风洞实验
- 格式:doc
- 大小:42.50 KB
- 文档页数:10
风洞试验原理
风洞试验是一种用于模拟大气流场对物体的影响的实验方法,它在航空航天、
汽车、建筑等领域都有着广泛的应用。
通过风洞试验,可以模拟不同速度、压力、温度的气流环境,从而对物体的气动特性进行研究和分析。
本文将介绍风洞试验的原理及其在工程领域的应用。
首先,风洞试验的原理是基于流体力学和空气动力学的基本理论。
当物体在气
流中运动时,气流会对物体施加压力和阻力,同时也会产生升力和侧向力。
风洞试验就是通过模拟不同气流环境,测量物体在气流中的受力情况,从而分析物体的气动性能。
在风洞试验中,首先需要确定试验的目的和参数。
根据不同的研究对象和需求,可以确定试验的速度范围、气流密度、温度等参数。
然后,通过风洞设备产生符合要求的气流环境,将待测试物体放置在气流中进行试验。
在试验过程中,可以通过压力传感器、力传感器等设备实时监测物体受到的气动力,同时也可以通过流场可视化技术观察气流对物体的影响。
风洞试验在工程领域有着广泛的应用。
在航空航天领域,风洞试验可以用于研
究飞机、导弹等飞行器在不同速度、高度下的气动性能,为设计和改进飞行器提供重要依据。
在汽车工程领域,风洞试验可以用于研究汽车外形设计、空气动力学性能,提高汽车的燃油经济性和稳定性。
在建筑领域,风洞试验可以用于研究建筑结构在大风作用下的受力情况,为建筑设计提供可靠的风荷载数据。
总之,风洞试验是一种重要的工程实验方法,它通过模拟气流环境,研究物体
在气流中的受力情况,为工程设计和研究提供重要依据。
随着科学技术的不断发展,风洞试验在工程领域的应用将会更加广泛,为各行各业的发展提供有力支持。
风洞试验方案一、引言风洞试验是航空航天、汽车工程、建筑等领域中必不可少的研究手段之一。
通过在风洞中对模型进行气动力测试,可以获取与实际情况相似的数据,从而评估设计方案的可行性和优化设计。
本文将介绍一种风洞试验方案,以期为相关研究提供参考。
二、目标本次风洞试验的主要目标是研究某型飞机机翼在不同飞行速度和攻角下的气动力性能。
通过测量机翼的升力、阻力、升力系数和阻力系数等参数,评估机翼的气动性能,并为后续的飞行器设计提供参考数据。
三、试验设备1. 风洞:采用水平流向风洞,具备可调节风速和风向的功能,以满足不同试验要求。
2. 模型:选择适用于飞机机翼的缩比模型,考虑到兼容性和可重复性,模型尺寸与实际情况保持一定比例。
模型制作材料要求具备良好的刚度和表面光滑度,以保证试验数据的准确性。
3. 数据采集系统:采用高精度的传感器和数据采集设备,能够实时记录模型在不同试验条件下的气动力数据。
同时,确保数据采集系统的准确性和稳定性,以避免数据误差对试验结果的影响。
四、试验步骤1. 模型准备:在试验开始前,对模型进行必要的准备工作,包括清洁模型表面、确认模型的尺寸和重量等,以确保试验的可靠性和重复性。
2. 试验条件设定:根据试验目标,设定不同的飞行速度和攻角组合。
在设定试验条件时,需要考虑模型受风洞流场影响的因素,如风洞尺寸、风洞流场均匀性等。
3. 实施试验:将模型放置在风洞中心位置,根据设定的试验条件进行试验。
在每组试验中,要确保模型的姿态稳定和位置准确,以保证试验数据的准确性。
4. 数据采集:在试验过程中,通过数据采集系统实时记录模型的气动力参数。
同时,应确保数据采集设备的稳定性和准确性,以保证试验数据的可靠性。
5. 数据分析:对采集到的试验数据进行处理和分析,计算升力系数、阻力系数等气动力参数,并绘制相关曲线和图表。
通过对数据的分析,评估模型在不同试验条件下的气动性能。
六、试验安全与注意事项1. 设备安全:确保风洞设备的稳定运行,避免发生故障或安全事故。
风洞的实验原理风洞是用于模拟大气流动的实验设备,它对于研究空气动力学特性、风力工程、建筑物抗风性能等领域具有重要的作用。
风洞通过模拟真实空气流动环境,提供各种空气速度、密度和压力条件,来观察物体在流场中的动力学效应和气动性能。
风洞实验的原理主要包括两个方面:流场模拟和测试测量。
首先,风洞要模拟真实的流场环境,使得空气流动的特性尽可能接近实际情况。
为了达到这个目标,首先需要考虑的是风洞的设计和建造。
通常风洞由进气道、扩散段、工作段和尾迹段等部分组成。
进气道的作用是将外界空气引入风洞,保证流场中流体的运动状态尽可能接近自由气流。
扩散段的作用是将进入风洞的流体加速,以满足各个工作段的实验要求。
工作段是进行实验的主要区域,主要有闭合式风洞和开放式风洞两种。
闭合式风洞的特点是流场封闭,气流在封闭环境中进行运动,适用于对较小的物体进行气动特性测试;开放式风洞则模拟了自由气流场,适用于大型模型的气动研究。
尾迹段的作用是消散来自工作段的干扰,减小后续实验的影响。
其次,风洞实验还需要进行测试和测量,以获取物体在流场中的动力学参数。
实验中常用的测试和测量手段包括风力测力、压力测量、风速测量和流场可视化等。
风力测力是通过在物体上安装力传感器,通过测量传感器受到的力来推导出物体所受到的气动力。
压力测量则是通过在物体表面或特定位置上安装压力传感器,获取物体表面的压力分布情况。
风速测量一般采用风速仪或热线风速仪等设备,用于测量流场中的风速。
流场可视化是将流场中的气流可视化,常用的方法包括烟雾法、激光光纤等,通过观察气流的形态和运动轨迹,了解流场中的流动情况。
在风洞实验中,为了保持实验的准确性和可重复性,还需要进行数据校正和误差分析。
数据校正主要是校正仪器的灵敏度和零点误差,并与标准数据进行对比和校验,确保实验数据的准确性。
误差分析是对于实验过程中产生的误差进行分析和控制,以确保实验结果的可靠性。
总之,风洞的实验原理包括流场模拟和测试测量两个方面。
风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。
本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。
一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。
其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。
二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。
通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。
2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。
通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。
此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。
3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。
通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。
三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。
通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。
2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。
模型的准确度和还原程度直接关系到实验数据的可靠性。
现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。
3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。
当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。
传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。
风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。
本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。
二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。
具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。
三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。
确保设备正常运行和准确测量。
2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。
3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。
4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。
5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。
四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。
结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。
在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。
2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。
结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。
3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。
结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。
风洞实验是什么原理的应用1. 什么是风洞实验风洞实验是一种利用模拟风流场的实验方法,通过对风的流动特性进行观测和测试,从而研究和分析空气动力学、结构力学等领域的问题。
风洞实验通常会模拟不同风速、气流方向和温度等条件,以便在实验室环境中观测和分析具体的现象和行为。
风洞实验的基本原理是利用风洞设备产生一定速度和压力的气流,通过控制气流的流速和流向,模拟真实环境中的气流流动情况。
在风洞内部,可以观测和测试各种物体在气流中的流动特性,以便分析和研究其受力、气动性能以及结构响应等。
风洞实验广泛应用于航空航天、汽车工程、建筑设计等领域,对于新产品的研发和性能优化具有重要意义。
2. 风洞实验的应用原理风洞实验的应用原理可以归结为以下几个方面:2.1 流体力学原理风洞实验主要基于流体力学原理,即研究气体的流动特性和受力情况。
风洞中的气流模拟了真实环境中的风流场,利用流体力学原理进行观测和分析,可以提供物体在气流中的受力分布、速度分布、压力分布等重要数据。
这些数据可以进一步用于优化设计、改进产品性能等方面。
2.2 模型比例原理风洞实验中使用的物理模型通常是原物体的缩小比例模型。
通过合理选择模型的比例,可以使模型在风洞中产生的气流流动特性尽可能地接近真实环境中的气流流动特性。
这可以有效降低实验成本和难度,提高实验结果的可靠性和可重复性。
2.3 高速流动原理风洞实验中常常涉及到高速流动条件下的模拟。
在高速流动情况下,空气流动呈现出不同于低速流动的特性,例如流场中的湍流现象、压力分布的不均匀性等。
通过风洞实验,可以研究和分析高速流场的流动特性、气动性能等,为相关领域的设计和优化提供支持。
3. 风洞实验的应用领域风洞实验在多个领域有广泛的应用,以下列举几个主要的应用领域:3.1 航空航天领域在航空航天领域,风洞实验是评估飞行器空气动力学性能的重要手段。
通过在风洞中测试和观测飞行器模型在不同气流条件下的气动性能,可以评估其飞行性能、稳定性、操纵性等。
土木工程中的风洞实验风洞实验是土木工程中的一项重要实验手段,用以模拟大气中的风对建筑、桥梁、烟囱等工程结构的作用情况。
通过风洞实验,工程师可以获得关于风力、风向、气流分布以及涡流结构等方面的详细数据,从而为工程设计和结构分析提供必要的依据。
一、风洞实验的意义风洞实验的主要意义在于验证工程结构的稳定性和安全性。
在实际工程中,建筑结构必须能够承受来自自然界的各种力的作用,尤其是风力。
通过风洞实验,可以模拟出不同风速下的风力对建筑结构的影响,进而评估结构对风的响应和抗风性能。
二、风洞实验的基本原理风洞实验基于风的物理特性和流体力学原理。
首先,建筑模型被放置在风洞中,并固定在支架上。
然后,风洞中产生不同风速的气流,使其通过建筑模型。
集中在模型周围的静压孔和测速孔可以测量风流的各种参数,如压力分布和风速分布等。
最后,通过数据采集和处理,可以获得模型受风力作用的详细信息。
三、风洞实验的步骤1. 实验准备:选择适当的风洞、参考气体和模型比例。
确保实验设备和仪器的准确性和精度。
2. 模型设计与制作:根据实际工程的要求,设计和制作具有代表性的模型。
模型的尺寸比例和材料选择要符合要求。
3. 支架固定:将模型固定在风洞中的支架上,确保模型的稳定性。
根据需要,还可以设置附加的测量设备,如压力传感器和测速仪。
4. 实验参数设置:根据实际情况和需求,设置风洞的风速和入口条件。
不同的工程结构可能需要不同的风速和角度。
5. 数据采集与处理:通过静压孔和测速孔等设备,获取风洞实验中的数据。
利用计算机软件进行数据处理和分析,提取关键参数。
6. 结果分析与验证:对实验结果进行分析和验证,与理论计算结果进行比较,评估建筑结构的稳定性和安全性。
四、风洞实验在土木工程中的应用1. 建筑结构设计:通过风洞实验,可以评估和改进建筑结构的抗风性能,确保结构的稳定性和安全性。
尤其是超高层建筑、大型桥梁和烟囱等高耸结构,对风洞实验的需求更为迫切。
2. 桥梁设计:风洞实验可以模拟不同风速下对桥梁横向稳定性的影响。
大气物理学中的风洞实验随着科技的发展,航空、汽车、建筑等领域对空气动力学的研究越来越深入,风洞实验就成为了大气物理学中重要的研究手段之一。
一、风洞实验的基本原理风洞实验是通过模拟不同风速、气象条件下的空气流动,研究物体在空气中的运动学、动力学和热学特性。
其基本原理是利用风洞的空气流动模拟大气层中的空气流动,再通过传感器、计量系统对不同参数进行测量,以获取空气流动的物理特性。
不同种类、不同尺寸甚至不同用途的物体都需要进行风洞实验。
风洞的设计与制造需要考虑到流体力学、机械工程学、电子技术等众多学科的知识。
不同种类、尺寸、形状的试验模型在风洞内的气动特性影响甚大,因此,选择合适的试验模型并且对模型进行精确的测试和分析才能有效地得到数据。
二、不同种类的风洞按照不同的气流传输模式及工作特性不同,可将风洞分为不同的类型。
常见的风洞一般可分为按照气流传输模式来划分的自由式风洞和闭式风洞。
1. 自由式风洞自由式风洞通过产生流速在试验房间内任意方向的气流,达到模拟在自然大气中的流动的目的。
它适合于研究横截面较大的流体力学问题。
根据气流产生方式,自由式风洞可以分为伺服式风洞和振动板式风洞两种。
伺服式风洞主要是通过一个由风扇和压力系统控制的龙门架的运动,来调整风口所受到的气流流量、压力和方向,实现气流方向、绕风和攻角的调整。
振动板式风洞则是利用声振技术,模拟流体运动的变化,使试验模型能够接受各种复杂的流动条件下的作用。
2. 闭式风洞闭式风洞是一种在旋转的容器中产生气流,通过局部进气孔产生的压力差,推动气流进入马上运动的容器中,再沿着容器的弯曲的流道,最终流回局部进气孔的装置。
按照载气种类不同,闭式风洞还可以分为空气闭式风洞和气体密闭风洞。
前者主要关注气体流动,如空气、氮气等,后者则通常用于模拟在真空环境下的气体流动。
由于闭式风洞可以产生更高的速度,因此它的应用范围更加广泛,可以用于航空、航天和汽车等领域。
三、风洞实验的应用风洞实验以其加工简单、成本较低、准确度高等特点,已经成为了研究空气动力学的广泛应用。
第1篇一、实验目的本次实验旨在通过汽车风洞测力系统,对汽车在不同速度和角度下的空气动力学性能进行测试,包括风阻系数、升力系数、侧向力系数等参数的测量。
通过实验,分析汽车在不同工况下的空气动力学特性,为汽车设计和改进提供科学依据。
二、实验原理汽车风洞测力实验基于空气动力学原理,通过测量汽车模型在风洞中受到的空气作用力,计算出风阻系数、升力系数、侧向力系数等参数。
实验过程中,利用风洞产生的均匀气流,对汽车模型进行不同速度和角度的测试。
三、实验设备1. 汽车风洞:用于产生均匀气流,模拟汽车行驶环境。
2. 汽车模型:与实际汽车尺寸相似,用于测试空气动力学性能。
3. 测力系统:包括力传感器、力矩传感器、数据采集系统等,用于测量汽车模型受到的空气作用力。
4. 计时器:用于测量汽车模型通过风洞的时间,从而计算速度。
四、实验步骤1. 准备实验设备,确保其正常运行。
2. 将汽车模型放置在风洞中,调整角度和高度,确保模型稳定。
3. 开启风洞,调整风速,使气流均匀。
4. 记录风速、角度等参数。
5. 测量汽车模型受到的空气作用力,包括水平力和垂直力。
6. 利用数据采集系统,实时记录实验数据。
7. 改变汽车模型角度和高度,重复实验步骤。
8. 分析实验数据,计算风阻系数、升力系数、侧向力系数等参数。
五、实验结果与分析1. 风阻系数(Cd):实验结果显示,汽车模型在不同速度和角度下的风阻系数有所差异。
在高速行驶时,风阻系数较大,随着速度降低,风阻系数逐渐减小。
在特定角度下,风阻系数达到最小值,说明汽车模型在该角度下空气动力学性能最佳。
2. 升力系数(Cl):实验结果显示,汽车模型在不同速度和角度下的升力系数有所变化。
在特定角度下,升力系数达到最大值,说明汽车模型在该角度下具有良好的操控性能。
3. 侧向力系数(Cη):实验结果显示,汽车模型在不同速度和角度下的侧向力系数有所差异。
在高速行驶时,侧向力系数较大,随着速度降低,侧向力系数逐渐减小。
风洞实验是绝对性原理的典型应用1. 简介风洞实验是一种常见的实验手段,用于研究物体在流体中的运动特性。
风洞实验的原理是基于流体力学中的绝对性原理,通过模拟真实环境中的流体运动,来预测和分析物体在流体中的行为。
2. 风洞实验的步骤风洞实验一般包括以下几个步骤:2.1 设计实验方案在进行风洞实验之前,首先需要设计实验方案。
这包括确定要研究的问题、选择合适的流体模拟介质、设计实验装置、制定观测和测试方法等。
2.2 制备实验样品根据实验方案,制备实验样品。
这可能涉及到制造模型、结构件或其他实验所需的器材。
2.3 设置实验条件在风洞中设置实验条件,包括调整流体模拟介质的流速、温度等参数,以及控制实验室环境的湍流、噪音等因素。
2.4 进行实验观测将制备好的实验样品放置在风洞中,并进行观测和测试。
这可能包括使用测量仪器记录物体的运动状态、测量流体的压力、温度等参数。
2.5 数据处理和分析通过获得的实验数据,进行处理和分析。
可以使用数据分析软件或编程进行计算和建模,以得出实验结果和结论。
3. 风洞实验的应用领域风洞实验具有广泛的应用领域,以下列举几个典型的应用领域:3.1 航空航天工程在航空航天工程中,风洞实验是一种不可或缺的手段。
通过风洞实验,可以模拟不同高度、速度和气压的条件,研究飞行器在不同工况下的空气动力学特性,如升力、阻力、稳定性等。
这对于飞行器的设计、性能优化和安全性评估非常重要。
3.2 汽车工程在汽车工程领域,风洞实验用于研究汽车的气动特性。
通过模拟车辆在运动时受到的气流影响,可以分析车身的气动阻力、升力和稳定性等。
这对于改善汽车的燃油效率、降低噪音和提高行驶稳定性具有重要意义。
3.3 建筑工程在建筑工程中,风洞实验常用于研究建筑物在风力作用下的响应和稳定性。
通过风洞实验,可以模拟不同风速和风向对建筑物的影响,评估建筑物的结构和抗风性能,并对建筑物的设计和布局进行优化。
3.4 运动器械风洞实验在运动器械研发中也发挥着重要的作用。
建筑工程中的风洞试验技术风洞试验是建筑工程中常用的一种试验方法,用于评估建筑物在不同风速下的结构稳定性和风压性能。
本文将介绍建筑工程中的风洞试验技术及其在工程设计和施工中的应用。
一、风洞试验的基本原理风洞试验是通过仿真大气环境,模拟风场对建筑物的影响,从而评估建筑结构的稳定性和风压性能。
其基本原理如下:1. 模拟大气环境:风洞试验中通过对风速、风流方向、气温、湿度等参数进行调控,使得试验环境与实际大气环境尽量接近,以准确评估建筑物的响应。
2. 模型缩尺比例:由于实际建筑物尺寸较大,对风洞试验设备提出了较高的要求。
为了满足试验条件,常常采用模型缩尺比例进行试验,例如1:100或1:200。
通过在模型上施加风压载荷,得到与实际建筑物相似的响应。
3. 测量与分析:在风洞试验中,需要测量建筑物模型在不同风速下的响应,如位移、应力、振动等参数。
通过数据分析与计算,得出建筑物结构在不同工况下的性能指标。
二、风洞试验在建筑工程中的应用1. 结构优化设计:风洞试验可用于评估不同结构方案在风荷载下的稳定性和安全性,并进行优化设计。
试验结果可以为工程师提供依据,选择合适的结构形式、构件尺寸和材料等,从而提高建筑物的风固性能。
2. 动态特性分析:建筑物在风场作用下会出现动态响应,如振动和共振现象。
风洞试验可以通过测量建筑物模型的响应频率和振动幅值,分析结构的固有频率和振动特性,为工程设计和结构计算提供参考。
3. 风压分布研究:对于高层建筑、桥梁和大型结构等,风压分布的研究十分重要。
通过风洞试验,可以测量建筑物表面的风压分布情况,评估不同部位的风荷载大小,并确定结构的最大风荷载,保证建筑物在恶劣天气下的安全运行。
4. 空气动力性能评估:风洞试验可以评估建筑物的空气动力性能,如气动阻尼、风速增益等指标。
通过对建筑物不同部位的风洞试验,可以定量分析空气流动的规律和特性,并改进建筑物的气动设计。
三、风洞试验的优势与不足风洞试验作为一种建筑工程试验方法,具有以下优势:1. 可模拟多种复杂工况:风洞试验可以模拟不同风速、风向、气温和湿度等多种复杂工况,对建筑物结构的性能进行准确评估。
第1篇一、实验背景随着我国经济的快速发展,高层建筑、桥梁等大型结构物越来越多地出现在城市中。
这些结构物的设计、建造和使用过程中,风荷载的作用不容忽视。
为了更好地理解和预测风荷载对结构的影响,本研究开展了中风洞实验,旨在研究风场对高层建筑结构的影响,为结构设计提供理论依据。
二、实验目的1. 研究风场对高层建筑结构的影响,包括风荷载大小、方向、频率等。
2. 分析不同风向、不同高度、不同体型结构的风荷载特性。
3. 评估现有风荷载计算方法的适用性,提出改进建议。
三、实验方法1. 实验模型:采用1:200比例的模型,模拟实际高层建筑结构。
2. 风洞实验:在实验室风洞中进行,模拟不同风向、不同风速条件下的风荷载。
3. 测试仪器:采用压力传感器、风速仪、风向仪等设备,测量风荷载、风速、风向等参数。
四、实验过程1. 模型准备:将模型放置在风洞实验台上,确保模型稳定。
2. 风场模拟:设置不同风向、不同风速条件,模拟实际风场。
3. 数据采集:启动测试仪器,记录风荷载、风速、风向等参数。
4. 数据分析:对采集到的数据进行处理、分析,得出结论。
五、实验结果与分析1. 风荷载特性:实验结果表明,风荷载大小与风速、风向、建筑体型等因素有关。
在顺风向,风荷载较大;在横风向,风荷载较小。
建筑体型对风荷载影响较大,高宽比、长宽比等参数对风荷载有显著影响。
2. 风荷载计算方法:通过对比实验结果与现有风荷载计算方法,发现现有方法在部分情况下存在误差。
针对不同建筑体型,提出改进建议,以提高计算精度。
3. 风洞实验优点:风洞实验能较好地模拟实际风场,为结构设计提供可靠依据。
实验过程中,可以精确控制实验条件,提高实验结果的准确性。
六、结论与建议1. 风荷载对高层建筑结构有显著影响,设计中应充分考虑风荷载的作用。
2. 针对不同建筑体型,采用合适的计算方法,以提高风荷载计算精度。
3. 风洞实验是研究风荷载的有效手段,建议在结构设计中广泛应用。
如果风洞试验显示结构顶点最大加速度超限或业主要求提高舒适度标准,可以考虑在房屋顶部设置调谐质量阻尼器(TMD)。
结构构件设计采用中国规范和风工程顾问提供的风洞荷载。
风洞实验wind tunnel experiments在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法。
风洞实验的理论依据是流动相似原理。
由于风洞尺寸、结构、材料、模型、实验气体等方面的限制,风洞实验要作到与真实条件完全相似是不可能的。
通常的风洞实验,只是一种部分相似的模拟实验。
因此,在实验前应根据实际内容确定模拟参数和实验方案,并选用合适的风洞和模型。
风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。
因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。
模型的设计和制造是风洞实验的一个关键。
模型应满足如下要求:形状同实物几何相似或符合所研究问题的需要(如内部流动的模拟等);大小能保证在模型周围获得所需的气流条件;表面状态(如光洁或粗糙程度、温度、人工边界层过渡措施等)与所研究的问题相适应;有足够的强度和刚度,支撑模型的方式对实验结果的影响可忽略或可作修正;能满足使用测试仪器的要求;便于组装和拆卸。
此外,某些实验还对刚度、质量分布有特殊要求。
模型的材料在低速风洞中一般是高强度木材或增强塑料,在高速和高超声速风洞中常用碳钢、合金钢或高强度铝合金。
有些实验根据需要还采用其他材料。
模型通常都是缩尺的,也有全尺寸的,有时还可以按一定要求局部放大。
对于几何对称的实物,还可以利用其对称性做成模拟半个实物的模型。
对风洞实验结果通常须进行处理和分析。
其主要内容是:将测量值换算成所需的空气动力学特性数据;分析综合各个实验环节可能引入的误差;对实验结果作出物理解释和数学说明;根据模型流动和实物流动的差别,修正实验结果。
模型流动和实物流动的差别主要有:由风洞和模型造成的模拟失真,如雷诺数的差别、进气和喷流的模拟失真等;其次是风洞洞壁和模型支架的干扰影响;还有风洞流场的非均匀性、湍流度和噪声影响等。
其中有些可以通过计算或者实验进行修正,更重要的是要注意积累使用风洞实验结果的经验。
常见的风洞实验有测力实验、测压实验、传热实验、动态模型实验和流态观察技术等五个项目。
重庆万豪国际会展大厦结构设计一、工程概况重庆万豪国际会展大厦地处重庆市闹市区,大厦所处地势北高南低,相差5m.大厦地上69 层(含GF 层),地下5 层,建筑高度303.3m,地下22m,裙房7 层。
地下5 层为停车库和设备用房以及商业用房,负2层与城市轻轨的出入口连为一体,地上7 层裙房为商业用房,第7 层采用空中通廊与现有万豪酒店相连,8 至68 层塔楼标准层平面为41×41m,8 至41层为公寓,42 至68 层为办公楼,顶层设置直升机停机坪。
在第7 层、第23 层、第41 层、第54 层、顶层设置避难层。
地下室和裙房层高4.5m -5m,公寓层高3.7m,办公楼层高3.9m.建筑用地面积9100 ㎡,总建筑面积182893 ㎡,其中地上建筑面积145348 ㎡,地下37545㎡.该大厦周围有10余栋已建或规划的高层或超高层建筑。
二、地基与基础1.地质情况该场地划分为I 类场地。
大厦以巨厚层的中(微)风化泥岩为持力层,根据地勘,泥岩的地基承载力特征值为4.0Mpa,天然抗压强度标准值为12.4Mpa.后经岩质地基平板载荷试验,极限荷载平均值为16.4Mpa,地基承载力特征值为5.2Mpa,该地基是修建高层建筑的理想场地。
2.基坑及基础设计本工程地下5 层,因地势北高南低。
相差5m,具备完全嵌固条件有4 层22m,大厦埋置深度为房屋高度的1/13.8,满足抗倾覆能力。
塔楼的柱基础采用扩底桩(墩),塔楼内筒采用平板式筏形基础。
我们采用美国ANSYS 公司编制的ANSYS 1 Mechanical 有限元分析软件的SOLID72 单元对塔楼扩底桩(墩)和塔楼筒体筏板及地基进行了三维计算分析,塔楼扩底桩(墩)采用D=4m,扩底5.5m,筏板25.8×25.8×4.5m.为筏板基础配筋提供可参考的数据。
三、风荷载高层超高层建筑中水平风荷载计算是结构抗风设计的关键因素,但对于较高的特别是不规则的超高层建筑,加之建筑物风荷载受周围围建筑影响较大,需对现行规范的风荷载进行核准,为此,该大厦进行了模型风洞测压和气弹试验和三维数值风洞模拟,并与规范取值对比,进行合理的风荷载设计。
重庆市100 年一遇基本风压为0.45 kN/㎡ 1.模型风洞试验本工程在西南交通大学风工程试验研究中心进行测压风洞试验。
采用1:250的有机玻璃模型,周围500m范围内主要建筑物及环境采用泡沫塑料切成,模拟C类地貌大气边界条件。
以模型屋顶高度的气流风压为参考风压,测压试验来流风速7.5m/s.本试验在主体结构各表面布置,沿高度布置在23 个截面,共457 个测压点,试验模拟了0o到360o的风向角,间隔22.5o,定义模型的正门法向方向为0o,转盘逆时针为正。
本风洞试验给出了16个风向角下各面各测压孔的风压系数。
试验结果看出:各面正迎风面的正压沿横向其边缘处的风压均小于中间处的风压,沿高度方向平稳变化,到4/5 高度处(距顶部15-30m)达到最大值,上部沿高度逐渐减少;背风面及两侧面负压较为均匀,沿高度变化较小。
由于大厦周围高层建筑对气流的影响,大厦各面会有局部高风压区现象出现,尤其是周围高层建筑物高度以下区域,有放大作用也有减少作用,有时甚至会出现压力系数反号。
当风向角为1350和900时X向、Y向基底总剪力达到最大值。
数值风洞模拟本工程委托同济大学航空航天与力学学院进行数值风洞模拟。
数值风洞模拟与一般实验室风洞类似,需设置一个风洞,风洞有入口、出口、地面、壁面,大厦和周围建筑物数值模型建立于风洞中,数值模型按原型尺寸(1:1)建模,属刚性模型。
建模、计算和后处理由国际上领先的计算流体动力学软件CFX5.5完成。
报告提供了16 个风向下的各层沿X、Y 向的平均风合力及绕Z轴总合力矩,结果表明X 向基底总剪力最大者为135o风向;Y 向基底总剪力最大者为90o;绕Z轴总合力矩最大者为0o.同时给出了各不同风向下大厦各表面最大风压等值线分布云图,为玻璃幕墙设计提供了依据。
风压等高线图分布来看,各面正迎风面中部绝大部分区域为正,而由于分离流的原因在边缘附近小部分区域为负压,背风面一般为负压且大小比较均匀。
风荷载比较与取值我们将三种方法得出的正迎风面静风荷载和考虑动风荷载进行对照,见图3 及图4.风洞试验表明,在37层以下受周边建筑的影响,风洞试验风荷载值比规范值有放大作用,而在37层以上风洞试验风荷载值比规范值小。
按荷载规范计算的总风荷载比风洞试验试验的风荷载大约9%。
数值模拟与风洞试验结果基本一致,风压沿高度最大值约在建筑物的4/5 高度处;各层风荷载规范计算值最大,数值模拟值其次,风洞试验值最小。
规范计算的风压最大值在建筑物顶部,规范计算的顶部风荷载偏大且不尽合理,风压合力作用点较高,总风荷载较数值模拟与风洞试验值大,因而在整体计算时,按规范计算偏于保守。
数值模拟与风洞试验结果揭示了风向角为135o和90o时X 向、Y 向基底总剪力最大,这是现有高层计算软件不易实现的。
从风洞试验和数值模拟结果看,大的负压出现在塔楼较低处或建筑物边缘处,构的整体计算虽没有大的影响,但对玻璃幕墙设计安全影响很大,应引起重视。
在总体计算时,分别对0o、90o、135o来风进行了计算。
风荷载取值按现行规范,但建筑物顶部按照模型风洞试验结果取用,并适当考虑了由数值模拟与风洞试验测出的扭矩。
四、上部结构1. 结构方案本工程上部结构共69 层,其中裙房范围7 层,塔楼总建筑高度303.3m,目前是我国已建和在建钢结构高层中最高的。
高宽比为7.34,属超限高层。
大厦结构基本周期8s,属少有的长周期高层建筑。
根据建筑功能、建筑布置、建筑高度的情况,曾考虑过采用两类结构方案,即全钢结构及钢-混结构。
根据结构抗震性能、施工速度、结构自重以及造价综合比较,本工程塔楼采用了全钢结构方案,裙房和地下室在塔楼的范围外,仍采用现浇钢筋混凝土结构。
塔楼采用了带加强层的钢框架-核心筒结构体系。
外框架由钢柱、梁组成;核心筒由钢柱、梁组成的钢框架和钢支撑组成。
利用建筑的设备-避难层设置钢结构的外伸桁臂及腰桁架,组成加强层(4 道)。
塔楼7F 以下为裙房、地下室共13 层,采用钢骨混凝土柱,这主要是为了解决钢结构塔楼与混凝土裙房能够连接协调,利于节点构造处理,同时充分利用高强度混凝土的抗压强度,减小了钢骨的断面.7F 以下为钢骨柱,钢筋混凝土截面尺寸为1400x1400 及1500x1500,钢骨为带翼缘的十字形断面;8F 以上为箱形钢柱,柱断面尺寸为1200x1200mm 到600x600mm,钢柱板厚为80mm 到20mm.在内筒纵、横各设置三道支撑,采用中心支撑及八字形偏心支撑。
支撑采用H 钢,断面为H400x400x25x30、H400x400x25x40 两种。
钢梁均为H 形钢梁。
8F 以下外框梁高为700mm,8F 以上外框为满足建筑净高的要求,梁高为650mm;为保证结构整体侧向刚度,内筒的框架梁高均为900mm.次梁与框架主梁采用铰接,按组合梁计算。
为了使角部框架梁的受力均匀,在角部增设次梁,并且隔层调换方向。
楼板以压型钢板作施工模板,采用现浇钢筋混凝土非组合楼板。
抗震及抗风设计(1)设计要求依据文献[3],本工程50 年超越概率63%、10%、5%、3%、2%所对应的基本烈度值分别为5.2、6.1、6.3、6.4、6.6,按重庆市地震局的批复,按照50年超越概率3%的设计地震动参数进行抗震设防。
由于现有计算程序无法输入6.4度的地震动参数,在抗震计算时,取7 度的参数进行计算。
(2)总体设计1)使用及建筑要求设置的条件:a. 塔楼部分平、立面非常规则,双向基本对称,建筑与结构结合较好,为结构抗震提供非常有利的条件。
b. 全钢结构,材质均匀,延性较好,能很好地满足抗震二道设防的要求。
2)侧力构件的设计:a. 内筒框架—支撑结构:在柱间均设置了钢支撑,部分为偏心支撑,有条件的框架柱间加设小柱,以加强框架支撑的侧向刚度。
b. 为提高内筒的框架支撑抗侧力体系的水平刚度,加高框架的高度,设计时权衡考虑梁承载力与增加水平刚度的要求。