=22 m/s ,所需时间t 3=330a v -=5 s 综上所述:从绳断到速度为22 m/s 所经历的总时间t =t 2+t 3=0.53 s+5 s=5.53 s.【例13】 如图 所示,光滑水平面上静止放着长L =1.6 m 、质量为Mm =1 kg 的小物体放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F .(1)施力F 后,要想把木板从物体m 的下方抽出来,求力F 的大小应满足的条件;(2)如果所施力F =10 N ,为了把木板从m 的下方抽出来,此力的作用时间不得少于多少?(g 取10 m/s 2)【分析与解答】:(1)力F 拉木板运动过程:对木块:μmg =maa =μga =1 m/s 2对木板:F -μmg =Ma 1a 1=Mmg F μ- 只要a 1>a 就能抽出木板,即F >μ(M +m )g 所以F >4 N.(2)当F =10 N ,设拉力作用的最少时间为t 1,加速度为a 1,撤去拉力后木板运动时间为t 2,加速度为a 2,那么:a 1=M mg F μ-=3 m/s 2a 2=M mg μ=31 m/s2 木板从木块下穿出时:木块的速度:v =a (t 1+t 2)木块的位移:s =21a (t 1+t 2)2 木板的速度:v 木板=a 1t 1-a 2t 2木板的位移:s 木板=21a 1t 12+a 1t 1t 2-21a 2t 22 木板刚好从木块下穿出应满足:v 木板=vs 木板-s =L可解得:t 1=0.8 s【例14】 如图所示,传输带与水平面间的倾角为θ=37°,皮带以10 m/s 的速率运行,在传输带上端AA 到B 的长度为16 m ,则物体从A 运动到B 的时间为多少?【分析与解答】:首先判定μ与tan θ的大小关系,μ=0.5,tan θ=0.75,所以物体一定沿传输带对地下滑,不可能对地上滑或对地相对静止.其次皮带运行速度方向未知,而皮带运行速度方向影响物体所受摩擦力方向,所以应分别讨论.当皮带的上表面以10 m/s 的速度向下运行时,刚放上的物体相对皮带有向上的相对速度,物体所受滑动摩擦力方向沿斜坡向下(如图所示),该阶段物体对地加速度a 1=mmg mg θμθcos sin +=10 m/s 2 方向沿斜坡向下物体赶上皮带对地速度需时间t 1=1a v =1 s 在t 1 s 内物体沿斜坡对地位移 s 1=21a 1t 12=5 m 当物体速度超过皮带运行速度时物体所受滑动摩擦力沿斜面向上,物体对地加速度 a 2=mmg mg θμθcos sin -=2 m/s 2 物体以2 m/s 2加速度运行剩下的11 m 位移需时间t 2则s 2=vt 2+21a 2t 22 即11=10t 2+21×2t 22 t 2=1 s (t 2′=-11 s 舍去)所需总时间t =t 1+t 2=2 sa 3则a 3=mmg mg θμθcos sin -=2 m/s 2 物体从传输带顶滑到底所需时间为t '则s =21a 3t '2t '=32a s =2162⨯ s=4 s. [点评]:本题中物体在本身运动的传送带上的运动,因传输带运动方向的双向性而带来解答结果的多重性.物体所受滑动摩擦力的方向与物体相对于传输带的相对速度方向相反,而对物体进行动力学运算时,物体位移、速度、加速度则均需取地面为参考系.◎能力训练41.如图所示,一根轻弹簧的一端系着一个物体,手拉弹簧的另一端,使弹簧和物体一起在光滑水平面上向右做匀加速运动,当手突然停止运动后的短时间内,物体可能2.放在光滑水平面上的物体受三个平行于水平面的共点力作用而处于静止状态,已知F2垂直于F3.若三个力中去掉F1,物体产生的加速度为2.5 m/s2;若去掉F2,物体产生的加速度为1.5 m/s2;若去掉F3,则物体的加速度大小为A.1.5 m/s2B.2.0 m/s2C.2.5 m/s2D.4.0 m/s23.小磁铁A重10 N,吸在一块水平放置的固定铁板BA拉下来,至少要用15 N的力,若A、B间的动摩擦因数为0.3,现用5 N的水平力推A时,A的加速度大小是_______m/s2.(g取10 m/s2)v1F1,汽车整个运动过程所受阻力恒为F2(大小不变),则F1∶F2为∶∶1∶∶45.机车牵引力一定,在平直轨道上以a1=1 m/s2的加速度行驶,因若干节车厢脱钩,加速度变为a2=2 m/s2,设所受阻力为车重的0.1倍,则脱落车厢的质量与原机车总质量之比等于_______.6.据报道,1989年在美国加利福尼亚州发生的6.9级地震,中断了该地尼米兹高速公路的一段,致使公路上高速行驶的约200辆汽车发生了重大的交通事故,车里的人大部分当即死亡,只有部分系安全带的人幸免.假设汽车高速行驶的速度达到108 km/h,乘客的质量为60 kg,当汽车遇到紧急情况时,在2 s内停下来,试通过计算说明系安全带的必要性.2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4 m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小.。
用牛顿运动定律解决问题(一)组题人:一、两类动力学问题(1)已知物体的受力情况求物体的运动情况根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
(2)已知物体的运动情况求物体的受力情况根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:(3)在匀变速直线运动的公式中有五个物理量,其中有四个矢量v0、v1、a、s,一个标量t。
在动力学公式中有三个物理量,其中有两个矢量F、a,一个标量m。
运动学和动力学中公共的物理量是加速度a。
在处理力和运动的两类基本问题时,不论由力确定运动还是由运动确定力,关键在于加速度a,a是联结运动学公式和牛顿第二定律的桥梁。
二、应用牛顿第二定律解题的一般步骤:1确定研究对象:依据题意正确选取研究对象2分析:对研究对象进行受力情况和运动情况的分析,画出受力示意图和运动情景图3列方程:选取正方向,通常选加速度的方向为正方向。
方向与正方向相同的力为正值,方向与正方向相反的力为负值,建立方程4解方程:用国际单位制,解的过程要清楚,写出方程式和相应的文字说明,必要时对结果进行讨论三、整体法与隔离法处理连接体问题1.连接体问题所谓连接体就是指多个相互关联的物体,它们一般具有相同的运动情况(有相同的速度、加速度),如:几个物体或叠放在一起,或并排挤放在一起,或用绳子、细杆联系在一起的物体组(又叫物体系).2.隔离法与整体法(1)隔离法:在求解系统内物体间的相互作用力时,从研究的方便性出发,将物体系统中的某部分分隔出来,单独研究的方法.(2)整体法:整个系统或系统中的几个物体有共同的加速度,且不涉及相互作用时,将其作为一个整体研究的方法.3.对连接体的一般处理思路(1)先隔离,后整体.(2)先整体,后隔离典例剖析典例一、由受力情况确定运动情况【例1】将质量为0.5 kg的小球以14 m/s的初速度竖直上抛,运动中球受到的空气阻力大小恒为2.1 N,则球能上升的最大高度是多少?解析通过对小球受力分析求出其上升的加速度及上升的最大高度.以小球为研究对象,受力分析如右图所示.在应用牛顿第二定律时通常默认合力方向为正方向,题目中求得的加速度为正值,而在运动学公式中一般默认初速度方向为正方向,因而代入公式时由于加速度方向与初速度方向相反而代入负值.根据牛顿第二定律得mg +Ff =ma ,a =mg +Ff m=0.5×9.8+2.10.5m/s2=14m/s2上升至最大高度时末速度为0,由运动学公式0-v20=2ax 得最大高度x =02-v202a =0-1422×(-14) m =7 m.答案 7 m 1.受力情况决定了运动的性质,物体具体的运动状况由所受合外力决定,同时还与物体运动的初始条件有关. 2.受力情况决定了加速度,但与速度没有任何关系.【例2】如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m =1kg 的物体,物体与斜面间动摩擦因数μ=0.25.现用轻细绳将物体由静止沿斜面向上拉动,拉力F =10N ,方向平行斜面向上,经时间t =4s 绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(sin 37°=0.60,cos 37°=0.80,g =10 m/s2)解析 (1)物体受拉力向上运动过程中,受拉力F 、斜面的支持力FN 、重力mg 和摩擦力Ff ,如右图所示,设物体向上运动的加速度为a1,根据牛顿第二定律有:F-mgsin θ-Ff=ma1因Ff=μFN ,FN=mgcos θ 解得a1=2 m/s2t=4 s 时物体的速度大小为v1=a1t=8 m/s.(2)绳断时物体距斜面底端的位移m t a x 1621211==绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,受力如上图所示,则根据牛顿第二定律,对物体沿斜面向上运动的过程有:mgsin θ+Ff=ma2 Ff=μmgcos θ 解得a2=8 m/s2物体做减速运动的时间s t a v1212==减速运动的位移m t a x 4222212==此后物体将沿着斜面匀加速下滑,设物体下滑的加速度为a3,受力如右图所示,根据牛顿第二定律对物体加速下滑的过程有:mgsin θ-Ff=ma3 Ff=μmgcos θ解得a3=4 m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移:2332121t a x x =+解得s t 2.3103≈= 所以物体返回到斜面底端的时间为t 总=t2+t3=4.2 s典例二、由运动情况确定受力情况【例3】民用航空客机的机舱除通常的舱门外还设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊组成的斜面,机舱中的乘客就可以沿斜面迅速滑行到地面上来.若某型号的客机紧急出口离地面高度为4m ,构成斜面的气囊长度为5 m .要求紧急疏散时乘客从气囊上由静止下滑到达地面的时间不超过2 s ,则(1)乘客在气囊上下滑的加速度至少为多大?(2)气囊和下滑乘客间的动摩擦因数不得超过多少?(g =10 m/s2) 解析(1)设h =4 m ,L =5 m ,t =2 s ,斜面倾角为θ,则Lh=θsin .乘客在气囊上下滑过程,由221at L = 解得: a =2.5 m/s2(2)乘客下滑过程受力分析如右图则有:FN=mgcos θ ,Ff =μFN = μmgcos θ 由牛顿第二定律可得:mgsin θ- Ff=ma代入数据解得:1211=μ规律总结:物体的加速度由物体所受的合力决定,两者大小、方向及变化一一对应;速度大小的变化情况取决于加速度的方向与速度方向的关系,当两者同向时,速度变大,当两者反向时,速度变小。
2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。
(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。
2、由基本单位和导出单位一起组成了单位制。
选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。
【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。
高一物理必修1第四章牛顿运动定律应用动力学的两类基本问题专题专项训练习题集【知识点梳理】1.力和运动关系的两类基本问题包括已知物体的受力情况确定物体的运动情况和已知物体的运动情况确定物体的受力情况。
2.加速度a是联系力和运动的桥梁,牛顿第二定律表达式(F=ma)和匀变速直线运动公式(v=v0+at,x=v0t+at2/2,v2-v02=2ax等)中,均包含有一个共同的物理量—加速度a,因此此类问题的解题方法是根据题目涉及的物理量从匀变速直线运动的公式中选择一个合适的公式与牛顿第二定律的表达式组成方程组求解即可。
即此方法简称为照图填空(分析物体的受力,画出物体的受力图,按照物体的受力图填写牛顿第二定律表达式F=ma中合力的空),按量选择(根据运动涉及的物理量选择一个匀变速直线运动公式)。
3.此类问题的题型分为物体运动的一个过程简称为单程和物体运动的多个过程简称为多程,对于解决多程的问题时,每个过程都需要组一个方程组,同时一定要联系多个过程中间时刻的速度。
【典题训练】1.一架救灾直升机从距离地面16m的高处让一箱物资由静止开始竖直落下,经2s物资落地,已知物资的质量为10kg,它下落过程中所受空气阻力可认为大小不变。
求空气阻力的大小。
(取g=10m/s2)2.质量m=2kg的物体静止在水平面上,物体与水平面间的动摩擦因数为0.25,现在对物体施加一个大小F=20N、与水平方向夹角θ=37°角的斜向上的拉力。
已知sin37°=0.6,cos37°=0.8,取g=10m/s2,求物体在拉力作用下4s内通过的位移大小。
3.如图所示,物体质量m=2kg,受到与水平方向成θ=37°角斜向下、大小F=20N的推力作用,在水平面上做匀速直线运动。
(g取10m/s2,sin37°=0.6,cos37°=0.8)求:(1)物体与地面间动摩擦因素(2)若改用同样大小的力F沿水平方向推动物体,物体的加速度多大?(3)若改用同样大小的力F沿与水平方向成370斜向上拉动物体,物体的加速度多大?4.如图所示,一质量为m的物体放在动摩擦因数为µ粗糙的水平地面上,第一次用与水平面成θ角斜向上的拉力F1的作用下由静止开始向右运动,第二次用与水平面也成θ角斜向下的推力F2的作用下由静止开始向右运动。
牛顿运动定律的两类问题: 【例1】总质量为M=20kg 的气球,从地面以5m/s 的速度匀速上升,第6s 末,从气球上落下一质量m=4kg 的重物,物体着地时,气球离地面的高度就是多少?(g=10m/s 2,不计空气阻力,设气球浮力不变).(56、25m)
【例2】如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L=20m 。
用大小为30N,沿水平方向的外力拉此物体,经02t s =拉
至B 处。
(已知cos370.8︒=, 。
取210/g m s =)
(1)求物体与地面间的动摩擦因数μ;(0、5)
(2)用大小为30N,与水平方向成37°的力斜向上拉此物体,使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t 。
(1、03)
【例3】风洞实验室中可产生水平方向的,大小可调节的风力。
现将一套有小球的细直杆放入风洞实验室。
小球孔径略大于细杆直径。
如图21所示。
(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小球所受的风力为小球所受重力的0.5倍。
求小球与杆间的动摩擦因数。
(2)保持小球所受风力不变,使杆与水平方向间夹角为370并固定,则小球从静止出发在细杆上滑下距离S 所需时间为多少?(sin370 = 0.6,cos370 = 0.8)
练习1 如图所示,放在水平面上的物体质量为kg 2,受到一个斜向下的与水平方向成︒30角的推力N F 10=的作用,从静止开始运动。
已知物体与水平面间的摩擦因数为1.0=μ,取10=g 2/s m 。
(1)求物体s 5末速度与s 5内发生的位移。
(15、4m/s,38、5m)
(2)若s 5末撤去推力,物体在水平面上运动的总位移就是多少米?(157、1m)
°
F
练习2 一辆载重汽车,总质量就是t 8,从静止起开上一山坡,山坡的坡度为02.0(每前进m 100长高m 2)若汽车就是匀加速行驶,经m 100后速度达到h km /18,摩擦阻力就是车重的03.0倍,求汽车上坡时牵引力多大?(取2/10s m g =)
x
F θmg F f
θ
y
F N
图F
G F f
F G F F N
F f1
解:
取汽车为研究对象,受力如图示把重力分解为x 方向,y 方向的分力。
⎪⎪⎩⎪⎪⎨⎧==--=-)3(2)2(sin )1(0cos 2as
v ma
mg F F mg F t f N θθ 由(3)得s
v a t 22
= 代入(2)且mg F f 03.0=
上g a 02.100上上g a 04.2200上上下落时 下ma f mg =-
下ma mg =98.0 g a 98.0=下
上下h h = 22
1下下下t a h = 下上下a h t 2=下上a a v 222
0⨯=下上a a v 20=g g v 98.002.12
0⨯=g v g v 0098.002.11=⨯⋅=
下上总t t t +=g
v g v g v g v 000098.102.102.202.1==+= 【模拟试题】(答题时间:40分钟)
4、 声音在空气中的传播速度v 与空气密度ρ,压强p 有关,下列关于空气中声速的表达式中正确的就是( )(k 就是无单位常数)。
2/5.1s m ;若去掉3F 则物体产生的加速度大小为( )
A 、 2/5.1s m
B 、 2/0.2s m
C 、 2/5.2s m
D 、 2
/0.4s m
10、 一物块从倾角为θ,长为S 的斜面的顶端由静止开始下滑,物块与斜面间的动摩擦因数为μ,求物块滑到斜面底端所需时间。
11、(1)
mg v m M )(- (2)v m M 12、 θθμθcos )cos (sin -mg 向左
13、(1)mg ma F - (2)ma
F mg -arctan
14 14、N。