2.1.2指数函数及其性质(二)
- 格式:ppt
- 大小:7.05 MB
- 文档页数:77
2.1.2 指数函数及其性质(一)一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质,本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。
二、问题引领:1、指数函数的概念、图象和性质2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与0、1的大小关系为01a b c d <<<<<。
三、典例剖析:例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。
分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。
根据函数图象过点()2,π这一条件,可以求得底数a 的值。
解: ()x a x f =的图象经过点()2,π,()2f π∴= 即2a π=,解得12a π=()2x f x π∴=,即:()()()1012101,12f f f ππππ-====-==。
点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。
例题2:1、设1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,求,,a b a a a b 的大小关系。
2、 比较23540.5,1.2,1的大小。
分析:利用指数函数的单调性和特殊点比较大小。
解:1、因为函数13x y ⎛⎫= ⎪⎝⎭在R 上为减函数,又由1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,所以得:01a b <<<,因为当01a <<时,函数xy a =为减函数,又a b <,所以a b a a >,因为函数x y a =与xy b =在R 上同为减函数且当0x >时,随着x 的增大,函数x y a =比函数xy b =减小的快,所以a aa b <,即b a aa ab <<。
2.1.2指数函数及其性质的应用(2)班级: 姓名: 编者:阮娟萍 高一数学备课组 问题引航1.能熟练说出指数函数的性质。
2.会求简单复合函数的性质。
3.会利用指数函数的性质比较幂值的大小。
自主探究1.函数)1,0(≠>=a a y a x 的定义域是 ,值域 . 2.函数)1,0(≠>=a a y a x .当a>1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1;当0<a<1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1.3.函数)1,0(≠>=a a y a x 是 函数(就奇偶性填). 互动探究1.函数y=a x+2-3(a >0且a ≠1)必过定点________.2.函数y =a |x|(0<a <1)的图像是( )3.比较下列各题中两个值的大小:(1) 35.27.1 ,7.1 (2) 2.01.08.0 ,8.0--(3) 1.33.09.0 ,7.1 (4) 比较2131a a 与的大小,)1,0(≠>a a 且当堂检测 1.函数2121x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数 2.函数21x y =的单调递减区间是( )A.(-∞,+∞) B.(-∞,0)C.(0,+∞) D.(-∞,0)和(0,+∞)3.若函数x a y )12(+=是减函数,则a 的取值范围是__________________.4.函数y=4x 与函数y=4-x 的图像关于________对称.*5.已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07.0===?自我评价你对本节课知识掌握的如何( )A.非常好B.较好C.一般D.较差E.很差。
指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
2.1.2 指数函数及其性质(二)自主学习学习目标1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.基础自测1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2. 指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1题型探究类型一 比较大小问题【例1】 比较下列各题中两个值的大小:(1)3π与33.14; (2)0.99-1.01与0.99-1.11; (3)1.40.1与0.90.3.规律方法 比较两指数大小时,若底数相同,则先构造出该底数的指数函数,然后利用单调性比较;若底数不同,则考虑选择中间量,通常选择“1”作为中间量.变式迁移1 比较⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412的大小.类型二 解简单的指数不等式【例2】 如果a 2x +1≤a x -5(a >0,且a ≠1),求x 的取值范围.规律方法 解a f (x )>a g (x )(a >0且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为变式迁移2 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是____________.类型三 指数函数的最值问题【例3】 (1)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值; (2)如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.规律方法 指数函数y =a x (a >1)为单调增函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最小值a s ;当x =t 时,函数有最大值a t .指数函数y =a x (0<a <1)为单调减函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最大值a s ;当x =t 时,函数有最小值a t .变式迁移3 (1)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值与最小值之和为6,求a 的值;(2)0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.课堂小结1.指数函数的定义及图象是本节的关键.通过图象可以求函数的值域及单调区间.2.利用指数函数的性质可以比较两个指数幂的大小(1)当两个正数指数幂的底数相同时,直接利用指数函数的单调性比较大小.(2)当两个正数指数幂的底数不同而指数相同时,可利用两个指数函数的图象比较它们的大小.(3)当两个正数指数幂的底数不同而且指数也不相同时,可考虑能否利用“媒介”数来比较它们的大小.3.通过本节的学习,进一步体会分类讨论思想在解题中的应用.当堂检测一、选择题1.下图分别是函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,a ,b ,c ,d 分别是四数2,43,310,15中的一个,则相应的a ,b ,c ,d 应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43,2 2.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a3.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A .(1,+∞) B .(12,+∞) C .(-∞,1) D .(-∞,12)4.设13<(13)b <(13)a <1,则( ) A .a a <a b <b a B .a a <b a <a b C .a b <a a <b a D .a b <b a <a a5.若函数f (x )=⎩⎪⎨⎪⎧ a x , x >14-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)二、填空题6.当x ∈[-1,1]时,函数f (x )=3x -2的值域是____________.7.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是____________.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是__________.三、解答题9.解不等式a x +5<a 4x -1 (a >0,且a ≠1).10.已知函数f (x )=⎝⎛⎭⎫12x -1+12·x 3. (1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.【参考答案】基础自测1.C 2.C 3.A 4.C题型探究【例1】 解 (1)构造函数y =3x .∵a =3>1,∴y =3x 在(-∞,+∞)上是增函数.∵π>3.14,∴3π>33.14.(2)构造函数y =0.99x .∵0<a =0.99<1,∴y =0.99x 在(-∞,+∞)上是减函数.∵-1.01>-1.11,∴0.99-1.01<0.99-1.11.(3)分别构造函数y =1.4x 与y =0.9x .∵1.4>1,0<0.9<1,∴y =1.4x 与y =0.9x在(-∞,+∞)上分别为增函数和减函数.∵0.1>0,∴1.40.1>1.40=1.∵0.3>0,∴0.90.3<0.90=1,∴1.40.1>1>0.90.3,∴1.40.1>0.90.3.变式迁移1 解 将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412分成如下三类:(1)负数⎝⎛⎭⎫-233; (2)大于0小于1的数⎝⎛⎭⎫3412;(3)大于1的数⎝⎛⎭⎫4313,223.∵⎝⎛⎭⎫4313<413,而413=223, ∴⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 【例2】 解 (1)当0<a <1时,由于a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6.(2)当a >1时,由于a 2x +1≤a x -5,∴2x +1≤x -5,解得x ≤-6.综上所述,x 的取值范围是:当0<a <1时,x ≥-6;当a >1时,x ≤-6.变式迁移2 (12,+∞) 解析 a 2+a +2=(a +12)2+74>1. ∴y =(a 2+a +2)x 在R 上是增函数.∴x >1-x ,解得x >12. ∴x 的取值范围是(12,+∞). 【例3】 解 (1)①若a >1,则f (x )在[1,2]上递增,最大值为a 2,最小值为a .∴a 2-a =a 2,即a =32或a =0(舍去). ②若0<a <1,则f (x )在[1,2]上递减,最大值为a ,最小值为a 2.∴a -a 2=a 2,即a =12或a =0(舍去), 综上所述,所求a 的值为12或32. (2)设t =a x ,则原函数可化为y =(t +1)2-2,对称轴为t =-1.①若a >1,∵x ∈[-1,1],∵t =a x 在[-1,1]上递增,∴0<1a≤t ≤a ; ∴y =(t +1)2-2当t ∈[1a,a ]时递增. 故当t =a 时,y max =a 2+2a -1.由a 2+2a -1=14,解得a =3或a =-5(舍去,∵a >1).②若0<a <1,t =a x 在[-1,1]上递减,t ∈[a ,1a], y max =a -2+2a -1-1=14,解得a =13或a =-15(舍去). 综上,可得a =13或3. 变式迁移3 解 (1)∵f (x )=a x 在[1,2]上是单调函数,∴f (x )在1或2时取得最值.∴a +a 2=6,解得a =2或a =-3,∵a >0,∴a =2.(2)y =12·22x -3·2x +5=12(22x -6·2x )+5 =12(2x -3)2+12. ∵x ∈[0,2],1≤2x ≤4,∴当2x =3时,y 最小值=12, 当2x =1时,y 最大值=52. 当堂检侧1.C2.B 【解析】c <0,b =53>3,1<a <3,∴b >a >c .3.B 【解析】函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 4.C 【解析】由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .5.D 【解析】因为f (x )在R 上是增函数,故结合图象知 ⎩⎪⎨⎪⎧ a >14-a 2>04-a 2+2≤a,解得4≤a <8.6.⎣⎡⎦⎤-53,1 7.c >a >b 【解析】y =0.8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.8.(-∞,-1)【解析】∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12得x ∈∅; 当x =0时,f (0)=0<-12不成立;因此当x <0时,由2x -1<-12得x <-1.综上可知x ∈(-∞,-1).9.解 当a >1时,原不等式可变为x +5<4x -1.解得x >2;当0<a <1时,原不等式可变为x +5>4x -1.解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).10.(1)解 由2x -1≠0,得x ≠0.∴函数的定义域为(-∞,0)∪(0,+∞).(2)解 由于函数f (x )的定义域关于原点对称,f (-x )=⎝⎛⎭⎫12-x -1+12·(-x )3 =-⎝⎛⎭⎫2x 1-2x +12x 3=⎝⎛⎭⎫12x -1+12·x 3 =f (x ),所以f (x )为偶函数.(3)证明 当x >0时,12x -1>0,x 3>0, ∴f (x )>0,又∵f (x )为偶函数,∴x <0时,f (x )>0,综上所述,对于定义域内的任意x 都有f (x )>0.。
§2.1.2 指数函数及其性质【入门向导】指数函数图象诗歌鉴赏多个图象像束花,(0,1)这点把它扎. 撇增捺减无例外,底互倒时纵轴夹. x =1为判底线,交点y 标看小大. 重视数形结合法,横轴上面图象察.此诗每行字数相等,且押韵,读起来倍感顺口,内容简洁明了,使读者在无形之中把指数函数图象的特点牢记于心.如图所示的就是上面举的指数函数的图象.不难看出,它们就像一束花.每个指数函数的图象都经过(0,1)这点,所以说“(0,1)这点把它扎”就顺理成章了.对于指数函数的图象来说,“撇增捺减”就绝对是事实.当a >1时,从左往右看指数函数y =a x 的图象是上升的,类似于汉字中的撇,这时,指数函数y =a x 是增函数;当0<a <1时,从左往右看指数函数y =a x 的图象是下降的,类似于汉字的捺,这时,指数函数y =a x 是减函数.由y =2x 和y =(12)x 的图象,可以看出它们是关于y 轴对称的.而底数2与12是倒数,所以自然而然地得到“底互倒时纵轴夹”,这也可以从y =3x 和y =(13)x 的图象中得到充分的体现.解读指数函数图象的应用 一、要点扫描学习指数函数要记住图象,理解图象,由图象能说出它的性质.关键在于弄清楚底数a 对于函数值变化的影响,对于a >1与0<a <1时函数值变化的情况不同,不能混淆,为此必须利用图象,数形结合.二、指数函数的图象及性质 a >10<a <1图象图 象图象分布在一、二象限,与y 轴相交,落在x 轴的上方都过点(0,1)特 征第一象限的点的纵坐标都大于1; 第二象限的点的纵坐标都大于0且小于1第一象限的点的纵坐标都大于0且小于1; 第二象限的点的纵坐标都大于1从左向右图象逐渐上升从左向右图象逐渐下降性 质定义域为R值域为(0,+∞)图象过定点(0,1),即x =0时,y =1x >0⇔y >1; x <0⇔0<y <1 x >0⇔0<y <1; x <0⇔y >1 在R 上是增函数在R 上是减函数三、图象应用 1.比较大小例1 若a <0,则2a ,(12)a,0.2a 的大小顺序是________.解析 分别作出函数y =2x ,y =(12)x 和y =0.2x 的图象,如图所示,从图象可以看出,当a <0时,有0.2a >(12)a >2a .答案 0.2a >(12)a >2a点评 本题涉及三个指数函数图象,因此在作图时,一定要抓住图象的特征点(0,1)或特征线y =1及指数函数图象的走向正确作图:当a >1时,底数a 越大图象越陡;当0<a <1时,底数a 越小图象越陡.2.求解方程根的问题例2 确定方程2x =-x 2+2的根的个数.解 根据方程的两端分别设函数f (x )=2x ,g (x )=-x 2+2.在同一坐标系中画出函数f (x )=2x 与g (x )=-x 2+2的图象,如图所示. 由图可以发现,二者仅有两个交点,所以方程2x =-x 2+2的根的个数为2.点评 利用指数函数的图象确定方程的根的关键是要正确作出方程两端对应的函数的图象,遇到含有参数的方程时,还要注意分类讨论.3.求解参数问题例3 若直线y =2a 与函数y =|a x -1|+1(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.解析 当a >1时,通过平移变换和翻折变换可得如图1所示的图象,则由图可知1<2a <2, 即12<a <1与a >1矛盾.当0<a <1时,同样通过平移变换和翻折变换可得如图2所示的图象, 则由图可知1<2a <2, 即12<a <1,即为所求. 答案 12<a <1点评 (1)解答此题时要注意底数的不确定性,因此作图时要注意讨论;(2)根据条件确定直线y =2a 与函数的图象位置关系,然后由位置关系建立不等式,进而求得结果,其处理的过程体现了数形结合的思想.指数函数定义学习中的两个注意点定义:函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R . 注意点1:为什么要规定a >0且a ≠1呢? (1)若a =0,则当x >0时,a x =0; 当x ≤0时,a x 无意义.(2)若a <0,则对于x 的某些数值,可使a x 无意义.如(-2)x ,这时对于x =14,x =12,…在实数范围内函数值不存在.(3)若a =1,则对于任意x ∈R ,a x =1是一个常量,没有研究的必要性.为了避免上述各种情况,所以规定a >0且a ≠1.在规定以后,对于任意x ∈R ,a x 都有意义,且a x >0.因此指数函数的定义域是R ,值域是(0,+∞).注意点2:函数y =3·(12)x 是指数函数吗?根据定义,指数函数的解析式y =a x 中,a x 的系数是1.有些函数貌似指数函数,实际上却不是,如y =a x +k (a >0且a ≠1,k ∈Z );有些函数看起来不像指数函数,实际上却是,如y =a -x (a >0且a ≠1),因为它可以化为y =(1a )x ,其中1a >0,且1a≠1.习根式和分数指数幂的运算三注意有关根式和分数指数幂的运算,和我们学过的加、减、乘、除运算一样,是十分重要的,它也是我们继续学习指数函数和对数函数的基础.由于这一部分内容的概念较多,初学时很容易出错,首先要注意以下三点.(1)根式的运算中,有开方和乘方两种情况并存的情况,此时要注意两种运算的顺序是否可换.如当a ≥0时,n a m =(na )m ,而当a <0时,则不一定可换,应视m ,n 的情况而定.(2)分数指数幂不能对指数随意约分.(3)对分数指数幂的运算结果不能同时含有根号和分数指数,不能同时含有分母和负指数.错例分析一、有关方根的概念不清与忽视方根的性质致错分析 例4 设f (x )=x 2-4,且0<a ≤1,求f (a +1a )的值.错解 f (a +1a)=(a +1a)2-4=(a -1a )2=a -1a.剖析 在开方运算中忽视根式的两个重要性质: (1)当n 为奇数时,na n =a ; (2)当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.性质(2)在解题中是很容易被忽视的,因为此时的n 为偶数,所以不论a 取怎样的值,na n总有意义.因此在上面的解答中应有:由0<a ≤1,得1a ≥1,所以1a -a ≥0,从而(a +1a)2-4= (a -1a )2=|a -1a |=1a-a .教材中,规定了正分数指数幂的意义a m n =n a m (a >0,m ,n ∈N *,且mn 为既约分数),从而指数的概念扩充到了有理数指数,继而又扩充到了实数指数.这时底数、指数的范围发生了变化,这在解题中是很容易被忽视的,由于在后面有关指数函数求定义域的问题中经常用到,这里就不再赘述.三、指数函数图象出错例5 根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?错解由方程|2x-1|=m可得2x=1±m,结合指数函数的图象(如图)可知:当2x=1±m≤0,即m≤-1或m≥1时,方程|2x-1|=m无解;当2x=1±m>0,即-1<m<1时,方程|2x-1|=m有一解;不存在实数m使方程|2x-1|=m有两解.剖析不能充分理解函数图象的交点与方程解的关系.没有充分结合指数函数的图象的变换加以解答.可以把这个问题加以转换,将求方程|2x-1|=m的解的个数转化为求两个函数y=|2x-1|与y=m的图象交点个数去理解,而不能结合运算加以分析,这样容易导致错误.正解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.点评由于方程解的个数与它们对应的函数图象交点的个数是相等的,所以对于含字母方程解的个数讨论,往往用数形结合方法加以分析,准确作出相应函数的图象是正确解题的前提和关键.指数运算中的几种变形技巧常见的指数运算问题有:化简、求值、证明等,而分数指数幂的引入为这类问题的解决增加了难度,为帮助大家更好的学习,本文就这类问题的求解方法试作分析.一、逆用公式例1 已知a =5,b =311,c =6123,试比较a ,b ,c 的大小. 解 因为a =5=653=6125, b =311=6112=6121,c =6123, 而121<123<125,所以a >c >b . 即5>6123>311.例2 计算(3-2)2 008·(3+2)2 009.分析 注意到两个底数3+2与3-2互为有理化因式,且它们的指数相差不大,所以互化为同指数计算.解 原式=(3-2)2 008·(3+2)2 008·(3+2) =[(3-2)·(3+2)]2 008·(3+2) =12 008·(3+2)=3+ 2. 五、化负为正例3 化简4x4x +2+41-x 41-x +2.解 方法一 原式=4x4x +2+41-x ·4x 41-x ·4x +2·4x=4x 4x +2+44+2×4x =4x 4x +2+22+4x =4x +24x +2=1. 方法二 原式=4x4x +2+4·4-x 4·4-x +2·4x ·4-x=4x 4x +2+44+2·4x=1. 点评 对于式子41-x41-x +2,方法一是利用分子分母同时乘4x 化简,而方法二是把2写成2·4x ·4-x ,通过约分化简,两种方法都是巧用4x ·4-x =1实现化简的.数函数常见题型解法探究 一、指数函数的定义例4 已知指数函数f (x )的图象经过点(2,4),试求f (-12)的值.解 设指数函数f (x )=a x (a >0,a ≠1),由已知得f (2)=4,即a 2=4(a >0,a ≠1),所以a =2.故f (-12)=2-12=22.二、考查指数的运算性质例5 若f (x )=e x -e -x 2,g (x )=e x +e -x2,则f (2x )等于( )A .2f (x )B .2g (x )C .2[f (x )+g (x )]D .2f (x )·g (x )解析 f (2x )=e 2x -e-2x 2=(e x +e -x )(e x -e -x )2=2·(e x +e -x )(e x -e -x )4=2f (x )·g (x ).故选D. 答案 D三、指数函数的单调性例6 设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2解析 y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5.由于指数函数f (x )=2x 是R 上的增函数,且1.8>1.5>1.44,所以y 1>y 3>y 2,选D.答案 D四、定义域和值域例7 已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________. 解析 由函数的定义,得1<2x <2⇒0<x <1. 所以应填(0,1). 答案 (0,1)五、图象过定点问题例8 已知不论a 为何正实数,y =a x +1-2的图象恒过定点,则这个定点的坐标是________.解析 因为指数函数y =a x (a >0,a ≠1)的图象恒过定点(0,1),而函数y =a x +1-2的图象可由y =a x (a >0,a ≠1)的图象向左平移1个单位后,再向下平移2个单位而得到,于是,定点(0,1)→(-1,1)→(-1,-1).所以函数y =a x +1-2的图象恒过定点(-1,-1).答案 (-1,-1) 六、图象依据:(1)指数函数y =a x (a >0,a ≠1)的图象;(2)函数y =f (x )的图象与y =f (x +a )、y =f (x )+b 、y =f (-x )、y =-f (x )、y =-f (-x )、y =|f (x )|、y =f (|x |)的图象之间的关系.例9 利用函数f (x )=2x 的图象,作出下列各函数的图象: (1)y =f (x -1);(2)y =f (|x |);(3)y =f (x )-1; (4)y =-f (x );(5)y =|f (x )-1|.解 利用指数函数y =2x 的图象及变换作图法可作所要作的函数图象.其图象如图所示:点评 函数y =2|x |,y =2-|x |,y =|2x -1|的值域和单调性如何?七、考查参数的取值范围例10 已知函数y =a a 2-2(a x -a -x )(a >0,a ≠1)在(-∞,+∞)上递增,求a 的取值范围.解 设任意x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)<0, 即aa 2-2(ax 1-a -x 1)-aa 2-2(ax 2-a -x 2) =a a 2-2(ax 1-ax 2)(1+1ax 1+x 2)<0, 所以(a 2-2)(ax 1-ax 2)<0⇒⎩⎪⎨⎪⎧a 2-2>0ax 1-ax 2<0.或⎩⎪⎨⎪⎧a 2-2<0,ax 1-ax 2>0.解得a >2或0<a <1. 异底指数比大小五法 一、化同底例11 比较20.6,(12)-0.7,80.3的大小.解 化同底得20.6,(12)-0.7=20.7,80.3=20.9.因为函数y =2x 在R 上是增函数,且0.6<0.7<0.9, 所以20.6<20.7<20.9,即20.6<(12)-0.7<80.3.点评 因为化同底后即可运用指数函数的单调性比较大小,所以能够化同底的尽可能化同底.二、商比法例12比较下列两个数的大小:1.1-0.2与1.3-0.1.解 因为1.1-0.21.3-0.1=(1.211.3)-0.1=(1.31.21)0.1>(1.31.21)0=1,所以1.1-0.2>1.3-0.1.点评 不同底但可以化为同指数的两数比较大小,用商比法即可迎刃而解,这时要特别注意分母的正负.三、取中间值例13下列大小关系正确的是( ) A .0.43<30.4<π0 B .0.43<π0<30.4 C .30.4<0.43<π0D .π0<30.4<0.43解析 因为π0=1,0.43<0.40=1,30.4>30=1, 所以0.43<π0<30.4,故选B. 答案 B点评 不同底也不同指数时比较大小,宜先与中间值0或1比较大小,再间接地得出所求解.四、估算法例14 若3a =0.618,a ∈[k ,k +1],则k =________. 解析 因为k ≤a ≤k +1,所以3k ≤3a ≤3k +1. 把3a =0.618代入得3k ≤0.618≤3k +1.估算得13≤0.618≤1,即3-1≤0.618≤30.解得k =-1.答案 -1点评 估算法既可快速达到比较大小的目的,又可培养同学们的估算能力,它是同学们必备的一种技能,在考试中解答填空、选择题时可用.五、图解法例15 已知实数a ,b 满足等式(12)a =(13)b ,下列五个关系式:①0<b <a ; ②a <b <0; ③0<a <b ; ④b <a <0; ⑤a =b . 其中不可能成立的关系式有( ) A .1个B .2个C .3个D .4个解析 在同一坐标系中,分别画出函数y =(12)a ,y =(13)b 的图象.由图观察可知,当b <a <0时,等式(12)a =(13)b 不可能成立;又当0<a <b 时,等式(12)a =(13)b 也不可能成立,故选B.答案 B点评 把所要比较的指数化为指数函数,在同一坐标系中画出它们的图象,可以直观地看出其中的大小关系.指数函数考什么?1.(福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析 由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解; ②当a ≤0时,f (a )=a +1, ∴a +1+2=0,∴a =-3. 答案 A2.(全国Ⅰ高考)已知函数f (x )=a -12x +1.若f (x )为奇函数,则a =________.解析 ∵定义域为R ,且函数为奇函数, ∴f (0)=0,即a -12=0,∴a =12.答案 123.(全国高考)函数y =-e x 的图象( ) A .与y =e x 的图象关于y 轴对称 B .与y =e x 的图象关于坐标原点对称 C .与y =e -x 的图象关于y 轴对称 D .与y =e -x 的图象关于坐标原点对称解析 函数y =-e x 与y =e -x 的自变量x 取相反数时,函数值y 也为相反数,所以其图象关于原点对称.答案 D4.(湖北高考)若函数y =a x +b -1 (a >0且a ≠1)的图象经过第二、三、四象限,则必有( )A .a >0,b <1B .0<a <1,b <0C .0<a <1,b >0D .a >1,b <0解析 数形结合是解题中常用的方法之一,熟练掌握基本初等函数的图象及性质是利用数形结合法解题的前提.由指数函数y =a x 向下平移1-b 个单位,使1-b >1即可得知.答案 B5.(湖北高考)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x -e -xB.12(e x +e -x )C.12(e -x -e x )D.12(e x -e -x ) 解析 ∵f (x )为偶函数,g (x )为奇函数,∴f (-x )=f (x ),g (-x )=-g (x ).∴f (-x )+g (-x )=f (x )-g (x )=e -x .又∵f (x )+g (x )=e x ,∴g (x )=e x -e -x 2. 答案 D。
《2.1.1 指数与指数幂的运算(2)》达标检测1.下列运算中,正确的是 ( )A.632a a a =⋅B.2332)()(a a -=-C.0)1(=-aD.632)(a a -=- 2.24362346)()(a a ⋅等于( )A.a B.2a C.3a D.4a 3.化简)31()3)((656131212132b a b a b a ÷-的结果是 ( ) A.a 6 B.a - C.a 9- D.a 94.设45=x ,25=y ,则=-y x 25 .5.已知12=+y x ,9=xy 且y x <,求21212121y x yx +-的值.《2.1.2 指数函数及其性质(1)》预习学案【学习目标】掌握指数函数的概念【预习目标】阅读问题1和问题2,知道指数函数的一般形式.【预习指导】问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x 次后,得到的细胞分裂的个数 y 与 x 之间,构成一个函数关系,能写出 x 与 y 之间的函数关系式吗?问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x 表示,剩留量用y 表示指数函数的定义一般地,函数 叫做指数函数,其中x 是自变量,函数的定义域是R.值域为),(∞+0.其中1,0≠>a a 且的含义是110><<a a 或.指数函数定义中,为什么规定1,0≠>a a 且,如果不这样规定会出现什么情况?【知识链接】学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。
【典型例题】例1指出下列函数那些是指数函数例2若函数是指数函数,则a 的值为多少?例3已知y =f (x )是指数函数,且f (2)=4,求函数y =f (x )的解析式《2.1.2 指数函数及其性质(1)》达标检测1.判断下列函数是否是一个指数函数?,x y = x y 8=,x y 42⋅=,x a y )12(-=)1,21(≠>a a ,x y π=,236+=x y .2.在同一坐标做出x y 2=和xy )21(=两个函数的图像3.已知f (x )是指数函数,且255)23(=-f ,=)3(f《2.1.2 指数函数及其性质(2)》预习学案【学习目标】掌握指数函数的图象和性质【预习目标】知道指数函数图像的画法及有哪些性质【预习指导】函数x a y =(1,0≠>a a 且)的图像和性质.【知识链接】函数单调性及奇偶性的判断.函数定义域及值域的求法.【典型例题】例1求下列函数的定义域和值域(1)412-=x y ;(2)xy -=)32(;(3)11210-+=x xy .例2已知指数函数x a y =(1,0≠>a a 且)的图像过(3,π),求)3(),1(),0(-f f f 的值例3已知函数)(212)(R x a x f x ∈+-=是奇函数,求实数a 的值.《2.1.2 指数函数及其性质(2)》达标检测1.求下列函数的定义域和值域(1)22)21(x x y -=;(2)91312--x ;(3))1,0(1≠>-=a a a y x .2若指数函数x a y )12(-=是减函数,则a 的范围是多少?3.已知函数)(x f 的定义域是(0,1),那么)2(x f 的定义域是多少?《2.1.2 指数函数及其性质(3)》预习学案【学习目标】掌握比较指数函数的的大小及图像变换问题.【预习目标】熟悉初中比较两个数大小的方法及函数图像变换.【预习指导】.1. 比较两个指数函数的大小.(1)21x x a a 与的大小比较,利用单调性比较(2)21x x n m 与的大小比较,要讨论m 、n 的值(3)对于异底数幂,无法直接利用单调性,可利用“中间值法”判断大小,常找的中间值可能是0或1±.2. 有关指数函数图像变换问题(1)左右平移:若已知的x a y =的图像,把x a y =的图像向左平移)0(>b b 个单位长度,则得到b x a y +=的图像,把x a y =的图像向右平移)0(>b b 个单位长度,则得到b x ay -=的图像, (2)上下平移:若已知的x a y =的图像,把x a y =的图像向上平移)0(>b b 个单位长度,则得到ba y x +=的图像,把x a y =的图像向下平移)0(>b b 个单位长度,则得到b a y x -=的图像.(3)函数x a y =的图像与x ay -=的图像关于y 轴对称,函数x a y =的图像与x a y -=的图像关于x 轴对称,函数x a y =的图像与x ay --=的图像关于原点轴对称. (4)x a y =(1,0≠>a a 且)的图像是将x a y =(1,0≠>a a 且)的图像在y 轴右边的部分沿轴翻折到y 轴的左边,这部分代替原来y 轴左边的部分,并保留xa y =(1,0≠>a a 且)在y 轴右边的部分图像即得到函数x a y =(1,0≠>a a 且)的图像. 【知识链接】初中比较两个数的大小一般用做差,在与0比较,熟读初中一元二次函数平移的知识,进一步熟悉平移方法,知道坐标平面内的四个象限分别是指哪部分.【典型例题】例1比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-;(3)3.07.1,1.39.0. (4)3231-)(,532-. 例2已知函数b a y x +=的图像经过第一、三、四象限,试确定a 、b 的取值范围例3解不等式2)21(22≤-x .。
《2.1.2指数函数及其性质(2)》导学案3
学习目标
1.熟练掌握指数函数概念、图象、性质;
2.能求由指数函数复合而成的函数定义域、值域;
学习重点
灵活应用指数函数的图像和性质
学习难点
指数函数的图像和性质的应用
学习过程
一.复习:
1.指数函数的定义:
2.指数函数的图像及其性质:
3.函数x a a a y )232(2+-=是指数函数,则a =
4.比较下列各题中两个值的大小
(1)35.28.1,8.1 (2)1.328.067.0,3.2--
二.典型例题
例1已知指数函数()x f x a =(a >0且1a ≠)的图象过点(3,π),求()0f 、
(1)(3)f f 及的值.-
例2:求下列函数的定义域
(1) 132-⎪⎭⎫ ⎝⎛=
x y (2) x y 121⎪⎭⎫ ⎝⎛= (3) 12-=x y
(4) 1-22-1x
y = (5)1a -=x y (其中 a >0,且a ≠1)
例3:求下列函数的值域
(1)x y 12= (2)x y 2x
22-=
例4:将三个数3
17.02.032,3.1,
5.1⎪⎭⎫ ⎝⎛-按从小到大的顺序排列.
三.自主练习:
1.已知指数函数)(x f 的图像过点)8,3(,求)6(f
2.求下列函数的定义域和值域. (1)12+=x y (2) 23-=x y (3) x
y ⎪⎭⎫ ⎝⎛=21-1
3.比较两个数的大小 (1)7171
5.2,2.3 (2)1,5434-⎪⎭⎫ ⎝⎛。
2.1.2指数函数及其性质一、教材分析函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。
指数函数是高中数学中引进的第一个基本初等函数,本节课是在学生已掌握了函数的一般性质和在认识指数函数概念的基础上,进一步研究指数函数。
作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础。
指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。
二、学情分析通过前一阶段的教学,学生对函数和性质的认识已有了一定的认知结构,主要体现在三个层面:1、知识层面:学生在已初步掌握了函数的基本性质和认识到了指数函数的概念。
2、能力层面:学生已经掌握了用描点法和对称性描绘函数图象的方法,通过第一章集合与函数的概念后初步具备了数形结合的思想。
3、情感层面:学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡。
三、教学目标(1)掌握指数函数的性质及其简单应用。
(2)通过指数函数的图象和性质的教学,培养学生观察、分析、归纳等思维能力和数形结合的数学思想。
通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
(3)认识事物的普遍联系与相互转化,激发学生学习数学的兴趣,努力培养学生的创新意识。
四、教学重难点重点:指数函数的性质及简单应用;难点:对底数的分类,指数函数图象与底数关系,如何从图象归纳函数性质。
五、教学方法与手段1、教法分析采用引导发现式的教学方法,充分利用多媒体辅助教学。
通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
2、学法分析学生思维活跃,求知欲强,但在思维习惯上还有待教师引导。
从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。