随机微分方程课件
- 格式:ppt
- 大小:2.25 MB
- 文档页数:12
一、一维分岔 考虑一维随机微分方程()()()()()()()()()dX = m X dt +X dB t =m X +X X /2dt +X dB t 6.141σσσσ'-⎡⎤⎣⎦ 生成的连续动态系统()()()()()()tt00t x =x +m s x dx + s x dB s 6.142ϕϕσϕ-⎰⎰ () 它是以 x 为初值的(6.1-41)之唯一强解。
假定()()m 0 = 00 = 0 6.143σ-,()从而0是ϕ的一个固定点。
对此固定点,dB(t)是随机参激。
设m(x)有界,对所有x 0≠满足椭圆性条件 ()0 6.144x σ≠-()这保证最多只有一个平稳概率密度。
求解与(6.1-41)相应的平稳FPK 方程得平稳概率密度()()()()122m u p x C x exp[ ] 6.145u xdu σσ-=-⎰() 于是,上述动态系统有两种可能的平稳状态:不动点(平衡状态)与非平凡平稳运动。
前者的不变测度0δ的密度为()x δ,后者的不变测度ν的密度为(6.1-45)。
为研究 D-分岔,需计算这两个不变测度的Lyapunov 指数。
为此,考虑(6.1-41)的线性化方程()()()()dV =m X Vdt +X V dB t =[m (X)((X)(X))/2]Vdt VdB t 6.146σσσσ''''''++- ()利用(2.5-6)之解(2.5-11),得(6.1-46)之解()()()()()ttV t =V 0exp[(m +/2)X ds +X dB s ] 6.147 σσσ''''-⎰⎰()动态系统ϕ关于测度μ的Lyapunov 指数定义为()()1lim ln V t 6.148t tϕλμ→∞=-()(6.1-47)代入(6.1-48),注意()00σ=,得不动点Lyapunov 指数()()()()()()()()001()lim [ln 000]00 lim0(6.1-49)?t tt t B t V m ds dB s m m ttϕλδσσ→∞→∞'''''=++=+=⎰⎰对以(6.1-45)为密度的不变测度ν,(6.1-47)代入(6.1-48), 假定σ'有界,m /2σσ'''+可积,得Lyapunov 指数()01 lim (m /2)(X)ds [m (x)(x)(x)/2]p(x)dx 6.150tt Rt ϕλνσσσσ→∞''''''=+=+-⎰⎰()进行分部积分,并利用(6.1-45),最后得()2m(x) -2p(x)dx 0 6.151(x)R ϕλνσ⎡⎤=<-⎢⎥⎣⎦⎰() 随机跨临界分岔考虑(6.1-41)的特殊情形()()2dX X X dt X dB t 6.152ασ=-+- ()生成的动态系统族αϕ()0exp[()] 6.1531[()]tx t B t t x x s B s dsαασϕασ+=-++⎰ ()(6.1-53)是以 x 为初值的(6.1-52)之解。
随机微分方程随机微分方程(RDE)是一类在数学物理、工程、生物和社会科学中广泛使用的方程,它们描述了系统中存在的现象,如扩散、涡旋及系统中动力学的变化。
随机微分方程不仅是有效模型研究非线性随机系统,而且可以用来研究各种运动系统,如建筑物动力学、涡旋及垂直运动等。
随机微分方程通常由两部分组成,分别为随机微分方程的微分部分和随机部分。
在随机微分方程的微分部分,有一个变量,它描述了系统中的变化。
在随机微分方程的随机部分,有一个随机变量,它描述了系统中的扰动。
随机变量的取值受噪声因素的影响,可以是随机的,也可以是有规律的。
随机微分方程的主要方法有微分法、函数法和抽象法三种。
微分法求解随机微分方程主要包括解析法、转换法和数值法三类。
解析法利用变量分离、积分变换、积分变量等技巧求解随机微分方程;转换法是把随机微分方程转换成一类新的积分问题,使其可以用积分方法求解;数值法则是使用数值方法求解随机微分方程,包括差分技术和差分进化方法。
函数法是研究以非线性和随机的函数作为系统的动力模型的方法,其研究的核心内容是关于随机函数在随机微分方程空间上的函数变换,从而求解随机微分方程。
抽象法把随机微分方程分解成一类线性系统,并用线性系统的解析和数值解法解决,从而求解实际中的随机微分方程。
随机微分方程具有广泛的应用,可以用来研究扩散性的现象,如扩散现象的实时监测;也可以用来研究各种运动系统,如涡旋、振动以及垂直运动等。
此外,随机微分方程可以用来研究金融市场中的随机现象,如可能出现的风险和投资回报。
总而言之,随机微分方程是一种用于描述非线性随机系统及其动力学行为的有效模型,具有广泛的应用。
举凡物理、工程、生物和社会学等科学领域,都可以利用随机微分方程来描述扩散、涡旋和系统动力学等现象。
随机微分方程(stochastic differential equation,sde) 1. 引言1.1 概述随机微分方程(Stochastic Differential Equation,SDE)是一类描述随机现象的微分方程。
相比于传统的确定性微分方程,SDE中包含了一个或多个随机项,能够更准确地描述现实世界中的不确定性和变动性。
SDE在各个领域中广泛应用,特别是金融学、物理学和生物学等领域。
1.2 文章结构本文将从以下几个方面介绍随机微分方程及其应用:定义与基本概念、解随机微分方程的方法与技巧,以及在实际问题中的应用。
具体可以分为三个主要部分:引言、主体内容和结论展望。
1.3 目的本文旨在介绍随机微分方程的基本概念、解法和应用,并探讨其在金融学、物理学和生物学等领域中的实际应用。
通过对随机微分方程的深入了解,读者可以更好地理解和利用该方法来解决实际问题,并对未来研究提出展望。
以上为“1. 引言”部分的内容。
2. 随机微分方程的定义与基本概念2.1 随机过程简介随机过程是一类描述随着时间推移而随机变化的数学模型。
它可以看作是时间参数上的一族随机变量的集合。
随机过程常用于描述具有随机性质的现象,如金融市场中的股票价格、天气预报中的温度变化等。
2.2 随机微分方程的定义随机微分方程是一类描述含有随机项(通常为噪声)的微分方程。
它通常采用以下形式表示:dX(t) = a(X(t), t)dt + b(X(t), t)dW(t)其中,X(t)是未知函数,a(X(t), t)和b(X(t), t)是已知函数,dW(t)表示Wiener 过程(也称为布朗运动或白噪声)。
这个方程表示了X在无穷小时间段dt内发生微小变化dX(t),其中包含一个确定性项a(X(t), t)dt和一个随机项b(X(t), t)dW(t)。
2.3 常见的随机微分方程模型在实际应用中,有许多不同类型的随机微分方程模型被广泛使用。
- Ornstein-Uhlenbeck 过程:该模型描述了维持平衡状态的粒子在受到随机扰动时的演化过程。