北师大版初中数学,九年级上册详细知识点
- 格式:docx
- 大小:286.50 KB
- 文档页数:7
北师大版数学九年级上知识点总结数学作为一门重要的学科,对于学生的思维能力和逻辑推理能力的培养起着至关重要的作用。
北师大版数学九年级上册将九年级的数学知识点进行了系统的总结和整理,帮助学生更好地掌握数学知识。
下面就让我们来回顾一下九年级上册的数学知识点。
一、有理数有理数是指可以用分数形式表示的数,包括整数、正小数、负小数等。
在九年级上册中,学生对有理数进行了更深入的学习。
他们学会了有理数的加减乘除运算法则,掌握了有理数间的大小关系判断,熟练运用有理数进行实际问题的解答。
二、代数与方程代数是数学中的重要分支,它以字母(未知数)表示数,通过数学运算的规则进行推理和计算。
在九年级上册中,学生学习了一元一次方程的概念和性质,了解了解方程的解的含义,掌握了通过变形和等式的性质解决方程的方法。
此外,他们还学习了方程组的概念和性质,进一步拓展了代数运算的应用。
三、比例与函数比例是数学中重要的概念之一,它可以帮助我们解决实际生活中的很多问题。
在九年级上册中,学生学习了比例的定义和性质,掌握了比例的四种基本运算,学会了利用比例来解决各种实际问题。
此外,他们还学习了函数的概念和性质,掌握了函数的表示方法和运算规则,了解了函数的图象和函数关系的变化规律。
四、几何几何是数学中研究空间形状、大小和相对位置关系的学科。
在九年级上册中,学生学习了圆和圆的性质,掌握了判断圆与圆的位置关系和圆的切线的方法。
此外,他们还学习了三角形的概念和性质,熟练掌握了三角形相似性质的判断和使用,了解了三角形的内角和外角的性质等。
五、统计与概率统计与概率是数学中与实际生活密切相关的内容。
在九年级上册中,学生学习了统计图表的分析和应用,包括直方图、折线图、饼图等,熟练使用统计图表解决实际问题。
此外,他们还学习了概率的概念和性质,掌握了概率计算的方法和概率事件的判断。
总结起来,九年级上册的数学知识点内容丰富多样,不仅扩展了学生的数学思维,而且培养了学生的数学应用能力。
北师大版九年级数学知识点汇总(总16页)第一章整式与代数式一、定义1、定义1:整式整式是由常数和未知数的乘积以及未知数的幂次构成的一个或多个项的表达式。
2、定义2:代数式代数式是数学中由常数、未知数、及他们的运算符号组成的符号表达式的总称。
二、运算1、加减运算在加减运算中,同类项要求具有相同的底数和指数,再将它们的系数相加减,整式中一些未知数有相同指数,可以合并为一项。
2、乘除运算乘除运算中,同一式子中的若干未知数及其指数要求相同,否则将它们拆开,系数则相乘、相除,未知数则相乘、相除。
三、同类因式1、定义:同类因式是指有相同底数和指数的项。
2、形式当底数相同,有两种形式出现:(1)乘积形式,如:(a+b)2;(2)对比形式,如a2:b2;当指数相同,有三种形式出现:(1)口诀形式,如:a2b2;(2)引号形式,如:(a+b)2;(3)下标形式,如:a2/b2。
第二章平方差一、定义1、定义1:平方平方是数学中指一个数的平方,也可以表示为n²。
2、定义2:差差是指在数学中表示两个或多个数之间的差,也可以表示为a-b。
二、运算1、解平方差要解方程:x²-a=b,须将a和b分别平方,变为x²-a²=b²,再根据等式左右两边分别加或减a²,变为:x²±2a x±a²=b²,再用平方根法求出x的值。
2、完全平方差要解方程:ax²+2bx+c=0,首先设:x²+2px+q=0,其中p=b/a,q=c/a,再将上式化为完全平方差的形式:(x+p)²=q-p²,最后解出 x=–p±√q–p² 。
三、巧解平方差当a、b、c的数值比较简单且不能完全平方差时,则可用巧解方法。
只要将a、b、c 做互质处理,即将a与b、c求公约数,将a、b、c分解为两个数的乘积,如果形式中乘积可以分解完全平方式,则可用巧解方法解方程。
北师大九年级数学上册一、章节知识点总结。
1. 特殊平行四边形。
- 矩形。
- 定义:有一个角是直角的平行四边形是矩形。
- 性质:- 四个角都是直角。
- 对角线相等。
- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。
- 判定:- 有一个角是直角的平行四边形是矩形。
- 对角线相等的平行四边形是矩形。
- 有三个角是直角的四边形是矩形。
- 菱形。
- 定义:有一组邻边相等的平行四边形是菱形。
- 性质:- 四条边都相等。
- 对角线互相垂直,且每条对角线平分一组对角。
- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。
- 判定:- 有一组邻边相等的平行四边形是菱形。
- 对角线互相垂直的平行四边形是菱形。
- 四条边都相等的四边形是菱形。
- 正方形。
- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
- 性质:- 四条边都相等,四个角都是直角。
- 对角线相等且互相垂直平分,每条对角线平分一组对角。
- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。
- 判定:- 有一组邻边相等的矩形是正方形。
- 有一个角是直角的菱形是正方形。
2. 一元二次方程。
- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。
- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。
- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。
初三上册数学知识点归纳北师大版
一、数的基本概念
1. 数的定义:数是用来表示物体数量的符号。
2. 计数单位:计数单位有个、十、百、千、万等。
3. 数的种类:自然数、真分数、假分数、分数、整数、有理数、无理数等。
二、数论
1. 因数分解:把一个数拆分成几个乘积,这几个乘积就是这个数的因数。
2. 最大公约数:两个或多个数的公约数中最大的一个数叫做这几个数的最大公约数。
3. 最小公倍数:两个或多个数的公倍数中最小的一个数叫做这几个数的最小公倍数。
4. 约分:把一个分数的分子和分母都除以它们的最大公约数,使分子分母不再有公约数,这称为约分。
三、代数
1. 平方根:一个数的平方根是指这个数的平方等于这个数的数。
2. 平方差:平方差是指两个数的平方之差。
3. 平方和:平方和是指两个数的平方之和。
4. 立方根:一个数的立方根是指这个数的立方等于这个数的数。
四、几何
1. 平面几何:平面几何是指在平面上的几何图形、角、弧、圆等的计算。
2. 空间几何:空间几何是指在三维空间上的几何图形、体积、表面积等的计算。
3. 直角三角形:直角三角形是指三角形中有一个内角为90°的
三角形。
4. 等腰三角形:等腰三角形是指三角形中两条边长相等的三角形。
九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
初三(上)重点知识点汇总第1课 一元二次方程1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2) 一元二次方程的一般形式:_________。
其中a 为二次项系数,b 为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a +=或者x a +=∴x a =-±注意:若b<0,方程无解(2)配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解(3)公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:_________________0∆>⇔方程有两个不相等的实根:x =240b ac -≥)⇔()f x 的图像与x 轴有两个交点0∆=⇔方程_____________实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点(4)因式分解法通过因式分解,把方程变形为(-)(-)0a x m x n =,则有=x m 或x n =。
步骤:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③另每一个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,他们的解救是原方程的根。
注:(1)因式分解常用的方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法。
北师大版九年级上册数学知识点总结第二十一章二次根式一.知识框架二.知识概念二次根式:一样地,形如√ā(a≥0)的代数式叫做二次根式。
当a>0时,√a表示a的算数平方根,其中√0=0对于本章内容,教学中应到达以下几方面要求:1.知道二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 知道并掌控下列结论:1) 是非负数; (2) ;(3) ;4. 掌控二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.一样地,任何一个关于x的一元二次方程,•经过整理,•都能化成以下情势ax2+bx+c=0(a≠0).这种情势叫做一元二次方程的一样情势.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在知道一元二次方程的条件下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一样步骤:现将已知方程化为一样情势;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的情势,如果q≥0,方程的根是x=-p±√q;如果qr;P在⊙O上,PO=r;P在⊙O内,PO8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
北师大版初中数学定理知识点汇总[ 九年级 (上册 )第一章证明 (二)※等腰三角形的“三线合一” :顶角平分线、底边上的中线、底边上的高互相重合。
※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于 30o,这它所对的直角边必然等于斜边的一半。
※有一个角等于 60o的等腰三角形是等边三角形。
※如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:a2 b 2c2(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)※垂直平分线是垂直于一条线段并且平分这条线段的直线。
(注意着重号的意义).........<直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,A AAO=BO=CO )D FOOC CB B E图 1图 2※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
( 如图 2 所示, OD=OE=OF)第二章一元二次方程※只含有一个未知数的整式方程,且都可以化为ax 2bx c0 (a、b、c为常数, a≠ 0)的形式,这样的方程叫一元二次方程。
......※把 ax2bx c 0 (a、b、c为常数,a≠0)称为一元二次方程的一般形式, a 为二次项系数; b 为一次项系数; c 为常数项。
※解一元二次方程的方法:①配方法< 即将其变为(x m) 20的形式>b b24ac②公式法 x2a(注意在找 abc 时须先把方程化为一般形式)③分解因式法把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
最新新北师大版九年级数学(上册)知识点汇总
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
第六章反比例函数
第一章特殊平行四边形
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
1.2 矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形
.矩形是特殊的平行四边形.
..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称
图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
1.3 正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.
※
※
鹏翔教图3。
北师大九年级上数学必背知识点一、整式运算1. 整式的概念:由常数、变量及它们的乘积与积的和组成的代数式,称为整式。
2. 整式的加减法:将同类项的系数相加(或相减),并保持同类项不变。
3. 整式的乘法:将各项的乘积相加,并合并同类项。
4. 整式的除法:用整式除以整式时,先用除数的首项去除被除数的首项,得商的首项,然后用商的首项乘以除数的每一项,并将所得乘积加至被除式中,再用除数的首项去除被除数的首项,重复上述步骤,直到被除数的次数小于除数的次数为止。
二、一次函数与线性方程1. 一次函数的概念:形如y = kx + b(其中k、b为常数,k≠0)的函数称为一次函数,也叫线性函数。
2. 一次函数的图像特征:一次函数的图像是一条直线,斜率k决定了直线的斜率方向和倾斜程度,截距b决定了直线与y轴的交点。
3. 线性方程的解法:对于形如ax + b = 0(其中a、b为常数,a≠0)的方程,可以通过变形、移项和合并同类项等方法求解。
三、多边形与三角形1. 多边形的概念:由若干条线段组成的封闭图形称为多边形。
2. 多边形的内角和:n边形的内角和为180°×(n-2)。
3. 三角形的分类:根据边长和角度的关系,三角形可分为等边三角形、等腰三角形和一般三角形。
4. 直角三角形的性质:直角三角形的两条直角边的平方和等于斜边的平方。
5. 三角形的相似性:两个三角形对应角相等且对应边成比例,则称这两个三角形相似。
四、平面坐标系与图形的性质1. 平面直角坐标系:平面直角坐标系是由两条相互垂直的数轴组成,分别称为x轴和y轴,它们的交点称为原点O。
2. 点的坐标:在平面直角坐标系中,每个点都有唯一的坐标表示,横坐标表示x轴上的位置,纵坐标表示y轴上的位置。
3. 图形的对称性:图形可以关于某一直线、某一点或原点对称。
4. 图形的平移:将图形中的每个点按照指定的方向和距离进行移动,保持图形的大小和形状不变。
5. 图形的旋转:将图形绕指定的点旋转一定的角度,保持图形的大小和形状不变。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版数学九年级上册课本知识点第一章证明(二)1、(2页)公理三边对应相等的两个三角形全等。
(sss)公理两边及其夹角对应成正比的两个三角形全系列等。
(sas)公理两边及其夹角对应相等的两个三角形全等。
(asa)公理全系列等三角形的对应边成正比、对应角成正比。
推论两角及其中一角的对边对应相等的两个三角形全等。
(aas)2、(3页)定理等腰三角形的两个底角成正比。
3、(4页)推论等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习1.证明:等边三角形的三个角都相等,并且每个角都等于60。
4、(7页)定理存有两个角成正比的三角形就是等腰三角形。
(等角对等边)5、(8页)在证明时,先假设命题的结论不成立,然后推导出定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
6、(11页)定理存有一个角等同于60的等腰三角形就是等边三角形。
7、(12页)定理在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
8、(13页)随堂练1.证明:三个角都成正比的三角形就是等边三角形。
9、(16页)定理直角三角形两条直角边的平方和等于斜边的一半。
10、(17页)定理如果三角形两边的平方和等同于第三边的平方,那么这个三角形就是直角三角形。
11、(18页)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题就是真命题,它的逆命题却不一定就是真命题。
如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称作互逆定理。
12、(23页)定理斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“hl”)13、(26页)定理线段垂直平分线上的的边这条线段两个端点的距离成正比。
14、(27页)定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第一章 特殊平行四边形第1节 菱形的性质与判定一、菱形的性质1、菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)菱形的对边平行且相等。
(2)菱形的对角相等,邻角互补。
(3)菱形的对角线互相平分。
2、菱形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)菱形的四条边相等。
(2)菱形的对角线互相垂直且每一条对角线平分一组对角。
【说明】①菱形是轴对称图形,对角线所在的直线是它的对称轴,所以菱形有两条对称轴。
②菱形是中心对称图形,两条对角线的交点是它的对称中心。
③菱形的两条对角线把菱形分成四个全等的直角三角形,所以菱形的面积等于对角线乘积的一半。
不仅如此,凡是对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来计算。
④菱形的面积有两种求法,第一种是等于对角线乘积的一半,第二种是底乘以高。
⑤菱形中如果有一个角为60°倍。
二、菱形的判定1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、四条边都相等的四边形是菱形。
第2节 矩形的性质与判定一、矩形的性质1、矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
(1)矩形的对边平行且相等。
(2)矩形的对角相等,邻角互补。
(3)矩形的对角线互相平分。
2、矩形是特殊的平行四边形,它具有一般平行四边形不具有的特殊性质。
(1)矩形的四个角都相等,都是直角。
(2)矩形的对角线相等。
【说明】①矩形是轴对称图形,经过每组对边中点的直线是它的两条对称轴。
②矩形是中心对称图形,两条对角线的交点是它的对称中心。
③直角三角形斜边上的中线等于斜边的一半。
④若一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形。
⑤矩形的周长等于长与宽的和的2倍,矩形的面积等于长与宽的积。
二、矩形的判定1、有一个角是直角的平行四边形叫做矩形。
(定义)2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
北师版数学九上知识点总结第一章直线和线段1.1 直线的两条性质直线是由无数个点连在一起形成的,直线没有起点和终点,直线的方向是不断延伸的,它有无穷大的长度。
1.2 线段的两个性质线段是直线上的一段有限的部分,线段有起点和终点,它的长度是有限的。
第二章角2.1 角的概念角是由两条半直线的公共端点组成的,分为两个部分,分别是两角的两个角的角度。
2.2 角的度量用角度来表示角的大小,角度是圆的一个单位,一周有360度。
第三章三角形3.1 三角形的概念由三条线段组成的一个图形叫做三角形,其中每两条线段的交点叫做“顶点”,每两条线段叫做“边”。
3.2 三角形的种类按照边长和角度分类,三角形包括等边三角形、等腰三角形、直角三角形等等。
第四章四边形4.1 四边形的概念由四条线段组成的一个图形叫做四边形,其中每两条线段的交点叫做“顶点”,每两条线段叫做“边”。
4.2 四边形的种类四边形包括平行四边形、矩形、正方形、梯形等等。
第五章圆5.1 圆的概念圆是一个平面上的一组点,这组点到一个固定的点的距离恒定,这个固定的点叫做圆心,恒定的距离叫做半径。
5.2 圆的性质圆的直径是圆的两个关于圆心的相对的而且经过圆心的线段,它的长度等于圆的半径的两倍。
第六章长方体和正方体6.1 长方体的概念长方体是一个由六个矩形组成的一个空间图形,其中对立的矩形面上的边是平行的,它们是正交的。
6.2 长方体的面积和体积长方体的表面积等于6倍的底面积,长方体的体积等于底面积乘以高。
第七章综合7.1 透视原理及其应用透视是一种表示物体在三维空间中的方法,在绘画和图像处理中有广泛的应用。
7.2 微积分的发展和应用微积分是数学中的一个分支,它研究的对象是函数的极限、导数、积分和无穷级数。
第八章直角三角形8.1 直角三角形的性质直角三角形有个直角,两个锐角,它的斜边最长,两个锐角的和等于90度。
8.2 直角三角形的应用利用直角三角形的性质可以解决很多实际问题,比如通过测量高度和斜边的长度可以计算出斜边的长度。
九年级数学上册知识点归纳(最新北师大版)(八下前情回顾)※平行四边的定义:两组对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线.※平行四边形的性质:平行四边形的对边平行且相等,对角相等,对角线互相平分,是中心对称图形(对称中心是对角线的交点),对角线分成的四个三角形面积相等(且有两全等),面积=底×高(S=ah).补充:(中心对称图形)过对称中心的任意一条直线都可将其面积平分.※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两条对角线互相平分的四边形是平行四边形.※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等.这个距离称为平行线之间的距离.第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形.※菱形的性质:(1)具有一般平行四边形的一切性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.※菱形的判别方法:(1)四条边都相等的四边形是菱形.(2)一组邻边相等的平行四边形是菱形.(3)对角线互相垂直的平行四边形是菱形.2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形.矩形是特殊的平行四边形.※矩形的性质:具有一般平行四边形的一切性质,且对角线相等,四个角都是直角(矩形既是中心对称图形,又是轴对称图形,有两条对称轴,是分别过对边中点的两条直线);面积=长×宽(S=ab). ※矩形的判定:(1)有一个内角是直角的平行四边形叫矩形(根据定义).(2)对角线相等的平行四边形是矩形.(3)四个角都相等的四边形是矩形.※推论:直角三角形斜边上的中线等于斜边的一半.※推论的逆命题:如果一个三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形,且这条边为直角三角形的斜边. 3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形.※正方形的性质:正方形具有一般平行四边形、矩形、菱形的一切性质(正方形既是中心对称图形,也是轴对称图形,有四条对称轴);对角线分成的四个等腰直角三角形全等;面积=边长的平方=21对角线的平方(S=a ²=21b ²) ※正方形常用的判定:(1)有一个内角是直角的菱形是正方形; (2)邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形.正方形、矩形、菱形和平行边形四者之间的关系(如图所示):【补充一】 梯形1.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形.2.梯形的分类:⎪⎩⎪⎨⎧⎩⎨⎧等腰梯形直角梯形特殊梯形一般梯形)2()1(⑴直角梯形:有一个角是直角的梯形;⑵等腰梯形:两腰相等的梯形; ①等腰梯形的性质:a.等腰梯形两腰相等,两底平行;b.等腰梯形同一底边上的两个角相等;c.等腰梯形的两条对角线相等.d.等腰梯形是轴对称图形,它只有1条对称轴,过两底中点的直线是它的对称轴. ②等腰梯形的判定:a.两腰相等的梯形是等腰梯形;b.在同一底上的两个角相等的梯形是等腰梯形;c.对角线相等的梯形是等腰梯形。
北师大版初中数学九年级上册知识点整理重点了解之前或之后内容补充仅供参考第一章特殊平行四边形1.菱形的性质与判定菱形:有一组邻边相等的平行四边形是菱形;菱形是轴对称图形,有两条对称轴,对角线所在直线为其对称轴;定理菱形的四条边相等;定理菱形的对角线互相垂直平分;判定定理:定理对角线互相垂直的平行四边形是菱形;定理四边相等的四边形是菱形。
2.矩形的性质与判定矩形:有一个角是直角的平行四边形叫做矩形;矩形是轴对称图形,有两条对称轴,对边中点连线所在直线为其对称轴;定理矩形的四个角都是直角;定理矩形的对角线相等;定理(推论)直角三角形斜边上的中线等于斜边一半;判定定理:定理对角线相等的平行四边形是矩形;定理有三个角是直角的四边形是矩形。
3.正方形的的性质与判定正方形:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形;正方形是轴对称图形,有四条对称轴,对角线和对边中点连线所在直线分别为其对称轴;定理正方形的四个角都是直角,四条边相等;定理正方形的对角线相等且互相垂直平分;判定定理:定理有一组邻边相等的矩形是正方形;定理对角线互相垂直的矩形是正方形;定理有一个角是直角的菱形是正方形;定理对角线相等的菱形是正方形;平行边形、菱形、矩形和正方形四者之间的关系:附:梯形:一组对边平行且另一组对边不平行的四边形叫做梯形;梯形分类:两条腰相等的梯形叫做等腰梯形;一条腰和底垂直的梯形叫做直角梯形;等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
等腰梯形的判定:同一底上的两个内角相等的梯形是等腰梯形。
第二章一元二次方程1.认识一元二次方程一元二次方程:只含有一个未知数x,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式的整式方程,叫做一元二次方程;把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数;列表不断缩小范围求解一元二次方程的近似解;二分法确定一元二次方程的近似解。
2.用配方法求解一元二次方程配方法:通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法称为配方法;即将ax2+bx+c=0(a,b,c为常数,a≠0)变为(x+m)2=0的形式;配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成(x+m)2=0的形式;⑥两边开方求其根。
3.用公式法求解一元二次方程求根公式:公式法:用求根公式解一元二次方程的方法称为公式法;对于一元二次方程ax2+bx+c=0(a≠0),根的情况判定:当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根;根的判别式:b2-4ac,通常用希腊字母“△”来表示,读作delta;4.用因式分解法求解一元二次方程如果a·b=0,那么a=0或b=0;因式分解法:把方程的一边变成0,另一边变成两个一次因式的乘积来求解,这种解一元二次方程的方法称为因式分解法;(原来的一元二次方程转化成了两个一元一次方程;)主要步骤:提公因式/十字相乘;5.*一元二次方程的根与系数的关系一元二次方程的根完全由它的系数确定,求根公式就是根与系数关系的一种形式;如果方程ax2+bx+c=0(a≠0)有两个实数根x1、x2,那么附:已知方程的一根,求另一根;不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:①x12+x22=(x1+x2)2-2x1x2;②1/x1+1/x2=(x1+x2)/(x1x2);③(x1-x2)2=(x1+x2)2-4x1x2;④(|x1|+|x2|)2=(x1+x2)2-2x1x2+2|x1x2|;⑤x13+x23=(x1+x2)3-3x1x2(x1+x2);⑥其他能用x1+x2或x1x2表达的代数式;已知方程的两根x1、x2,可以构造一元二次方程:x2-(x1+x2)x+x1x2=0;已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根。
6.应用一元二次方程处理实际问题的过程可以进一步概括为:问题(分析抽象)→方程(求解检验)→解答应用二元一次方程(组)求解应用题的步骤(五步):设未知数(设)、列方程(列)、解方程(解)、验证(验)、解答(答);设未知数:求什么设什么;在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑;列方程:找出问题中的等量关系,列出方程;解方程:利用等式的基本性质,求出所列方程的解;验证:验证方程的解是否符合要求、符合实际;解答:将求出的最终结果带入问题,解答问题。
第三章概率的进一步认识1.用树状图或表格求概率利用树状图或表格,可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率;注意:只有等概率事件,才可以利用树状图或表格求出事件发生的概率。
2.用频率估计概率通过大量重复试验,用一件事件发生的频率来估计这一件事件发生的概率;注意:估算出来的数据不是确切的,应用加上“约是”。
第四章图形的相似1.成比例线段两条线段的比:如果选用同一长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n,或写成;其中,线段AB,CD分别叫做这个线段比的前项和后项;如果把m/n表示成比值k,那么,或AB=k·CD;两条线段的比实际上就是两个数的比;成比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段;如果,那么ad=bc;如果ad=bc(a,b,c,d都不等于0),那么;如果(b+d+...+n≠0),那么。
2.平行线分线段成比例一般地,有如下基本事实:两条直线被一组(三条)平行线所截,所得的对应线段成比例;推论平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
3.相似多边形相似多边形:各角分别相等、各边成比例的两个多边形叫相似多边形;六边形ABCDEF 与六边形A1B1C1D1E1F1相似,记作六边形ABCDEF∽六边形A1B1C1D1E1F1,“∽”读作“相似于”;在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上;相似比:相似多边形对应边的比叫做相似比;可以用k表示。
4.探索三角形相似的条件相似三角形:根据相似多边形的定义,三角分别相等、三边成比例的两个三角形叫做相似三角形;定理两角分别相等的两个三角形相似;定理两边成比例且夹角相等的两个三角形相似;定理三边成比例的两个三角形相似;黄金分割:一般地,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比;黄金比:黄金分割点是最优美、最令人赏心悦目的点。
5.*相似三角形判定定理的证明大致证明步骤:在较大三角形上作辅助线,截取与较小三角形对应边相等的线段或对应角相等的角度,构造较小三角形的全等三角形;证较大三角形与所作三角形相似;证较小三角形与所作三角形全等;得出较大三角形与较小三角形相似的结论。
6.利用相似三角形测高利用相似三角形的有关知识测量旗杆(或路灯杆)的高度的方法:①利用阳光下的影子;②利用标杆;③利用镜子反射。
7.相似三角形的性质定理相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比;定理相似三角形的周长比等于相似比,面积比等于相似比的平方。
8.图形的位似位似多边形:一般地,如果两个相似多边形任意一组对应顶点P,P’所在的直线都经过同一个点O,且有OP’=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心;实际上,k就是这两个相似多边形的相似比;三种位置关系的位似五边形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|;附:图形的放大与缩小位似图形上任意一对对应点到位似中心的距离之比等于位似比。
位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例。
像这种特殊的相似变换叫做位似变换,这个交点叫做位似中心。
②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形。
③利用位似的方法,可以把一个图形放大或缩小。
第五章投影与视图1.投影投影:物体在光线的照射下会在地面或其他平面上留下它的影子,这就是投影现象;影子所在的平面称为投影面;中心投影:手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线所形成的投影称为中心投影;平行投影:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影;平行光线与投影面垂直,这种投影称为正投影。
2.视图视图:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图;通常把从正面得到的视图叫做主视图,从左边得到的视图叫做左视图,从上面的得到的视图叫做俯视图;三视图能够大体把一个物体的形状特征用平面图形表示出来;在三种视图中,主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽;因此在画三视图时,对应部分的长度要相等,而且通常把俯视图画在主视图下面,把左视图画在主视图的右边;附:视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上;在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体);在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线;三视图之间要保持长对正,高平齐,宽相等;眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区;点、线、面的投影:①点在一个平面上的投影仍是一个点;②线段在一个平面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。
第六章反比例函数1.反比例函数反比例函数:一般地,如果两个变量x,y之间的对应关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数;反比例函数的自变量x不能为零;反比例函数也可以表示成:y=kx-1(k≠0);xy=k(k≠0);y是x的反比例函数;y与x成反比例,比例系数为k;2.反比例函数的图象与性质反比例函数的图像是由两支曲线(通常称为双曲线)组成的;当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内;反比例函数是中心对称图形,对称中心是坐标原点;反比例函数是轴对称图形,对称轴是y=x和y=-x两条直线;反比例函数的图像,当k>0时,在每一象限内,y的值随x值的增大而减小;当k <0时,在每一象限内,y的值随x值的增大而增大;附:反比例函数的画法的注意事项:①反比例函数的图象不是直线,所以“两点法”是不能画的;②选取的点越多画的图越准确;③画图时注意其美观性(对称性、延伸特征);④双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交;点P(x,y)在双曲线上都有S矩形OAPB=|xy|=|k|,S△OAB=|xy|/2=|k|/2。