三角函数专题练习(G)
- 格式:doc
- 大小:267.05 KB
- 文档页数:2
专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (2)③三角函数零点问题(解答题) (3)④三角函数解答题综合 (6)①三角函数的图象与性质②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (9)③三角函数零点问题(解答题) (12)④三角函数解答题综合 (20)①三角函数的图象与性质设()t f x =,则方程()()2220f x af x ⎡+⎣+⎦=⎤可化为由图象可得:当2t =时,方程()t f x =有2个实数根;当322t <<时,方程()t f x =有4个实数根;①当22m-=时,即②当3-=时,即t=m③当3->时,即t<m②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)由图可知,当1t =或12t -≤<当112t ≤<时,()h x 在区间⎡⎢⎣当21t <-或1t >时,()h x 在区间令ππ2πZ 62,x k k-=+∈故两个零点12,x x关于x故()122πcos cos3x x+=7.(2023春·江西·高一统考期末)已知函数由图可知,30a -≤≤,且21πt t +=,所以()12121ππsin sin 466x x t t ⎛⎫+=-+- ⎪⎝⎭故a 的取值范围为()123,0,sin x x ⎡⎤-+⎣⎦8.(2023春·湖北咸宁·高一统考期末)已知(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合(2)当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()π02f x kf x ⎛⎫++> ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】(1)43310-(2)()3,1--【详解】(1)由题意得,向量()1,3ON = 的相伴函数为()sin 3cos f x x x =+,所以()13πsin 3cos 2sin cos 2sin 223f x x x x x x ⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭∵()85f x =,∴π4sin 35x ⎛⎫+= ⎪⎝⎭.∵ππ,36x ⎛⎫∈- ⎪⎝⎭,∴ππ0,32x ⎛⎫+∈ ⎪⎝⎭,∴23cos 1s πin 335πx x ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)向量()1,3ON = 的相伴函数为()πsin 3cos 2sin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,()π2sin 2cos 03π2π3f x kf x x k x ⎛⎫⎛⎫⎛⎫++=+++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭,cos sin π3π3k x x ⎛⎫⎛⎫+>-+ ⎪ ⎪⎝⎭⎝⎭恒成立.所以①当π06x ≤<,即πππ332x ≤+<时,πcos 03x ⎛⎫+> ⎪⎝⎭,所以πsin π3tan π3cos 3x k x x ⎛⎫+ ⎪⎛⎫⎝⎭>-=-+ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,即max πtan 3k x ⎡⎤⎛⎫>-+ ⎪⎢⎥⎝⎭⎣⎦,由于πππ332x ≤+<,所以πtan 3x ⎛⎫+ ⎪⎝⎭的最小值为πtan 33=,所以max πtan 33k x ⎡⎤⎛⎫>-+=- ⎪⎢⎥⎝⎭⎣⎦;②当π6x =,ππ32x +=,不等式ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭化为10>成立.③当π11π612x <≤,ππ5π234x <+≤时,πcos 03x ⎛⎫+< ⎪⎝⎭,。
高中数学三角函数专项练习题(含答案)一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()33f t f t t ⎛⎫⎛⎫≤-- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.4.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.5.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos BAC ∠=,则AD =__________. 6.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.7.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎫⎛⎫+∈ ⎪⎪⎝⎭⎭所有根的和为712π;③函数()y f x =与函数()y g x =图象关于724x π=对称. 8.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.9.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,213.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( )A .27π B .25π C .2π D .23π14.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥15.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,且有()02f ()()1g x f x =-的图象在()0,2π内有5个不同的零点,则ω的取值范围为( )A .5571,2424⎛⎤⎥⎝⎦B .5571,2424⎛⎫ ⎪⎝⎭C .4755,2424⎛⎫ ⎪⎝⎭D .4755,2424⎛⎤ ⎥⎝⎦16.已知函数()132,f x x x R =∈,若当02πθ≤≤时,(sin )(1)0f m f m θ+->恒成立,则实数m 的取值范围是( ) A .0,1 B .,0C .1,D .(),1-∞17.已知双曲线22221(,0)x y a b a b-=>的两条渐近线分别与抛物线24y x =交于第一、四象限的A ,B 两点,设抛物线焦点为F ,若7cos 9AFB ∠=﹣,则双曲线的离心率为( )A 2B .33C 5D .218.高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数[]y x =,[]x 表示不超过实数x 的最大整数,如[]1.71=,[]1.22-=-,{}x 表示x 的非负纯小数,即{}[]x x x =-.若函数{}1log a y x x=-+(0a >且1a ≠)有且仅有3个零点,则实数a 的取值范围为( ) A .(]3,4B .()3,4C .[)3,4D .[]3,419.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .920.若函数()()11,0sin ,0133,1x x x f x x x x ππ⎧-++≤⎪=-<<⎨⎪-≥⎩,满足()()()()()f a f b f c f d f e ====且a 、b 、c 、d 、e 互不相等,则a b c d e ++++的取值范围是( )A .340,log 9⎛⎫ ⎪⎝⎭B .390,log 4⎛⎫ ⎪⎝⎭C .340,log 3⎛⎫ ⎪⎝⎭D .330,log 4⎛⎫ ⎪⎝⎭三、解答题21.已知函数()cos f x x =. (1)若,αβ为锐角,5()5f αβ+=-, 4tan 3α=,求cos2α及tan()βα-的值;(2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.22.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由.23.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.24.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.25.已知函数()223sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.26.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S .27.已知向量 2(2,22()),(,2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数. 28.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.29.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 30.已知函数()()22sin cos 2sin f x x x x =+- (1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦,2.②④3.20π4.③④ 5.46.28π7.①③8. 3 21,32⎡⎢⎣⎦9.π3##60°10.⎡⎢⎣⎦ 二、单选题 11.A 12.A 13.A 14.B 15.A 16.D 17.B 18.C 19.A 20.C 三、解答题21.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】 【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2coscos)sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】 解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==--则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立, 令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立,又函数1y t t=+在[5,3]t ∈--单调递增,∴当5t =-时,min 126()5t t +=-,265a ∴≤-,则a 的最大值为265-; (3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+= , cos cos()22αβαβα+-=+coscossinsin2222αβαβαβαβ+-+-=-,cos cos()22αβαββ+-=-coscos+sinsin2222αβαβαβαβ+-+-=,cos cos 2coscos22αβαβαβ+-∴+=,又2cos()2cos12αβαβ++=-,232coscos2cos 12222αβαβαβ+-+∴-+=, 则24cos 4coscos10222αβαβαβ++--+=, 22(2coscos)1cos 0222αβαβαβ+---+-=, 即22(2coscos)sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩,又0απ<<,0βπ<<, 3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题. 22.(1)S =⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)100001 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值. 【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦ ∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xyxy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题.23.(1)()fx 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案.【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用. 24.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=,022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题. 25.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2 【解析】 【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π,22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭; (2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2;当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题26.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n +【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题. 27.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =(2,2cos2(ωx +φ)),b =(22,22-),∴f (x )222222a b =⋅=⨯-⨯cos2(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1.∵0<φ2π<,∴φ4π=. ∴f (x )=1﹣cos2(44x ππ+)=1+sin2x π,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4. 而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018; (Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点; ②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点; ③当0≤m <1时,两函数的图象在[0,3]内有两个共点. 综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点; ②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点; ③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.28.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a-<-,即2a >,min ()(1)2f x g =-=. ②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+. 综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能.29.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1-【解析】 【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+.(2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈-⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=-时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力. 30.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[2]-.【解析】 【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域. 【详解】(1)由题得1cos2()1sin 22sin 2cos2)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ. (2)令222,242k x k k Z πππππ-≤+≤+∈,所以3,88k x k k Z ππππ-≤≤+∈,所以函数的单调增区间为3[],88k k k Z ππππ-+∈,.(3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-. 【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.。
三角函数专项训练令狐采学圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.对边别为a,b,c.已内A,B,C所的分2.在△ABC中,角知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.为锐tanα=,cos(α+β)=﹣.3.已知α,β角,值(1)求cos2α的;值(2)求tan(α﹣β)的.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小.值内A,B,C所的分对边别为a,b,c.已6.在△ABC中,角知asinA=4bsinB,ac=(a2﹣b2﹣c2)值(Ⅰ)求cosA的;(Ⅱ)求sin(2B﹣A)的值设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;将数y=f(x)的象上各点的坐伸原的图横标长为来(Ⅱ)函个单2倍(坐不),再得到的象向左平移纵标变将图位,图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.对边别为a,b,c.已内A,B,C所的分8.在△ABC中,角知a>b,a=5,c=6,sinB=.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值9.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知△ABC 的面积为.(1)求sinBsinC ;(2)若6cosBcosC =1,a =3,求△ABC 的周.长10.△ABC 的角内A ,B ,C 的分对边别为a ,b ,c ,已知sin (A+C )=8sin2.(1)求cosB ;(2)若a+c =6,△ABC 的面积为2,求b .11.已知函数f (x )=cos (2x﹣)﹣2sinxcosx .(I )求f (x )的最小正周期;(II )求:证当x∈[﹣,],时f (x )≥﹣.12.已知向量=(cosx ,sinx ),=(3,﹣),x∈[0,π].(1)若,求x 的;值(2)记f(x)=,求f(x)的最大和最小以及值值对应值的x的.13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.值(1)求ω的;单调递区间(2)求f(x)的增.内A,B,C所的分对边别为a,b,c,已15.在△ABC中,角知b+c=2acosB.证A=2B;(1)明:(2)若cosB=,求cosC的.值16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的纵标变图位,得个单倍(坐不),再把得到的象向左平移值图g()的.到函数y=g(x)的象,求对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的.值对边别为a,b,c,已内A,B,C所的分18.在△ABC中,角知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.参考答案圆径为1.在△ABC中,角A、B、C对应边a、b、c,外接半1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.证a2+b2﹣c2=ab;(1)明(2)求角C和边c.证1)∵在△ABC中,角A、B、C对应边【解答】明:(圆径为1,a、b、c,外接半∴由正弦定理得:=2R=2,∴sinA=,sinB=,sinC=,∵2(sin2A﹣sin2C)=(a﹣b)sinB,∴2()=(a﹣b)•,简a2+b2﹣c2=ab,化,得:故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cosC===,解得C=,∴c=2sinC=2•=.对边别为a,b,c.已2.在△ABC中,角内A,B,C所的分知bsinA=acos(B﹣).(Ⅰ)求角B的大小;值(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.3.已知α,β角,为锐tanα=,cos(α+β)=﹣.值(1)求cos2α的;值(2)求tan(α﹣β)的.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.边ABCD中,∠ADC=90°,∠A=45°,AB=4.在平面四形2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最值小.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m 的最小值为.6.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知asinA =4bsinB ,ac =(a2﹣b2﹣c2)(Ⅰ)求cosA 的;值(Ⅱ)求sin (2B﹣A )的值【解答】(Ⅰ)解:由,得asinB =bsinA ,又asinA =4bsinB ,得4bsinB =asinA ,式作比得:两,∴a =2b .由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA =4bsinB ,得.由(Ⅰ)知,A 角,为钝则B 角,为锐∴.于是,,故.设数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0 7.函<ω<3,已知f()=0.(Ⅰ)求ω;图横标长为来将数y=f(x)的象上各点的坐伸原的(Ⅱ)函个单纵标变将图位,2倍(坐不),再得到的象向左平移图g(x)在[﹣,]上的最得到函数y=g(x)的象,求值小.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx ﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f (x )=sin (2x﹣),函将数y =f (x )的象上各点的坐伸原的图横标长为来2倍(坐不),得到函纵标变数y =sin (x﹣)的象;图再得到的象向左平移将图位,得到个单y =sin (x+﹣)的象,图∴函数y =g (x )=sin (x﹣);当x∈[﹣,],时x﹣∈[﹣,],∴sin (x﹣)∈[﹣,1],∴当x =﹣,时g (x )取得最小是值﹣×=﹣.8.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c .已知a >b ,a =5,c =6,sinB =.(Ⅰ)求b 和sinA 的;值(Ⅱ)求sin (2A+)的.值【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.对边别为a,b,c,已知9.△ABC的角内A,B,C的分△ABC的面积为.(1)求sinBsinC;长(2)若6cosBcosC=1,a=3,求△ABC的周.积S△ABC=【解答】解:(1)由三角形的面公式可得acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.对边别为a,b,c,已知内A,B,C的分10.△ABC的角sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;时f(x)≥﹣.证当x∈[﹣,],(II)求:【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].值(1)若,求x的;值值对应(2)记f(x)=,求f(x)的最大和最小以及值的x的.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,时sinx=1,不合意,题当cosx=0,时tanx=﹣,当cosx≠0,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,值值3,当x=0,时f(x)有最大,最大时f(x)有最小,最小值值﹣2.当x=,13.在△ABC中,∠A=60°,c=a.值(1)求sinC的;积(2)若a=7,求△ABC的面.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,∴S△ABC=acsinB=×7×3×=6.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的;值单调递区间(2)求f(x)的增.【解答】解:f(x)=2sinωxcosωx+cos2ωx,=sin2ωx+cos2ωx,=,数为π,由于函的最小正周期则T=,:解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),数单调递区间为[](k∈Z).所以函的增:15.在△ABC 中,角内A ,B ,C 所的分对边别为a ,b ,c ,已知b+c =2acosB .(1)明:证A =2B ;(2)若cosB =,求cosC 的.值【解答】(1)明:∵证b+c =2acosB ,∴sinB+sinC =2sinAcosB ,∵sinC =sin (A+B )=sinAcosB+cosAsinB ,∴sinB =sinAcosB﹣cosAsinB =sin (A﹣B ),由A ,B∈(0,π),∴0<A﹣B <π,∴B =A﹣B ,或B =π﹣(A﹣B ),化为A =2B ,或A =π(舍去).∴A =2B .(II )解:cosB =,∴sinB ==.cosA =cos2B =2cos2B﹣1=,sinA ==.∴cosC =﹣cos (A+B )=﹣cosAcosB+sinAsinB =+×=.16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.单调递区间(Ⅰ)求f(x)的增;图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的个单纵标变图位,得倍(坐不),再把得到的象向左平移图g()的.值到函数y=g(x)的象,求【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx ﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x =sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,数区间为[kπ﹣,kπ+],k∈Z.可得函的增图横标长来2(Ⅱ)把y=f(x)的象上所有点的坐伸到原的图纵标变y=2sin(x﹣)+﹣1的象;倍(坐不),可得个单数y=g(x)=图位,得到函再把得到的象向左平移图2sinx+﹣1的象,∴g()=2sin+﹣1=.对边别为a,b,c,已17.在△ABC中,角内A,B,C所的分知asin2B=bsinA.(1)求B;值(2)已知cosA=,求sinC的.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.对边别为a,b,c,已18.在△ABC中,角内A,B,C所的分知b+c=2acosB.证A=2B;(Ⅰ)明:(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)明:∵证b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.对边别a,b,c,且19.在△ABC中,角A,B,C所的分是+=.证sinAsinB=sinC;(Ⅰ)明:(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)明:在△证ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.20.在△ABC中,AC=6,cosB=,C=.长(1)求AB的;值(2)求cos(A﹣)的.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.为内∵A三角形的角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.义与(1)求f(x)的定域最小正周期;单调(2)讨论f(x)在区间[﹣,]上的性.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.数义为{x|x≠kπ+,k∈Z},∴x≠kπ+,即函的定域则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则数T=;函的周期(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,数区间为kπ﹣得kπ﹣<x<kπ+,k∈Z,即函的增(,kπ+),k∈Z,时区间为﹣,),k∈Z,当k=0,增(∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,数减区间为kπ+得kπ+<x<kπ+,k∈Z,即函的(,kπ+),k∈Z,时减区间为﹣,﹣),k∈Z,当k=﹣1,(∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函的∈数减区间为[﹣,﹣),区间为﹣,].增(对边别为a,b,c,已知内A,B,C的分22.△ABC的角2cosC(acosB+bcosA)=c.(Ⅰ)求C;长(Ⅱ)若c=,△ABC的面积为,求△ABC的周.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0简已知等式利用正弦定理化得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
高二数学专题复习三角函数练习题(含答案)一、选择题(每题5分,共75分)1.若α是第三象限角,则 2所在的象限是()A.第一或第二象限;B.第三或第四象限;C.第一或第三象限;D.第二或第四象限.)2.(3.()4.()5.()6.将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再将所得的图象向右平移 12个单位长度,得到函数的图象,则()7.已知函数f(x)=Atan(ωx+φ)y=f(x)的部分图象如图,则f()=()8.=()9.在中,则是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形10.已知函数的图象如图所示,则φ的值是()11.已知sinα+cosα=2,则tanα=()12.已知sin(﹣x)=cos(x﹣),则tan(x﹣)等于()13.在中,分别是角的对边,且()14.已知角在第四象限内,()15.()二、解答题(共15题,共75分)16.已知中,角,,所对的边分别为,,,满足,且。
(1)求角的大小;(2)点在线段的延长线上,且,若,求的面积.17.函数的部分图像如图所示,把函数的图像向右平移个单位,得到函数的图像.(1)当x∈R时,求函数的单调递增区间;(2)对于,是否总存在唯一的实数,使得成立?若存在,求出实数m的值或取值范围;若不存在,说明理由18.已知中,内角,,所对的边分别为,,,且满足.。
(1)求角的大小;(2)设是边上的高,且求面积的最小值.19.(1)求函数的单调递减区间;(2)求实数的取值范围.20.在中,角A,B,C 的对边分别为a,b,c,.(1)求A;(2)若的面积为,点D 在线段AC 上,且,求BD的最小值.参考答案一、选择题第1题第2题第3题第4题第5题DBACB二、解答题第16题(1)将sinA =3sinB 代入33sinAsinB -cosBcisC=12得:sinBsinC -cosBcisC=12-cos (B +C )=12第6题第7题第8题第9题第10题CBDCA第11题第12题第13题第14题第15题DBDDB-cos(π-A)=12A= 3(2)将A= 3,a=3b,c=2代入a²=b²+c²-2bccos A,得(b+2)(b-1)=0所以:b=1S△ABC=3+34第17题(1)单调递增区间:-512 + ≤ ≤ +112 (2)当m∈(1,3]时,使得成立。
高中数学三角函数专项练习(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.3.方程12sin 01x xπ-=-,[2,4]x m m ∈--+(m ∈Z )的所有根的和等于2024,则满足条件的整数m 的值是________4.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.5.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________7.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 8.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.9.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.10.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=13.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >14.已知双曲线22221(,0)x y a b a b-=>的两条渐近线分别与抛物线24y x =交于第一、四象限的A ,B 两点,设抛物线焦点为F ,若7cos 9AFB ∠=﹣,则双曲线的离心率为( )AB .3CD .15.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1616.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-18.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.在ABC 中,2AB =,,D E 分别是边AB ,AC 的中点,CD 与BE 交于点O ,若OC 3OB =,则ABC 面积的最大值为( )A .3B .33C .63D .93三、解答题21.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值.22.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.24.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知sin 2C =(1)若4a =,c =ABC ∆的面积;(2)若ABC ∆22213sin sin sin 16A B C +=,求c 的值.25.已知向量 2(2,22()),(,2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数.26.已知函数()sin 2f x x x =.(1)求函数()f x 的最小正周期及对称中心坐标; (2)若02πα-<<,()1f α=,求sin 2α的值.27.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值28.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.29.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值; (2)若6,22BC AB AD ==,求b .30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.3π2.2 3.1008或10094.8156.12(,)369-7 8.()135,2169.1π-##1π-+ 10.25二、单选题 11.D 12.C 13.A 14.B 15.C 16.B 17.B 18.B 19.C 20.C 三、解答题21.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.22.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题. 23.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】 (1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.24.(1)2)c = 【解析】 【分析】(1)先根据sin2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值. 【详解】解:(1)因为sin2C =所以2101cos 12sin122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.25.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.26.(1)最小正周期为π,对称中心坐标为(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭;(2)12-. 【解析】【分析】(1)利用辅助角公式先将函数()y f x =的解析式化简,然后利用周期公式计算出函数()y f x =的最小正周期,令()23x k k Z ππ+=∈,解出x 的表达式可得出对称中心坐标;(2)由()1f α=得出1sin 232πα⎛⎫+= ⎪⎝⎭,结合角α的范围求出α的值,代入sin 2α并结合诱导公式求出sin 2α的值.【详解】(1)()13sin 2322sin 222f x x x x x ⎛⎫== ⎪ ⎪⎝⎭2sin 2cos cos 2sin 2sin 2333x x x πππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()y f x =的最小正周期为22ππ=, 令()23x k k Z ππ+=∈,解得()26k x k Z ππ=-∈, 因此,函数()y f x =的对称中心坐标为(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭; (2)()2sin 213f παα⎛⎫=+= ⎪⎝⎭,得1sin 232πα⎛⎫+= ⎪⎝⎭, 02πα-<<,22333πππα∴-<+<,236ππα∴+=,得26πα=-, 因此,1sin 2sin sin 662ππα⎛⎫=-=-=- ⎪⎝⎭. 【点睛】本题考查三角函数的周期和对称中心,考查三角函数求值,解三角函数问题首先就是要将三角函数解析式化简,在求值时,要利用已知角来配凑未知角,借助同角三角函数的基本关系以及两角和差公式进行计算,考查计算能力,属于中等题.27.(1)1,02⎡⎤--⎢⎥⎣⎦(2)265- 【解析】【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值.【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫- ⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭ 把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭ ()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】 本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.28.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦, 所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.29.(1)13; (2 【解析】【分析】(1)先由ABC ∆的面积为23sin AD B且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果.【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B, 由三角形的面积公式可知:21sin 26sin AD AB BD B B⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=, (2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =,在ABD ∆中由正弦定理可得sin sin BD AB BAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠ 由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=, ()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==. BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴= 【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
高中三角函数专题练习题(及答案)一、填空题1.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫=⎪⎝⎭; ②若5112f π⎛⎫= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③ω的取值范围为(]0,4;④函数()f x 在区间[)0,2π上最多有6个零点. 其中所有正确结论的编号为________.5.已知()()()cos sin 30f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.6.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x x h x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.7.在直角平面坐标系xOy 中,12,F F 分别是双曲线()22210yx b b-=>的左、右焦点,过点1F 作圆221x y +=的切线,与双曲线左、右两支分别交于点,A B ,若2||||F B AB =,则b 的值是_________.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________. 二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )12.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+⎪⎝⎭,x ∈R D .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R13.已知双曲线2221(0)y x b b -=>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交双曲线的右支于A ,B 两点.若11||::3:3:2AB AF BF =,则双曲线的离心率为( )A .333B .2C .113D .1114.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C .105D .25515.如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=16.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>17.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A 13B .2 C 31 D .318.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④19.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,33A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]20.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .9三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在52x ⎡∈⎢⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.22.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π-⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.23.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 24.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.25.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 26.已知函数22()cos sin 3sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.27.已知ABC ∆的外接圆...2A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,2sin sin ,sin 4n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为503,其余空地为绿化区域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.已知函数2()2cos 23sin cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.7 21163614.①②④5.140326.1⎡⎤⎣⎦7.11 8.742ω<<或91322ω<≤.910 二、单选题 11.D 12.D 13.A 14.C 15.B 16.A 17.C 18.A 19.D 20.A 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T=⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2, 所以24Tπω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭, 将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x=. (Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍);当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.23.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x xBCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55664y y +-≥=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 24.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008.【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题. 25.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈,使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 26.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得. 【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+-()2sin(2)36f x x π∴=+-由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+-1sin(2)16x π-≤+≤当0a >时,232sin(2)3236a a x a π--≤+-≤-则有234a --=- 解得12a =当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤--则有234a -=-解得12a =-综上 12a ∴=或12a =-.【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题.27.(1) 3C π=. (2) max S =【解析】 【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长. 【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=,∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.28.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
三角函数1.已知函数()2sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2)考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 2.已知. 求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.3.已知函数 (1)求最小正周期;(2)求在区间上的最大值和最小值.【答案】(1) ;(2)最大值为2()(sin cos )cos 2f x x x x =++()f x ()f x [0,]2ππ1+考点:1.三角函数的性质;2.三角函数的最值. 4.(15年福建文科)若,且为第四象限角,则的值等于( ) A .B .C .D . 【答案】D 【解析】试题分析:由,且为第四象限角,则,则,故选D . 考点:同角三角函数基本关系式.5sin 13α=-αtan α125125-512512-5sin 13α=-α12cos 13α==sin tan cos ααα=512=-5.已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)将函数的图象向右平移个单位长度,再向下平移()个单位长度后得到函数的图象,且函数的最大值为2. (ⅰ)求函数的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数,使得. 【答案】(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将化为,然后利用求周期;(Ⅱ)由函数的解析式中给减,再将所得解析式整体减去得的解析式为,当取1的时,取最大值,列方程求得,从而的解析式可求;欲证明存在无穷多个互不相同的正整数,使得,可解不等式,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数.试题解析:(I )因为.所以函数的最小正周期.()2cos 10cos 222x x x f x =+()f x ()f x 6πa 0a >()g x ()g x ()g x 0x ()00g x >2π()10sin 8g x x =-()f x ()10sin 56f x x π⎛⎫=++ ⎪⎝⎭2T πω=()f x x6πa ()g x ()10sin 5g x x a =+-sin x ()g x 105a +-13a =()g x 0x ()00g x >()00g x >0x ()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭()f x 2πT =(II )(i )将的图象向右平移个单位长度后得到的图象,再向下平移()个单位长度后得到的图象. 又已知函数的最大值为,所以,解得. 所以.(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数,使得. 亦即存在无穷多个互不相同的正整数,使得. 考点:1、三角函数的图像与性质;2、三角不等式.6.如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.()f x 6π10sin 5y x =+a 0a >()10sin 5g x x a =+-()g x 21052a +-=13a =()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x>45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k ()002,2k x k k παππα∈++-4sin 5k x >0x ()00g x >6π【答案】8 【解析】试题分析:由图像得,当时,求得,当时,,故答案为8.考点:三角函数的图像和性质. 7.已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【解析】试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 考点:三角函数的性质.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9.在ABC ∆中,已知60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值. 【答案】(12【解析】考点:余弦定理,二倍角公式。
三角函数专题练习(带答案详解)一、单选题1.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c .若222c a ab b =++,则C =( ) A .150︒B .120︒C .60︒D .302.如图,角α的终边与单位圆交于点M ,M 的纵坐标为45,则cos α=( )A .35B .35C .45D .45-3.下列函数为偶函数的是( ) A .sin y x =B .cos y x =C .tan y x =D .sin 2y x =4.已知函数()()()2sin 0f x x ωϕω=+>的部分图象如图所示, 则ω的值为( )A .1B C D .25.函数()sin cos f x x x =的最大值是( )A .14B .12C D .16.直线:20l x y e -+=的倾斜角为α,则()sin sin 2ααπ⎛⎫π-+ ⎪⎝⎭的值为( ) A .25-B .15-C .15 D .257.将函数sin2y x π=的图象向右平移2个单位后,得到函数()f x 的图象,则函数()f x 的单调递减区间是( ) A .[]12,12,k k k Z -++∈ B .[]14,34,k k k Z ++∈ C .[]14,14,k k k Z -++∈D .4414,14,k k k Z ππ⎡⎤-++++∈⎢⎥⎣⎦8.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈9.计算sin133cos197cos47cos73︒︒+︒︒的结果为( )A .12B .12-C .2D .210.已知角α的顶点为坐标原点,始边为x 轴正半轴,终边过点(1,3)P -,则cos2α的值为( ) A .45-B .45C .35D .3511.已知2sin()4πα+=sin 2α=( )A .12B C .12-D .二、多选题12.已知向量()()2sin 3,cos ,cos m x n x x =-=,,函数()231f x m n =⋅++,下列命题,说法正确的选项是( ) A .2()6f x f x π⎛⎫-=-⎪⎝⎭B .6f x π⎛⎫-⎪⎝⎭的图像关于4x π=对称C .若1202x x π<<<,则12()()f x f x <D .若123,,,32x x x ππ⎡⎤∈⎢⎥⎣⎦,则123()()()f x f x f x +>三、解答题13.如图,ABC ∆是等边三角形, D 是BC 边上的动点(含端点),记BAD ∠=α,ADC β∠=.(1)求2cos cos αβ-的最大值; (2)若11,cos 7BD β==,求ABD ∆的面积. 14.如图,在四边形ABCD 中,45,105,2,3ADB BAD AD BC AC ∠=︒∠=︒===(1)求cos ABC ∠的值;(2)若记ABC α∠=,求sin 23πα⎛⎫-⎪⎝⎭的值. 15.在ABC ∆中,角,,A B C 的对边分別为,,a b c ,若3cos 4A =,2B A =,3b =.(1)求a ;(2)已知点M 在边BC 上,且AM 平分BAC ∠,求ABM ∆的面积.四、填空题16.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为1⎡-⎢⎣⎦,则w 的取值范围是______17.如果tan 2,α=则tan 4πα⎛⎫+= ⎪⎝⎭________ 18.若α的终边在射线()20y x x =<上,则sin cos αα-=_____,tan2α=_____.19.设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且3cos cos 5a Bb Ac -=,则()tan A B -的最大值为______.20.如图所示,某住宅小区内有一个正方形草地ABCD ,现欲在其中修建一个正方形花坛EFGH ,若已知花坛面积为正方形草地面积的23,则θ=________参考答案1.B直接利用余弦定理即可得出结果. 【详解】在ABC 中,∵222c a ab b =++,∴2221cos 222a b c ab C ab ab +--===-,∵()0,A π∈,∴120A =, 故选:B . 【点睛】本题考查了余弦定理的应用,考查了推理能力与计算能力,属于基础题. 2.B由题意设出M 的坐标,由M 到原点的距离为1求得M 的横坐标,再由任意角的三角函数定义得答案. 【详解】 由已知可设()4,05M x x ⎛⎫< ⎪⎝⎭, 再由22415x ⎛⎫+ ⎪⎭=⎝,得35x =-,∴3cos 5α=-, 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,是基础的计算题. 3.B根据偶函数的定义逐个选项判断即可. 【详解】对于A ,函数定义域为R ,()sin f x y x ==,()()()sin sin f x x x f x -=-=-=-,即sin y x =为奇函数,故A 错误;对于B ,函数定义域为R ,()cos f x y x ==,()()()cos cos f x x x f x -=-==,即cos y x =为偶函数,故B 正确;对于C ,函数定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,()tan f x y x ==,()()()tan tan f x x x f x -=-=-=-,即tan y x =为奇函数,故C 错误;对于D ,函数定义域为R ,()sin 2f x y x ==,()()()sin 2sin 2f x x x f x -=-=-=-,即sin 2y x =为奇函数,故D 错误; 故选:B . 【点睛】本题主要考查了利用定义判断函数的奇偶性,属于基础题. 4.D由题设可得2145 16T ππ=-,由公式可求得ω. 【详解】 由题设可得5 126441T πππ=-=,所以周期T π=, 则22Tπω==, 故选:D . 【点睛】本题考查由()sin y A ωx φ=+的部分图象确定其解析式,理解三角函数图象的特征是解题的关键,属于中档题. 5.B由二倍角公式可得()1sin 22f x x =,结合正弦函数的值域即可得结果. 【详解】∵()1sin cos sin 22f x x x x ==, ∴函数()sin cos f x x x =的最大值是12, 故选:B . 【点睛】本题主要考查了二倍角公式的应用,正弦型函数的最值问题,属于基础题. 6.D先由倾斜角和斜率的关系得到tan 2α=,再利用诱导公式和同角三角函数基本关系将原式变形为2tan tan 1αα+,代入tan 2α=计算即可. 【详解】解:由已知得tan 2α=,则()2222sin cos tan 22sin sin sin cos 2sin cos tan 1215ααααααααααπ⎛⎫π-+===== ⎪+++⎝⎭. 故选:D. 【点睛】本题考查同角三角函数的基本关系及诱导公式,是基础题. 7.C根据三角函数图像变换方法,得到()sin 2f x x π=-,令22,222k x k k Z πππππ-+≤≤+∈即可求单调减区间. 【详解】解:由题意知: ()sin(2)sin22f x x x ππ=-=-令22,222k x k k Z πππππ-+≤≤+∈,解得[]14,14,x k k k Z ∈-++∈故选:C. 【点睛】本题考查了三角函数图像变换,考查了三角函数的增减区间的求法.对于()sin y A ωx φ=+ 型函数在求单调区间时:当0A ω> 时,令22,22k x k k Z πππωϕπ-+≤+≤+∈ 可求增区间, 令322,22k x k k Z πππωϕπ+≤+≤+∈ 可求减区间; 当0A ω< 时,令22,22k x k k Z πππωϕπ-+≤+≤+∈ 可求减区间, 令322,22k x k k Z πππωϕπ+≤+≤+∈ 可求增区间.本题的易错点在于,一是无k Z ∈,二是增减区间未写成集合的形式. 8.C利用图象先求出周期,用周期公式求出ω,利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可. 【详解】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C . 【点睛】本题主要考查三角函数的单调性、三角函数的图象与性质,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.9.B根据诱导公式,化简三角函数值;再根据正弦的差角公式合并即可得到解. 【详解】sin133cos197cos 47cos73sin 47(cos17)cos 47sin17+=-+()sin 47cos17cos 47sin17=-- sin(4717)=--1sin 302=-=-所以选B 【点睛】本题考查了三角函数诱导公式、正弦差角公式的简单应用,属于基础题. 10.A利用任意角的三角函数的定义,求得cos α的值,再利用二倍角公式即可求得cos2α的值. 【详解】角α的顶点为坐标原点,始边为x 轴正半轴,终边过点()1,3P -.由三角函数的定义有:cos10x OP α===214cos 22cos 121105αα=-=⨯-=- 故选:A . 【点睛】本题主要考查任意角的三角函数的定义,二倍角公式的应用,属于基础题. 11.A将问题中的角2α看作未知角,条件中的角4απ+看作已知角,由未知角与已知角的关系2()242ππαα+-=,可以用已知角表示未知角,然后通过利用诱导公式以及二倍角公式即可求解未知角的正弦值. 【详解】因为sin 4πα⎛⎫+=⎪⎝⎭, 又因为2()242ππαα+-=,所以22()42ππαα=+-,则有2sin 2sin 2()42 sin 2()24 cos 2()412sin ()412ππααππαπαπα⎡⎤=+-⎢⎥⎣⎦⎡⎤=--+⎢⎥⎣⎦=-+⎡⎤=--+⎢⎥⎣⎦=故选A. 【点睛】本题考查了三角函数值的求解问题,属于给值求值类型,常常利用角的关系对问题进行等价转化,再运用相关的诱导公式、两角和与差的三角函数公式以及二倍角公式进行求解,属于基础题. 12.BD首先根据条件可得()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,再根据三角函数的性质,通过代入验证,整体运算,逐一判断即可. 【详解】函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭, A :当0x =时,166f x f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()2201f x f -=-=+A 错; B :()2sin 216f x x π⎛⎫-=-+ ⎪⎝⎭,当4x π=时,对应的函数值取得最小值为1-,所以B 正确; C :0,2x π⎛⎫∈ ⎪⎝⎭时,23x π-2,33ππ⎛⎫∈- ⎪⎝⎭ ,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭不单调,故C 错;D :因为,32x ππ⎡⎤∈⎢⎥⎣⎦,所以23x π-()2,1,333f x ππ⎡⎤⎤∈∴∈⎢⎥⎦⎣⎦,,又)213>,即2()()min max f x f x >()()()123123,,,32x x x f x f x f x ππ⎡⎤∈+>⎢⎥⎣⎦,恒成立,故D 对;故选:BD.【点睛】本题考查以向量为背景的三角函数性质的问题,熟练掌握性质的求解和判断是关键,是中档题.13.(1)当α=6π,即D 为BC(1)由题意可得β=α+3π,根据三角函数和差公式及辅助角公式化简即可求出其最大值. (2)根据三角函数差角公式求得sinα,再由正弦定理,求得AB 的长度;进而求得三角形面积.【详解】(1)由△ABC 是等边三角形,得β=α+3π, 0≤α≤3π,故2cos α-cos β=2cos α-cos +3πα⎛⎫ ⎪⎝⎭sin +3πα⎛⎫ ⎪⎝⎭, 故当α=6π,即D 为BC(2)由cos β=17 ,得sin β, 故sin α=sin 3πβ⎛⎫-⎪⎝⎭=sin βcos 3π-cos βsin 3π由正弦定理sin sin AB BD ADB BAD=∠∠, 故AB =sin sin βα BD1=83 ,故S △ABD =12AB·BD·sin B=1812323⨯⨯⨯= 【点睛】本题考查了三角函数和差公式、辅助角公式、正弦定理的综合应用,三角形面积的求法,属于中档题.14.(1)6-;(2)12.(1)通过正弦定理sin sin AB AD ADB ABD =∠∠求出AB =ABC 中由余弦定理可得cos ABC ∠;(2)由()1可得cos 6α=-,sin 6α=,再利用两角和的正弦公式及倍角公式可求sin 23πα⎛⎫- ⎪⎝⎭的值. 【详解】(1)由题意,因为45ADB ∠=,105BAD ∠=,30ABD ∴∠=, 62AD =2BC =,ABD △中,由正弦定理可得,2sin 45sin 30AB =,AB ∴=, 3AC =.ABC 中由余弦定理可得,222cos26AB BC AC ABC AB BC ∠+-===-⋅;(2)由()1可得cos α=,sin α∴=,sin 22sin cos ααα∴==,25cos 22cos 16αα=-=-1sin 2sin 2232212πααα⎛⎫∴-=-= ⎪⎝⎭. 【点睛】本题考查正弦定理及余弦定理的应用,考查倍角公式与和角公式的灵活应用,是中档题.15.(1) 2a =(2) ABM S ∆= (1)先求sin 4A =,sin sin 28B A ==结合正弦定理求解a 即可;(2)先求1cos 8B =,再利用余弦定理得c,进而得1sin 216ABC S bc A ∆==,再利用||||365||||52ACM ABM S CM AC S BM AB ∆∆====求解ABM ∆的面积即可 【详解】(1)由0A π<<,3cos 4A =,得sin A =所以3sin sin 22sin cos 24B A A A ====, 由正弦定理sin sin a b A B=,可得sin 2sin b A a B ==. (2)2231cos cos22cos 12148B A A ⎛⎫==-=⨯-= ⎪⎝⎭, 在ABC ∆中,由余弦定理2222cos b a c ac B =+-,得22100c c --=, 解得52c =或2c =-(舍去). 1sin 216ABC S bc A ∆==, 因为||||365||||52ACM ABM S CM AC S BM AB ∆∆====,所以551111ABM ABC S S ∆∆===【点睛】本题考查正余弦定理,二倍角公式,同角三角函数基本公式,三角形面积公式,熟记公式定理,准确计算是关键,是中档题16.3342⎡⎤⎢⎥⎣⎦, 先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得.【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7cos cos 424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,. 【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.17.3-因为tan 2α=,所以tan 121tan 341tan 12πααα++⎛⎫+===- ⎪--⎝⎭.18.- 在终边所在的射线上,任取一点,可求出sin α 和cos α 的值,即得到sin cos αα-的值.由半角公式可求1tan2cos sin ααα-=,代入后可求出. 【详解】解:在α的终边在射线()20y x x =<上,任意取一点()1,2--则sin α==,cos α==则sin cos αα-==1tan 2cos sin ααα-==故答案为5-12+-. 【点睛】 本题考查了任意角的三角函数值,考查了三角恒等变换.当题目已知角终边上一点坐标时,可利用sin cos tan y r x r y x ααα⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,其中r =,将角的三角函数值求出.求半角的三角函数值时,可根据半角公式进行求解,即sin 1cos tan 21cos sin ααααα-==+. 19.34试题分析:由正弦定理得,即,则,当时,.考点:正弦定理及运用.20.12π或512π 设CG x =,FC y =,用x ,y 表示出草地和正方形的面积,根据面积比列出方程得出x y . 【详解】设()CG x FC y x y ==<,,则FG BC x y ==+.∵花坛面积为正方形草地面积的23, ∴ ()22223x y x y +=+,即2240x y xy +-=.∴2410x x y y ⎛⎫-+= ⎪⎝⎭,解得 2x y = 2x y =+,即tan 2θ=2+ ∴12πθ=或512π. 故答案为:12π或512π. 【点睛】本题考查了解三角形的实际应用,属于基础题.。
三角函数练习题及答案百度文库精心选一选山岳得分1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都A、缩小2倍B、扩大2倍C、不变D、不能确定4,BC=4,sinA=52、在Rt△ABC中,∠C=90,则AC=A、3B、C、D、61sinA=3,则3、若∠A是锐角,且A、00 13sinA?tanA4、若cosA=3,则4sinA?2tanA=411A、 B、 C、D、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=2A、1:1:B、1:1:C、1:1:3D、1:1:26、在Rt△ABC中,∠C=900,则下列式子成立的是A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB.已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是2223A.sinB=B.cosB=C.tanB=D.tanB=28.点关于y轴对称的点的坐标是11113A.B.C.D.9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60o方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地503m100 m150m m11、如图1,在高楼前D点测得楼顶的仰角为30?,向高楼前进60米到C点,又测得仰角为45?,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40o的方向行驶40海里到达B 地,再由B地向北偏西10o的方向行驶40海里到达C地,则A、C两地相距.30海里0海里 0海里 0海里细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____..在△ABC中,若AC=3,则cosA=________.3.在△ABC中,AB=,B=30°,则∠BAC的度数是______.图14.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第4题图第5题图第6题图6.如图,机器人从A点,沿着西南方向,行了个2单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号)..求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=90,BC=13,AB=12,则tanB?_________..根据图中所给的数据,求得避雷针CD的长约为_______m..11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,?这时测得大树在地面上的影子约为10米,则大树的高约为________米。
高中数学三角函数专题专项练习(非常好)三角函数疑难点解析】一、忽略隐含条件例3:若sinx+cosx-1>0,求x的取值范围。
正解:2sin(x+π/4)>1,由sin(x+π/4)>1/√2得2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)∴2kπ+π/4<x<2kπ+5π/4(k∈Z),即x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
改写后:对于不等式sinx+cosx-1>0,可以化简为2sin(x+π/4)>1.由于sin(x+π/4)>1/√2,所以可以得到2kπ+π/4<x+π/4<2kπ+3π/4(k∈Z)。
进一步化简得到x∈(2kπ+π/4,2kπ+5π/4)(k∈Z)。
二、忽视角的范围,盲目地套用正弦、余弦的有界性例4:设α、β为锐角,且α+β=120°,讨论函数y=cos2α+cos2β的最值。
正解:y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-cos(α-β),可见,当cos(α-β)=1时,ymin=0;当cos(α-β)=-1时,ymax=2.分析:由已知得30°<α,β<90°,∴-60°<α-β<60°,则-1<cos(α-β)≤1,∴当cos(α-β)=1,即α=β=60°时,ymin=0,最大值不存在。
改写后:已知α、β为锐角,且α+β=120°,求函数y=cos2α+cos2β的最值。
根据cos2θ=1-2sin2θ和cos(α+β)=cosαcosβ-sinαsinβ,可以得到y=1+(cos2α+cos2β)=1+cos(α+β)cos(α-β)=1-co s(α-β)。
当cos(α-β)=1时,即α=β=60°时,ymin=0,最大值不存在。
高中三角函数专题练习题(及答案)一、填空题1.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.2.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =,60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.3.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 4.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.5.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.6.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.7.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .8.已知函数()()sin 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.9.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B ) D .f (sin A )≥f (cos B ) 12.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-413.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ= 14.设函数()211f x x =-,()122x f ex --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I <<D .213I I I <<15.已知双曲线22221(,0)x y a b a b-=>的两条渐近线分别与抛物线24y x =交于第一、四象限的A ,B 两点,设抛物线焦点为F ,若7cos 9AFB ∠=﹣,则双曲线的离心率为( )AB .3CD .16.高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数[]y x =,[]x 表示不超过实数x 的最大整数,如[]1.71=,[]1.22-=-,{}x 表示x 的非负纯小数,即{}[]x x x =-.若函数{}1log a y x x=-+(0a >且1a ≠)有且仅有3个零点,则实数a 的取值范围为( ) A .(]3,4B .()3,4C .[)3,4D .[]3,417.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .218.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( )A .1,)+∞B .(1)+∞C .(1,12)D .1,)+∞19.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.△ABC 中,BD 是AC 边上的高,A=4π,BD AC =( )A .14B .12C .23D .34三、解答题21.已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.22.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若3PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .23.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 24.已知函数()223sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间; (2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.25.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知10sin 2C =(1)若4a =,210c =ABC ∆的面积; (2)若ABC ∆91522213sin sin sin 16A B C +=,求c 的值.26.已知向量 2(2,22()),(,2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数.27.已知1a ≥,函数()πsin 4f x x ⎛⎫=+ ⎪⎝⎭,()()sin cos 1g x x x x =--.(1)若()f x 在[],b b -上单调递增,求正数b 的最大值; (2)若函数()g x 在3π0,4⎡⎤⎢⎥⎣⎦内恰有一个零点,求a 的取值范围.28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数())2sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心30.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值;(2)若6,BC AB AD ==b .【参考答案】一、填空题12.20π34.115.③④6.28π 78.②③9. 3 21,32⎡⎢⎣⎦10.二、单选题 11.D 12.A 13.C 14.D 15.B 16.C 17.D 18.B 19.C 20.A 三、解答题21.(1)2 ;(2)能放,tan θ=;(3)(]0,1 【解析】 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θa 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】 (1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M , ∴2l AC ⊥, ∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤, ∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ-,2sin θθ∴=,tan θ∴=,sin θ∴=,故边长a ==, 综上可得,能放.(3)()1214sin 60sin 4sin sin 2d d θθθθθ⎫⋅=-=-⎪⎪⎝⎭()1cos 2222sin 23012θθθ⎫+=-=+-⎪⎪⎝⎭. 060θ<≤,30230150θ∴<+≤,()1sin 23012θ≤+≤, 所以()02sin 23011θ≤+-≤, 又10d >,20d >,所以(]120,1d d ⋅∈. 【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题. 22.(12【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α, 在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.23.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增, 又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 24.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2 【解析】 【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π,22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;(2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2;当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题25.(1)2)c = 【解析】 【分析】(1)先根据sin2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值. 【详解】解:(1)因为sin2C =所以2101cos 12sin122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.26.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1.∵0<φ2π<,∴φ4π=. ∴f (x )=1﹣cos2(44x ππ+)=1+sin2x π,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4. 而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018; (Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点; ②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点. 综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点; ②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点; ③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题. 27.(1)4π(2)32⎫+∞⎪⎪⎝⎭【解析】 【分析】(1)求出()πsin 4f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间,令0k =,得3ππ44x -≤≤,可知区间[],b b -3ππ,44⎡⎤⊂-⎢⎥⎣⎦,即可求出正数b 的最大值;(2)令πsin cos 24t x x x ⎛⎫=+=+ ⎪⎝⎭,当3π0,4x ⎡⎤∈⎢⎥⎣⎦时,2t ⎡∈⎣,可将问题转化为()21122h t t at =-+-在2⎡⎤⎣⎦的零点问题,分类讨论即可求出答案. 【详解】 解:(1)由πππ2π2π242k x k -≤+≤+,k ∈Z 得3ππ2π2π44k x k -≤≤+,k ∈Z . 因为()f x 在[],b b -上单调递增, 令0k =,得3ππ44x -≤≤时()f x 单调递增, 所以π43π4b b ⎧≤⎪⎪⎨⎪-≥-⎪⎩解得π4b ≤,可得正数b 的最大值为4π.(2)()()sin cos 21g x x x af x =--()sin cos sin cos 1x x a x x =-++-,设πsin cos 2sin 4t x x x ⎛⎫=+=+ ⎪⎝⎭,当3π0,4x ⎡⎤∈⎢⎥⎣⎦时,0,2t ⎡⎤∈⎣⎦.它的图形如图所示.又()()2211sin cos sin cos 1122x x x x t ⎡⎤=+-=-⎣⎦,则()sin cos sin cos 1x x a x x -++-21122t at =-+-,2t ⎡∈⎣,令()21122h t t at =-+-, 则函数()g x 在3π0,4⎡⎤⎢⎥⎣⎦内恰有一个零点,可知()21122h t t at =-+-在2⎡⎣内最多一个零点.①当0为()h t 的零点时,102-=显然不成立; ②2()h t 3202a -=,得324a =324a =211022t at -+-=中,得21321022t --=,解得12t =,22t =,不符合题意. ③当零点在区间(2时,若210a ∆=-=,得1a =,此时零点为1,即1t =,由24t x π⎛⎫=+ ⎪⎝⎭的图象可知不符合题意;若210a ∆=->,即1a >,设211022t at -+-=的两根分别为1t ,2t ,由121t t =,且抛物线的对称轴为1t a =>,则两根同时为正,要使()21122h t t at =-+-在2⎡⎣内恰有一个零点,则一个根在()0,1内,另一个根在()2,+∞内,所以()()102000h h h ⎧>⎪⎪>⎨⎪<⎪⎩解得32a > 综上,a 的取值范围为324⎛⎫+∞ ⎪ ⎪⎝⎭. 【点睛】本题考查了三角函数的单调性的应用,考查了函数的零点,考查了分类讨论的数学思想,考查了学生的推理能力与计算求解能力,属于难题.28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.30.(1)13; (2【解析】 【分析】(1)先由ABC ∆的面积为23sin AD B 且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果. 【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B , 由三角形的面积公式可知:21sin 26sin AD AB BD B B ⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=,所以1sin sin 3BAD BDA ∠⋅∠=,(2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =, 在ABD ∆中由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=,()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==.BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴=【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
高中数学三角函数专项练习(含答案)一、填空题1.如图,在棱长均为23的正四面体ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是______.2.在ABC 中,7AB =,23BC =,1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △的面积有最大值,且最大值为3;②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.6.在直角坐标系中,ABC 的顶点()cos ,sin A αα,()cos ,sin B ββ,C ⎝,且ABC 的重心G 的坐标为⎝,()cos αβ-=__________. 7.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.8.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)9.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 10.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()()sin cos sin cos 0f x x x x x ωωωωω=++->,则下列结论错误的是( )①1ω=时,函数()f x 图象关于π4x =对称;②函数()f x 的最小值为-2;③若函数()f x 在π,04⎡⎤-⎢⎥⎣⎦上单调递增,则(]03ω∈,;④1x ,2x 为两个不相等的实数,若()()124f x f x +=且12x x -的最小值为π,则2ω=. A .②③B .②④C .①③④D .②③④13.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .415.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C .32D .3316.在三棱锥A BCD -中,5,2,2AC AD AB CD BC BD ======,则这个三棱锥的外接球的半径为( ) A .2105B .2103C .253D .2517.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()33f π=,且()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1418.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)20.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( ) A .(0,22)+B .(0,33)C .(22,33)+D .(22,33]三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.在海岸A 处,发现北偏东45︒方向,距离A 为31-海里的B 处有一艘走私船,在A 处北偏西75︒方向,距离A 为2海里的C 处有一艘缉私艇奉命以103海里/时的速度追截走私船,此时,走私船正以10海里/时的速度从B 处向北偏东30方向逃窜.(1)问C 船与B 船相距多少海里?C 船在B 船的什么方向? (2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间. 23.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.24.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.25.已知函数2()232sin cos ()f x x x x a a R =-++∈,且(0)3f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 26.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 32)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.27.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 28.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.29.已知ABC ∆的外接圆...,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,sin sin n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.30.已知两个不共线的向量a ,b 满足a =,(cos ,sin )b =θθ,R θ∈. (1)若//a b ,求角θ的值;(2)若2a b -与7a b -垂直,求||a b +的值;(3)当0,2π⎡⎤θ∈⎢⎥⎣⎦时,存在两个不同的θ使得||||a ma =成立,求正数m 的取值范围.【参考答案】一、填空题12.①③31 4.47,912ππ⎧⎫⎨⎬⎩⎭5.165386.237.⎝⎭8.8,83⎛⎫ ⎪⎝⎭910. 3 21,32⎡⎢⎣⎦二、单选题 11.A 12.B 13.A 14.B 15.C 16.A 17.C 18.C 19.D 20.C 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-.【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)=BC C 船在B 船的正西方向;(2)缉私艇沿东偏北30才能最快追上走私船. 【解析】(1)在ABC 中根据余弦定理计算BC ,再利用正弦定理计算ABC ∠即可得出方位; (2)在BCD △中,利用正弦定理计算BCD ∠,再计算BD 得出追击时间. 【详解】解:(1)由题意可知1=AB ,2AC =,120BAC ∠=︒, 在ABC 中,由余弦定理得:2222cos1206BC AB AC AB AC =+-︒=, BC ∴,由正弦定理得:sin sin AC BCABC BAC=∠∠,即2sin ABC∠解得:sin ABC ∠=, 45ABC ∴∠=︒,C ∴船在B 船的正西方向.(2)由(1)知=BC 120DBC ∠=︒, 设t 小时后缉私艇在D 处追上走私船,则10BD t =,CD =,在BCD △10sin tBCD∠, 解得:1sin 2BCD ∠=, 30BCD ∴∠=︒,BCD ∴△是等腰三角形,10t ∴=,即t =∴缉私艇沿东偏北30【点睛】本题考查了正余弦定理解三角形,以及解三角形的实际应用,考查转化能力和运算能力,属于中档题.23.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.24.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.25.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围.【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin 3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭, [0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦, ()f x 在[0,]π上有且只有一个零点, 223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题. 26.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12. 【解析】【分析】(1)由数量积的坐标运算可得2()2cos 2f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间(2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 2f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭, ∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增, 解得:36k x k ππππ-≤≤+, 故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈. (2)∵02x π≤≤, ∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭, ∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.27.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解.【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =, 从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭. (2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭ ∴2,3B k k Z ππ+=∈,∴:,62k B k Z ππ=-+∈, 又∵B 是锐角,∴3B π=. ∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】 本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.28.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1.【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果.【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+, 所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π= 当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题.29.(1) 3C π=. (2) max S = 【解析】【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长.【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =()2202242a c b b a R R R ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=, ∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.30.(1),3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭|(23)⎣⎭【解析】【分析】(1)由题得tan θ=2)先求出1a b ⋅=,再利用向量的模的公式求出||7a b +=;(3)等价于2476m πθ⎛⎫+=- ⎪⎝⎭在0,2π⎡⎤θ∈⎢⎥⎣⎦有两解,结合三角函数分析得解.【详解】(1)由题得sin 0,tan θθθ=∴=所以角θ的集合为,3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭| . (2)由条件知2a =, 1b =,又2a b -与7a b -垂直,所以()()2781570a b a b a b -⋅-=-⋅+=,所以1a b ⋅=.所以222||||2||4217a b a a b b +=+⋅+=++=,故||7a b +=.(3)由3a b ma +=,得223a b ma +=, 即2222233a a b b m a +⋅+=,即2434b m +⋅+=,)27cos 4m θθ+=,所以2476m πθ⎛⎫+=- ⎪⎝⎭. 由0,2π⎡⎤θ∈⎢⎥⎣⎦得2,663πππθ⎡⎤+∈⎢⎥⎣⎦,又θ要有两解,结合三角函数图象可得,2647m ≤-<2134m ≤<又因为0m >m ≤<即m 的范围⎣⎭. 【点睛】本题主要考查向量平行垂直的坐标表示,考查向量的模的计算,考查三角函数图像和性质的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.。
三角函数专项训练一、选择题1.0223sin 163sin 0313sin 253sin +的值为( ) A .21- B .12 C .23- D 32.若cos 22πsin 4αα=⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( )A.27- B.21-C.21 D.27 3.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( ) A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭4.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .565.已知)0)(sin()(>+=ωϕωx x f 的最小正周期为π,则该函数的图象( )A .关于点)0,3(π对称B .关于直线4π=x 对称 C .关于点)0,4(π对称D .关于直线3π=x 对称6.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f = )A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==, D .23ωϕπ==,7.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( )A . f (sin6π)<f (cos 6π) B . f (sin1)>f (cos1) C . f (cos 32π)<f (sin 32π) D . f (cos2)>f (sin2)8. 将函数y=f(x) sinx 的图像向右平移4π个单位后,再作关于x 轴对称图形,得到函数 y=1- 22sin x 的图像.则f(x)可以是( ) (A )cosx (B)sinx (C)2cosx (D)2sinx二、填空题9.(07江苏15)在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B+= . 10.已知,sin sin a =-βα 0,cos cos ≠=-ab b βα, 则()cos αβ-=_______________。
高中三角函数专题练习题附答案一、填空题1.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.3.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.4.在平面直角坐标系中,对任意角α,设α的终边上异于原点的任意一点P 的坐标为(,)x y ,它与原点的距离是r .我们规定:比值,,r r xx y y分别叫做角α的正割、余割、余切,分别记作sec α,csc α,cot α,把sec ,csc ,cot y x y x y x ===分别叫做正割函数、余割函数、余切函数,则下列叙述正确的有___________(填上所有正确的序号) ①3cot14π=; ②sin csc 1αα⋅=;③sec y x =的定义域为{}|,Z x x k k π≠∈; ④22sec csc 4αα+;⑤2cot 1cot22cot ααα-=.5.log sin()3y x ππ=+的单调增区间为________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.8.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.9.已知平面四边形ABCD 的面积为36,4AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭13.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦14.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C D15.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1416.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .217.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .318.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A.6B .C .12D .19.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .320.已知函数()2sin cos f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④三、解答题21.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移32个单位,得到函数y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,64A π⎛⎫- ⎪ ⎪⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 22.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.23.已知函数2()23sin 2sin cos ()f x x x x a a R =-++∈,且(0)3f =. (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知10sin 2C =(1)若4a =,210c =ABC ∆的面积; (2)若ABC ∆91522213sin sin sin 16A B C +=,求c 的值.26.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式;(3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 27.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且sin sin B C +=,求ABC ∆的面积.28.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.29.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题12.⎝ 3.1925731,,48481248ππππ⎛⎤⎡⎤⋃⎥⎢⎥⎝⎦⎣⎦ 4.②④⑤5.(2,2)(Z)36k k k ππππ-++∈6.1π-##1π-+7. 3 21,32⎡⎢⎣⎦89.710##0.710.( 二、单选题 11.A 12.A 13.A 14.A 15.C 16.D 17.B 18.C 19.C 20.B 三、解答题21.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果.【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭21332sin cos sin sin cos 3sin 322x x x x x x ωωωωωω⎛⎫=+-=-+ ⎪ ⎪⎝⎭ 11cos 2133sin 233sin 2cos 222222x x x x ωωωω-=-⨯+=++3sin 232x πω⎛⎫=++ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 232f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+所以0012612x x y y π⎧=+⎪⎪⎨⎪=⎪⎩00232x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点所以2sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.22.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+ ()24f x x π⎛⎫∴=+ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-,12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.25.(1)2)c =【解析】【分析】(1)先根据sin 2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案; (2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值.【详解】解:(1)因为sin 2C = 所以2101cos 12sin 122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭, 解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.26.(1)4-(2)22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,) 【解析】【分析】 (1)直接代入计算得解;(2)先求出1sin(2)[,1]42x π-∈-,再对t 分三种情况讨论,结合二次函数求出()g t 的表达式;(3)令2()()9h t g t k t =-+,即2()(6)t 10h t k =-++有一个实数根,利用一次函数性质分析得解.【详解】(1)当1t =时,2()sin 22sin 2444f x x t x ππ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭,所以48f π⎛⎫=- ⎪⎝⎭. (2)因为[,]242x ∈ππ,所以32[,]464x πππ-∈-,所以1sin(2)[,1]42x π-∈- 2()[sin(2)]614f x x t t π=---+([,]242x ∈ππ) 当12t <-时,则当1sin(2)42x π-=-时,2min 5[()]54f x t t =-+ 当112t -≤≤时,则当sin(2)4x t π-=时,min [()]61f x t =-+ 当1t >时,则当sin(2)14x π-=时,2min [()]82f x t t =-+ 故22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)当112t -≤≤时,()61g t t =-+,令2()()9h t g t k t =-+即2()(6)t 10h t k =-++ 欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.27.(1)(;(2 【解析】【分析】 (1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(. (2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.28.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间. (2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈ 解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立, 则2()(1)n f x m +-⋅的最小值大于零.当n 为偶数时,10m -+>,所以,1m当n 为奇数时,10m -->,所以,1m <-综上所述,m 的范围为∅.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.29.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可.【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫ ⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭ ()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴= ()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫ ⎪⎝⎭对称 2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭ 令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。
三角函数专题练习(G)
2、已知函数y =sin(ωx+φ)(ω>0,-π≤φ<π)的图像如图所示,则φ=
_______.
3、如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为
4、若4cos 5
α=-,α是第三象限的角,则1tan 21tan 2αα+=- (A) 12
- (B) 12 (C) 2 (D) -2 5、在△ABC 中,D 为边BC 上一点,BD=
12
DC ,∠ADB=120°,AD=2,若△ADC 的面积为33-,则∠BAC=_______ 6、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=
7、设函数()s i n
()c o s ()(0,)2
f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则
(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44
ππ⎛⎫ ⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫ ⎪⎝⎭
单调递增(16) 8、在ΔABC 中,60,3B AC ==,则2AB BC +的最大值为 。
9、已知0ω>,函数()sin()4
f x x πω=+在(,)2π
π上单调递减。
则ω的取值范围是( ) ()A 15[,]24 ()B 13[,]24 ()C 1(0,]2 ()D (0,2] 10、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--=
(1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。
11、设θ为第二象限角,若π1tan 42
θ⎛
⎫+= ⎪⎝⎭,则sin θ+cos θ=?
12、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为__________.
13、等比数列{}n a 的各项均为正数,且2
12326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨
⎬⎩⎭的前n 项和. 14、设数列{}n a 满足21112,32n n n a a a -+=-=
(1) 求数列{}n a 的通项公式;
(2) 令n n b na =,求数列的前n 项和n S
15、
数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 .。