高二数学下学期期中试题 理(高新部)
- 格式:doc
- 大小:119.00 KB
- 文档页数:6
湖北省武汉市东湖高新技术开发区2016—2017学年高二数学下学期期中试题 理考试时间:120分钟 试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡相应位置上.)1.已知的分布列为右表,且,则的值为 A . ﻩﻩB . ﻩ C .ﻩ D.2.甲、乙两地都位于长江下游,, 两市同时下雨占.则某一天当甲市为雨天时,乙市也为雨天的概率为 A . ﻩ B. ﻩC . ﻩ D .3。
是抛物线上的动点,是直线上的动点,则的最小值为 A. ﻩ ﻩB 。
ﻩﻩC 。
D 。
4.某幢楼从二楼到三楼的楼梯共级,上楼可以一步上一级,也可以一步上两级,若规定从二楼 到三楼用步走完,则上楼梯的方法有A.种 ﻩ ﻩB.种 ﻩﻩ C.种D . 种5.在实验室进行的一项物理实验中,要先后实施个程序,其中程序只能出现在第一或最后一 步,程序和在实施时必须相邻,则实验顺序的编排方法共有 A.种 ﻩ B.种 ﻩ ﻩﻩ C.种 ﻩD.种6.的展开式中,的系数为A . ﻩB.C . ﻩD .7.三个好朋友同时考进同一所高中,该校高一有个班级,则至少有人分在同一个班级的概X 37)(3=+=Y E aX Y ,a 1234%%126.07.08.066.0P2y x =Q 240x y --=||PQ 55355424108453628256A B C 34489614425()x x y ++52x y10203060102率为A 。
ﻩ ﻩ B.C. D.8。
的展开式中,项的系数为,则实数的值为A.ﻩ ﻩB . ﻩﻩ ﻩ C.ﻩﻩﻩD .或9.设集合,,分别从中任取个元素组成无重复数字的四位数,其 中能被整除的数共有 A .个ﻩ B.个 ﻩﻩC.个 ﻩD . 个10.已知某盒中有个灯泡,其中有个是正品,个是次品.现需要从中取出个正品.若每次只取出个灯泡,取出后不放回,直到取出个正品为止.设为摸取的次数,则 A. ﻩ B. ﻩ C.D 。
2021年高二(下)期中数学试卷(理科)含解析一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一个是符合要求的).1.(5分)(xx春•泰安校级期中)若复数(a2﹣3a+2)+(a﹣2)i是纯虚数,则实数a的值为()A. 1 B. 2 C. 1或2 D.﹣1考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用纯虚数的定义可得a2﹣3a+2=0,且 a﹣2≠0,由此求得a的值.解答:解:∵复数(a2﹣3a+2)+(a﹣2)i是纯虚数,∴a2﹣3a+2=0,且 a﹣2≠0,求得a=1,故选:A.点评:本题主要考查纯虚数的定义,属于基础题.2.(5分)(xx•山东)用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279考点:排列、组合及简单计数问题.专题:排列组合.分析:求出所有三位数的个数,减去没有重复数字的三位数个数即可.解答:解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648,所以可以组成有重复数字的三位数的个数为:900﹣648=252.故选B.点评:本题考查排列组合以及简单计数原理的应用,利用间接法求解是解题的关键,考查计算能力.3.(5分)(xx秋•武汉校级期末)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.小前提不正确B.大前提不正确C.结论正确D.全不正确考点:演绎推理的基本方法.专题:阅读型.分析:根据三段论的要求:找出大前提,小前提,结论,再判断正误即可.解答:解:大前提:正弦函数是奇函数,正确;小前提:f(x)=sin(x2+1)是正弦函数,因为该函数为复合函数,故错误;结论:f(x)=sin(x2+1)是奇函数,因为该函数为偶函数,故错误.故选A点评:本题考查演绎推理的基本方法,属基础题.4.(5分)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A.B.C.D.考点:利用导数研究函数的单调性;导数的几何意义.专题:压轴题.分析:本题可以考虑排除法,容易看出选项D不正确,因为D的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数.解答:解析:检验易知A、B、C均适合,不存在选项D的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选D.点评:考查函数的单调性问题.5.(5分)证明1++…+(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是()A.1项B.k﹣1项C.k项D.2k项考点:数学归纳法.专题:阅读型.分析:首先分析题目证明不等式1++…+,假设n=k时成立,求当n=k+1时,左端增加的项数.故可以分别把n=k+1,n=k代入不等式左边,使它们相减即可求出项数.解答:解:当n=k时不等式为:成立当n=k+1时不等式左边为则左边增加2k+1﹣2k=2k项.故选D.点评:此题主要考查用数学归纳法证明不等式的问题,属于概念性问题,计算量小,属于基础题目.6.(5分)(xx春•泰安校级期中)下列命题中①复数a+bi与c+di相等的充要条件是a=c且b=d②任何复数都不能比较大小③若=,则||=||④若||=||,则=或=﹣.错误的命题的个数是()A. 1 B. 2 C. 3 D. 4考点:复数相等的充要条件;复数求模.专题:数系的扩充和复数.分析:根据复数的性质解答本题.解答:解:对于①,复数a+bi与c+di相等即a+bi=b+di,所以充要条件是a=c且b=d;正确;对于②,任何复数都不能比较大小是错误的;如实数是可以比较大小的;故错误;对于③,若=,则||=||是正确的;对于④,若|z1|=|z2|,只能说明两个复数的模相等,故z1=z2或z1=错误.故选B点评:本题考查了复数相等、模相等等基础知识;熟记概念是关键.7.(5分)(xx春•梁子湖区校级期末)函数f(x)=xlnx的大致图象为()A.B.C.D.考点:函数的图象.专题:作图题.分析:由已知函数f(x)=xlnx的解析式,我们可以分析出函数的零点个数及在区间(0,1)上的图象位置,利用排除法可得到答案.解答:解:∵函数f(x)=xlnx只有1一个零点∴可以排除CD答案又∵当x∈(0,1)时lnx<0,∴f(x)=xlnx<0,其图象在x轴下方∴可以排除B答案故选A点评:本题考查的知识点是函数的图象,其中根据函数的解析式分析出函数的性质,是解答此类问题的关键.8.(5分)(xx春•禅城区期末)下列计算错误的是()A.sinxdx=0B.dx=C.cosxdx=2cosxdxD.sin2xdx=0考点:定积分.专题:计算题.分析:利用微积分基本定理求出各选项的值,判断出D错.解答:解:∫﹣ππsinxdx=(﹣cosx)|﹣ππ=(﹣cosπ)﹣(﹣cos(﹣π)=0因为y=cosx为偶函数所以=π故选D点评:本题考查利用微积分基本定理或定积分的几何意义求定积分值.9.(5分)(xx春•泰安校级期中)已知函数,且f(x0)=0,若a∈(1,x0),b∈(x0,+∞),则()A.f(a)<0,f(b)<0 B.f(a)>0,f(b)>0 C.f(a)>0,f(b)<0 D.f (a)<0,f(b)>0考点:函数零点的判定定理.专题:函数的性质及应用.分析:问题转化为两个函数的图象的交点问题,通过图象读出即可.解答:解:令f(x)=0,得:lnx=,画出函数y=lnx和函数y=的图象,如图示:,若a∈(1,x0),b∈(x0,+∞),则f(a)<0,f(b)>0,故选:D.点评:本题考查了函数的零点问题,考查数形结合思想,是一道基础题.10.(5分)(xx春•泰安校级期中)观察下列的规律:,,…则第93个是()A.B.C.D.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:根据数进行分组,找出每一组的规律即可得到结论.解答:解:分组:(),(,),(),(),…,则第n组为(,,…,),即每个组中有n个数,则前n组共有1+2+3+…+n=,当n=13时,=,则第93个数在第14组,为第2个数为,故选:B.点评:本题主要考查数列项的表示,根据条件进行分组是解决本题的关键.二.填空题:(本大题共5小题,每小题5分,共25分)11.(5分)(2011•姜堰市校级模拟)设函数,其中,则导数f′(1)的取值范围是[,2].考点:正弦函数的定义域和值域.专题:计算题.分析:先对函数进行求导,然后将x=1代入,再由两角和与差的公式进行化简,根据θ的范围和正弦函数的性质可求得最后答案.解答:解:∵,∴f'(x)=sinθx2+cosθx∴f′(1)=sinθ+cosθ=2sin(θ+)∵,∴θ+∈[,]∴sin(θ+)∈[,1]∴f′(1)∈[,2]故答案为:[,2].点评:本题主要考查函数的求导运算和两角和与差的正弦公式的应用.考查基础知识的简单综合.高考对三角函数的考查以基础题为主,平时要注意基础知识的积累和基础题的练习.12.(5分)(xx春•泰安校级期中)已知在等差数列{a n}中,,则在等比数列{b n}中,类似的结论为.考点:类比推理.专题:推理和证明.分析:在等差数列中,等差数列的性质m+n=p+q,则a m+a n=a p+a q,那么对应的在等比数列中对应的性质是若m+n=p+q,则b m b n=b p b q.解答:解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:.故答案为:.点评:本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.13.(5分)(xx春•泰安校级期中)定义运算=ad﹣bc,若复数x=,y=,则y=﹣5.考点:复数的基本概念;复数求模;二阶矩阵.专题:探究型.分析:先化简x=,求出x,然后按定义运算=ad﹣bc,代入x,化简求解即可.解答:解:x=y==4xi﹣4﹣(3+3i﹣xi+x)=5xi﹣7﹣3i﹣x=﹣5故答案为:﹣5点评:本题考查复数的基本概念,复数求模等知识,是创新题,中档题.14.(5分)(xx•衡南县二模)已知函数f(x)在R上满足f(x)=2f(2﹣x)﹣x2+8x﹣8,则曲线y=f(x)在点(1,f(1))处的切线方程是y=2x﹣1.考点:导数的几何意义.专题:计算题;压轴题.分析:先根据f(x)=2f(2﹣x)﹣x2+8x﹣8求出函数f(x)的解析式,然后对函数f(x)进行求导,进而可得到y=f(x)在点(1,f(1))处的切线方程的斜率,最后根据点斜式可求导切线方程.解答:解:∵f(x)=2f(2﹣x)﹣x2+8x﹣8,∴f(2﹣x)=2f(x)﹣(2﹣x)2+8(2﹣x)﹣8.∴f(2﹣x)=2f(x)﹣x2+4x﹣4+16﹣8x﹣8.将f(2﹣x)代入f(x)=2f(2﹣x)﹣x2+8x﹣8得f(x)=4f(x)﹣2x2﹣8x+8﹣x2+8x﹣8.∴f(x)=x2,f'(x)=2x∴y=f(x)在(1,f(1))处的切线斜率为y′=2.∴函数y=f(x)在(1,f(1))处的切线方程为y﹣1=2(x﹣1),即y=2x﹣1.答案y=2x﹣1点评:本题主要考查求函数解析式的方法和函数的求导法则以及导数的几何意义.函数在某点的导数值等于该点的切线方程的斜率.15.(5分)(xx春•宁波校级期末)设a i∈R+,x i∈R+,i=1,2,…n,且a12+a22+…a n2=1,x12+x22+…x n2=1,则的值中,现给出以下结论,其中你认为正确的是③⑤.①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.考点:分析法和综合法;反证法.专题:证明题.分析:由题设中的条件对各个结论进行判断,其中①②可用同一方法判断,③⑤两结论分别与①②两结论对立,由①②的正误可判断③⑤的正误,④中包含①,且与⑤矛盾,易判断解答:解:由题意a i∈R+,x i∈R+,i=1,2,…n,且a12+a22+…a n2=1,x12+x22+…x n2=1,对于的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…a n2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…a n2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故答案为③⑤点评:本题考查分析法与综合法,解题的关键是理解分析法与综合法的逻辑内含,结合题设条件对题设中所给的结论作出判断三.解答题(共75分)16.(12分)(xx春•泰安校级期中)计算:(1)求的导数.(2)=.考点:定积分;导数的运算.专题:导数的概念及应用.分析:(1)根据求导公式和法则求出已知函数的导数即可.(2)根据定积分的计算方法计算即可,解答:解(1):∵(2):原式==(x3﹣4x)|+(4x﹣x3)|=.故答案为:.点评:本题考查了求导公式和法则和定积分的计算,是基础题.17.(12分)(xx•上海)已知z是复数,z+2i,均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.考点:复数的代数表示法及其几何意义;复数代数形式的混合运算.专题:计算题.分析:设出复数的代数形式,整理出代数形式的结果,根据两个都是实数虚部都等于0,得到复数的代数形式.代入复数(z+ai)2,利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.解答:解:设复数z=m+ni(m,n∈R),由题意得z+2i=m+ni+2i=m+(n+2)i∈R,∴n+2=0,即n=﹣2.又∵,∴2n+m=0,即m=﹣2n=4.∴z=4﹣2i.∵(z+ai)2=(4﹣2i+ai)2=[4+(a﹣2)i]2=16﹣(a﹣2)2+8(a﹣2)i对应的点在复平面的第一象限,横标和纵标都大于0,∴解得a的取值范围为2<a<6.点评:本题考查复数的加减乘除运算及复数的代数形式和几何意义,本题解题的关键是整理出所给的复数的代数形式的标准形式,本题是一个中档题目.18.(12分)(xx春•泰安校级期中)在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为p a,p b,p c,且相应各边上的高分别为h a,h b,h c,则有=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.考点:类比推理.专题:推理和证明.分析:类比结论:从四面体内部任意一点向各面引垂线,其长度分别为p a,p b,p c,p d,且相应各面上的高分别为h a,h b,h c,h d.则有+++=1,由三棱锥的体积公式可证明.解答:解:类比结论:从四面体内部任意一点向各面引垂线,其长度分别为p a,p b,p c,p d,且相应各面上的高分别为h a,h b,h c,h d.则有+++=1.证明:==,同理有=,=,=,又V P﹣BCD+V P﹣CDA+V P﹣BDA+V P﹣ABC=V A﹣BCD,∴+++==1.点评:本题考查类比推理,谁三棱锥的体积公式,属中档题.19.(12分)(2011春•无极县校级期末)已知函数f(x)=16ln(1+x)+x2﹣10x.(1)求函数f(x)的单调区间;(2)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.考点:利用导数研究函数的极值;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:计算题;数形结合.分析:(1)先根据对数函数的定义求出f(x)的定义域,并求出f′(x)=0时x的值,在定义域内,利用x的值讨论f′(x)的正负即可得到f(x)的单调区间;(2)根据第一问函数的增减性得到函数的极大值为f(1)和极小值为f(3),然后算出x→﹣1+时,f(x)→﹣∞;x→+∞时,f(x)→+∞;据此画出函数y=f(x)的草图,由图可知,y=b与函数f(x)的图象各有一个交点,即满足f(4)<b<f(2),即可得到b的取值范围.解答:解:(1)f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)令f'(x)=0,得x=1,x=3.f'(x)和f(x)随x的变化情况如下:x (﹣1,1)1 (1,3)3 (3,+∞)f'(x)+ 0 ﹣0 +f(x)增极大值减极小值增f(x)的增区间是(﹣1,1),(3,+∞);减区间是(1,3).(2)由(1)知,f(x)在(﹣1,1)上单调递增,在(3,+∞)上单调递增,在(1,3)上单调递减.∴f(x)极大=f(1)=16ln2﹣9,f(x)极小=f(3)=32ln2﹣21.又x→﹣1+时,f(x)→﹣∞;x→+∞时,f(x)→+∞;可据此画出函数y=f(x)的草图(如图),由图可知,当直线y=b与函数y=f(x)的图象有3个交点时,当且仅当f(3)<b<f(1),故b的取值范围为(32ln2﹣21,16ln2﹣9)点评:本题要求学生会利用导函数的正负得到函数的单调区间,会根据函数的增减性得到函数的极值,是一道综合题.20.(13分)(xx秋•曲沃县校级期末)已知函数f(x)=x﹣.(1)讨论f(x)的单调性.(2)若f(x)在区间(1,2)上单调递减,求实数a的取值范围.考点:利用导数研究函数的单调性;函数的单调性与导数的关系.专题:综合题;分类讨论.分析:(1)求f(x)的定义域和导数fˊ(x)=,设g(x)=x2﹣ax+2,因为在函数式中含字母系数,需要根据△的符号进行分类讨论,分别在函数的定义域内解不式g(x)>0和g(x)<0确定的f(x)单调区间;(2)由条件确定f'(x)≤0,再转化为x2﹣ax+2≤0在(1,2)上恒成立,由二次函数的图象列出不等式求解,避免了分类讨论.解答:解:(1)由题意得,函数f(x)的定义域是(0,+∞),且f′(x)=1+﹣=设g(x)=x2﹣ax+2,二次方程g(x)=0的判别式△=a2﹣8,①当△=a2﹣8<0,即0<a<2时,对一切x>0都有f′(x)>0,此时f(x)在(0,+∞)上是增函数;②当△=a2﹣8=0,即a=2时,仅对x=有f′(x)=0,对其余的x>0,都有f′(x)>0,此时f(x)在(0,+∞)上也是增函数.③当△=a2﹣8>0,即a>2时,g(x)=x2﹣ax+2=0有两个不同的实根,,由f′(x)>0得,0<x<或x>,由f'(x)<0得,<x<,此时f(x)在(0,),(,+∞)上单调递增,在(,)是上单调递减,(2)解:f′(x)=1+﹣=,依题意f'(x)≤0(等零的点是孤立的),即x2﹣ax+2≤0在(1,2)上恒成立,令g(x)=x2﹣ax+2,则有,解得a≥3,故实数a的取值范围为[3,+∞).点评:本小题主要考查利用导数研究函数的单调性、解不等式以及二次函数的图象应用等基础知识,考查运算能力和运用函数思想分析解决问题的能力,以及分类讨论的思想方法.精品文档21.(14分)(xx•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.考点:等差数列与等比数列的综合;数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)根据等差中项和等比中项的性质求得a n和b n的关系式,分别求得a2,a3,a4及b2,b3,b4,推测出它们的通项公式.先看当n=1时,等式明显成立;进而假设当n=k时,结论成立,推断出a k和b k的表达式,进而看当n=k+1时看结论是否成立即可.(2)先n=1时,不等式成立,进而看n≥2时利用(1)中的{a n},{b n}的通项公式,以及裂项法进行求和,证明题设.解答:解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.28252 6E5C 湜33887 845F 葟t36566 8ED6 軖33610 834A 荊40308 9D74 鵴22532 5804 堄35312 89F0 觰• 0 28976 7130 焰38799 978F 鞏实用文档。
~第二学期期中考试高二数学试题(理科)注意事项:1. 本试卷共4页,包含填空题(第1~14题,共14题)、解答题(第16~20题,共6题)二部分。
本次考试时间为120分钟,满分160分。
考试结束后,只需将答题纸交回。
2. 答题前,请您务必将自己的姓名、考试证号、班级等信息用书写黑色字迹的0.5毫米签字笔填写在答题纸上。
3. 作答时必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。
参考公式:线性回归方程系数公式:,)())((211^∑∑==---=ni i ni i ix x y y x xb x b y a ^^-=.样本相关系数公式:,)()())((21211∑∑∑===----=ni i ni ini i iy y x xy y x xr卡方统计量:))()()(()(22d b c a d c b a bc ad n ++++-=χ一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直 接填写在答题纸指定位置. 1.化简=+-ii11 ▲ . 2.=-3545C A .3.已知,11ni im-=-其中n m ,是实数,i 是虚数单位,则=+ni m . 4.在回归分析中,对于y x ,随机取到的n 对数据),,2,1)(,(n i y x i i =样本相关系数r 具有下列哪些性质:①;1≤r ②r 越接近于1,y x ,的线性相关程度越弱;③r 越接近于1,y x ,的线性相关程度越强;④r 越接近于0,y x ,的线性相关程度越强,请写出所有正确性质的序号: .5.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 .①若2χ的观测值满足2χ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100人吸烟的人中必有99患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③其从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误.6.某地区的年财政收入x 与年支出y 满足线性回归模型ε++=bx a y (单位:亿元),其中.5.0,2,8.0≤==εa b 如果今年该地区财政收入10亿元,则年支出预计不会超过 .7.把4封不同的信投入3个不同的信箱,不同的投法种数共有 种.8.类比平面几何中的勾股定理:若直角三角形ABC 中的两边AC AB ,互相垂直,则三角形边长之间满足关系:.222BC AC AB =+若三棱锥BCD A -的三个侧面ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .9.已知推理:“因为△ABC 三边长依次为3,4,5,所以△ABC 是直角三角形”.若将其恢复成完整的三段论,则大前提是 . 10.观察下列等式:,),4321(16941,321941),21(41,11 +++-=-+-++=+-+-=-=由此推测第n 个等式为 .(不必化简结果) 11.已知,12121=-==z z z z 则21z z +等于 .12.在复平面内,O是原点,,,表示的复数分别为,51,23,2i i i +++-那么表示的复数为 .13.设正数数列}{n a 的前n 项和为n S ,且),1(21nn n a a S +=推测出n a 的表达式为 . 14.将正奇数排列如右表所示,其中第i 行第j 个数表示为),,(**N j N i a ij ∈∈例如.932=a 若,2009=ij a 则=+j i .二、解答题:本大题共6小题,共90分.在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题14分)已知复数,)32()1(2i m m m m z -++-=当实数m 取什么值时,复数z 是: (1) 零;(2)纯虚数; (3).52i z +=16.(本小题14分)先解答(1),再通过结构类比解答(2) (1) 求证:;tan 1tan 1)4tan(xxx -+=+π(2) 设R x ∈且,)(1)(1)1(x f x f x f -+=+试问:)(x f 是周期函数吗?证明你的结论.17.(本小题14分)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内.(1) 只有一个盒子空着,共有多少种投放方法?(2) 没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?18.(本小题16分)设,1,*>∈n N n 用数学归纳法证明:.131211n n>++++19.(本小题16分)某电脑公司有6名产品推销员,其中5名推销员的工作年限与年推销金额数据如下表:(1) 求年推销金额y 与工作年限x 之间的相关系数(精确到小数点后两位); (2) 求年推销金额y 关于工作年限x 的线性回归方程;(3) 若第6名推销员的工作年限为11年,试估计他的年推销金额. (参考数据:;02.104.1≈由检验水平0.01及,32=-n 查表得.59.001.0=r )20.(本小题16分0设Q P ,是复平面上的点集,{}{}.,2,05)(3P z iz Q z z i z z z P ∈===+-+⋅=ωω(1)Q P ,分别表示什么曲线?(2)设,,21Q z P z ∈∈求21z z -的最大值与最小值.2019-2019学年度第二学期期中考试高二数学答题纸一.填空题:(本题共14小题,每题5分,共70分)1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14.二.解答题:(本题共6题,共90分,请写出必要的解答或证明过程)15题:(本题14分)16题:(本题14分)17题.(本题14分)…18题:(本题16分)…19题:(本题16分)20题:(本题16分)高二理科数学参考答案一、填空题1. i -;2. 110;3. i +2;4. ①③;5. ③;6. 10.5亿元;7. 81; 8. 2222ACD ABC ABD BCD S S S S ∆∆∆∆++=;9. 一条边的平方等于其它两条边平方和的三角形是直角三角形; 10. )321()1()1(4321121222n n n n ++++-=⋅-++-+--- ;11.12. i 44-;13. 1--=n n a n ;14. 60二、解答题15. 解:(1)由⎩⎨⎧=-+=-0320)1(2m m m m 可得m=1; …………4分(2)由⎩⎨⎧≠-+=-0320)1(2m m m m 可得m=0; …………8分(3)由⎩⎨⎧=-+=-5322)1(2m m m m 可得m=2; …………12分综上:当m=1时,复数z 是0;当m=1时,复数z 是纯虚数;当m=2,复数z 是i 52+. …………14分 16. 解:(Ⅰ)xx x x x tan 1tan 14tantan 14tantan )4tan(-+=-+=+πππ; …………4分 (Ⅱ))(x f 是以4为其一个周期的周期函数. …………6分∵)(1)(1)(11)(1)(11)1(1)1(1)1)1(()2(x f x f x f x f x f x f x f x f x f -=-+--++=+-++=++=+, …………10分 ∴)()2(1)2)2(()4(x f x f x f x f =+-=++=+, …………12分所以)(x f 是周期函数,其中一个周期为4. …………14分 17. 解:(1)只有一个盒子空着,则有且只有一个盒子中投放两个球,另外3只盒子中各投放一个球,先将球分成2,1,1,1的四组,共有25C 种分法, …………4分再投放到五个盒子的其中四个盒子中,共有45A 种放法,所以满足条件的投放方法共有4525A C =1200(种); …………8分(2)五个球投放到五个盒子中,每个盒子中只有一个球,共有55A 种投放方法,而球的编号与盒子编号全相同的情况只有一种,所以球的编号与盒子编号不全相同的投放方法共有155-A =119(种). …………14分18. 证明:记)(n f =+++31211…n1+(*N n ∈,n >1), …………2分(1)当n =2时,211)2(+=f >2,不等式成立; …………6分(2)假设n =k (*N k ∈,k ≥2)时,不等式成立, …………8分 即)(k f =+++31211…k1+>k ,则当n =k +1时,有)1(+k f =)(k f +11+k >k +11+k =11)1(+++k k k>11++k k =1+k …………12分∴当n =k +1时,不等式也成立. …………14分 综合(1),(2)知,原不等式对任意的*N n ∈(n >1)都成立. …………16分 19. 解:(Ⅰ)由∑=--ni i iy y x x1))((=10,∑=-n i i x x 12)(=20,21)(∑=-ni i y y =5.2,可得98.02.52010≈⨯=r , …………4分∴年推销金额y 与工作年限x 之间的相关系数约为0.98. …………6分 (Ⅱ) 由(Ⅰ)知,98.0=r >01.0959.0r =,∴可以认为年推销金额y 与工作年限x 之间具有较强的线性相关关系. …………8分设所求的线性回归方程为a bx y+=ˆ,则4.0,5.0==a b . …………10分 ∴年推销金额y 关于工作年限x 的线性回归方程为4.05.0ˆ+=x y. …………12分 (Ⅲ) 由(Ⅱ) 可知,当11x =时, 4.05.0ˆ+=x y= 0.5×11+ 0.4 = 5.9万元, ∴可以估计第6名推销员的年推销金额为5.9万元. …………16分 20. 解:(1)设yi x z +=(R y x ∈,), …………2分 则集合=P {),(y x ︱05622=+-+y y x }={),(y x ︱4)3(22=-+y x },故P 表示以(0,3)为圆心,2为半径的圆; …………6分第11页 共11页 设yi x +=ω(R y x ∈,),P i y x z ∈+=00(R y x ∈00,)且iz 2=ω,…………8分 则⎩⎨⎧=-=0022x y y x …………10分 将⎪⎪⎩⎪⎪⎨⎧-==x y y x 212100代入4)3(22=-+y x 得16)6(22=++y x ,故Q 表示以(-6,0)为圆心,4为半径的圆; …………12分(2)21z z -表示分别在圆Q P ,上的两个动点间的距离,又圆心距53=PQ >2+4, 故21z z -最大值为6+35,最小值为35-6. …………16分。
2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。
江苏省苏州市高新区第一中学2021-2022学年高二下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式()3431s t t =+-,则当t =1秒时,该质点的瞬时速度为( )A .16米/秒B .40米/秒C .9米/秒D .36米/秒2.在41x x ⎛⎫- ⎪⎝⎭的二项展开式中,第二项的系数为( )A .4B .4-C .6D .6-3.若存在过点(0,-2)的直线与曲线3y x =和曲线2y x x a =-+都相切,则实数a 的值是( ) A .2B .1C .0D .-24.第24届冬奥会奥运村有智能餐厅A 、人工餐厅B ,运动员甲第一天随机地选择一餐厅用餐,如果第一天去A 餐厅,那么第二天去A 餐厅的概率为0.7;如果第一天去B 餐厅,那么第二天去A 餐厅的概率为0.8.运动员甲第二天去A 餐厅用餐的概率为( ) A .0.75B .0.7C .0.56D .0.385.设n 为奇数,那么11221111111111n n n n nn n C C C ---+⋅+⋅+⋅⋅⋅+⋅-除以13的余数是( ) A .3- B .2 C .10 D .116.下列等式不正确的是( )A .111mmnn m C C n ++=+ B .12111m m m n n n A A n A +-+--=C .11m m n n A n A --=D .()11k k kn n n nC k C kC +=++7.若 ()103302724210012103x y a x a x y a x y a y -=++++, 则10ii a=∑ 的值为( ) A .102B .53C .104D .658.直线 y m = 分别与曲线232ln 2y x x =-, 直线 3y x =- 交于 ,A B 两点, 则AB 的最小值为( )A B C .72D 二、多选题9.某校体育活动社团对全校学生体能情况进行检测,以鼓励学生积极参加体育锻炼.学生的体能检测结果X 服从正态分布()75,81N ,其中检测结果在60以上为体能达标,90以上为体能优秀,则( ) 附:随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<<+=,()220.9544P μσξμσ-<<+=,()330.9974P μσξμσ-<<+=.A .该校学生的体能检测结果的期望为75B .该校学生的体能检测结果的标准差为81C .该校学生的体能达标率超过0.98D .该校学生的体能不达标的人数和优秀的人数大致相等10.为了做好社区新疫情防控工作,需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则下列选项正确的是( ) A .共有625种分配方法 B .共有1024种分配方法C .每个小区至少分配一名志愿者,则有240种分配方法D .每个小区至少分配一名志愿者,则有480种分配方法11.已知函数()y f x =在R 上可导且()01f =,其导函数()f x '满足[](1)()()0x f x f x '+->,对于函数()()xf xg x e =,下列结论正确的是( ) A .函数()g x 在(),1-∞-上为增函数 B .1x =-是函数()g x 的极小值点 C .函数()g x 必有2个零点D .2()(2)e e f e e f >12.甲盒中装有3个红球、1个黄球、乙盒中装有1个红球、3个黄球,同时从甲、乙两盒中取出i (1,2,3i =)个球交换,分别记交换后甲、乙两个盒子中红球个数的数学期望为()i E X ,()i E Y ,则下列结论正确的是( ) A .()()11E X E Y > B .()()22E X E Y = C .()()114E X E Y += D .()()23E X E X <三、填空题13.已知随机变量 ξ 服从正态分布 ()23N σ,, 且 ()()591P P ξξ<=<, 则()15P ξ<<= _______________.14.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是__________.15.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,()()2.4,46DX P X P X ==<=,则p =______. 四、双空题16.已知:若函数()(),f x g x 在R 上可导,()()f x g x =,则fx g x .又英国数学家泰勒发现了一个恒等式22012e x n n a a x a x a x =+++++,则0a =___________,1011n n na na+==∑___________.五、解答题17.已知()23012313nn n x a a x a x a x a x -=+++++(n 为正整数).(1)若2011513a a a =-,求n 的值; (2)若2022n =,0242022+A a a a a =+++,1352021B a a a a =++++,求A B +和22A B -的值(结果用指数幂的形式表示). 18.已知函数()2sin cos 2f x x x =+,[],x ππ∈-. (1)证明函数()f x 为偶函数,并求出其最大值; (2)求函数()f x 在[]0,π上单调递增区间.19.书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数x (单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)若年轻人每天阅读时间X 近似地服从正态分布(,100)N μ,其中μ近似为样本平均数x ,求9(64)4P X <≤;(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70),[80,90)的年轻人中抽取10人,再从中任选3人进行调查,求抽到每天阅读时间位于[80,90)的人数ξ的分布列和数学期望.附参考数据:若()2~,X N μδ,则①()0.6827P X μδμδ-<≤+=;①(22)0.9545P X μδμδ-<≤+=;①(33)0.9973P X μδμδ-<≤+=.20.已知函数 ()ln f x ax x x =+ 的图象在点 e x = ( e 为自然对数的底数) 处的切线斜率为 3. (1)求实数 a 的值;(2)若 k Z ∈, 且存在 1x > 使 ()()1k x f x -> 成立, 求 k 的最小值. 21.某地举行象棋比赛,淘汰赛阶段的比赛规则是:两人一组,先胜一局者进入复赛,败者淘汰.比赛双方首先进行一局慢棋比赛,若和棋,则加赛快棋;若连续两局快棋都是和棋,则再加赛一局超快棋,超快棋只有胜与负两种结果.在甲与乙的比赛中,甲慢棋比赛胜与和的概率分别为12,13,快棋比赛胜与和的概率均为13,超快棋比赛胜的概率为14,且各局比赛相互独立.(1)求甲恰好经过三局进入复赛的概率;(2)记淘汰赛阶段甲与乙比赛的局数为X ,求X 的概率分布列和数学期望.22.已知函数()()2e 2e x xf x a a x =+--(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.参考答案:1.B 【解析】 【分析】对关于位移与时间的关系式求导,然后将1t =代入可求出该质点的瞬时速度 【详解】3243(31)3s t t =+-⨯',当1t =时,49440s =+⨯=', 故该质点的瞬时速度为40米/秒. 故选:B 2.B 【解析】 【分析】由二项式展开式的通项公式直接计算即可 【详解】41x x ⎛⎫- ⎪⎝⎭的二项展开式的第二项为11411222114414T T C x C x x x -+⎛⎫==-=-=- ⎪⎝⎭, 所以第二项的系数为4-, 故选:B 3.A 【解析】 【分析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可. 【详解】3y x =的导函数为23y x '=,2y x x a =-+的导函数为21y x '=-,若直线与3y x =和2y x x a =-+的切点分别为(1x ,31x ),2222(,)x x x a -+,①过(0,-2)的直线为2132y x x =-、()1212y x x =--,则有()21222222331132121232x x x x a x x x x ⎧=-⎪-+=--⎨⎪=-⎩,可得12122x x a =⎧⎪=⎨⎪=⎩.故选:A. 4.A 【解析】 【分析】第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A 餐厅”和“第1天去B 餐厅”两个互斥事件的并,利用全概率公式求解. 【详解】设1A =“第1天去A 餐厅用餐”,1B =“第1天去B 餐厅用餐”, 2A =“第2天去A 餐厅用餐”,则11A B Ω=⋃,且1A 与1B 互斥,根据题意得:()()110.5P A P B ==,()210.7P A A =,()210.8P A B =, 则()()()()()21211210.50.70.50.80.75P A P A P A A P B P A B =+=⨯+⨯=. 故选:A. 5.C 【解析】 【分析】用二项式定理将原式化为122n -,进而化为()1312n--,再用二项式定理展开,即可得到答案. 【详解】11221011221111111111111111112n n n n n n n n nn n n n n n n n C C C C C C C C ------+⋅+⋅+⋅⋅⋅+⋅-=⋅+⋅+⋅+⋅⋅⋅+⋅+-()()()()1011111121221312131311312n n n nn n n n nn n n n C C C C ---=+-=-=--=⋅-⋅+⋅⋅⋅+-⋅⋅+-⋅-因为n 为奇数,则上式=()1011113131133n n n n nn n C C C ---⋅-⋅+⋅⋅⋅+-⋅⋅-()10111131********n n n n n n n C C C ---⎡⎤=⋅-⋅+⋅⋅⋅+-⋅⋅-+⎣⎦.所以11221111111111n n n n n n n C C C ---+⋅+⋅+⋅⋅⋅+⋅-除以13的余数是10.6.A 【解析】 【分析】按照排列数和组合数的运算依次判断4个选项即可. 【详解】()11!111!111!(1)!1!()!1m m n n n m m m n m C C n n m n m n m m n m n m++++++=⋅=⋅=+++-+--+-,故A 错误; ()()()111!!!!m mn nn n n A n A n m n m ---⋅=⋅==--,C 正确;12111(1)m m m m m m n n n n n n A A n A A nA n A +-+--=+-==,B 正确;1!!()(1)(1)(1)!(1)!!()!k k k k kn n n n n n n n k k C kC k kC kC nC k n k k n k +-++=++=+=+---,D 正确.故选:A. 7.C 【解析】 【分析】先通过二项展开式判断系数的正负,再通过赋值法求得结果即可. 【详解】由题意得:10(3)i ii a C =-,故当0,2,4,6,8,10i =时,0i a >,当1,3,5,7,9i =时,0i a <,故10i i a =∑0123910a a a a a a =-+-+-+,令1,1x y ==-可得[]1010012391013(1)4a a a a a a -⨯-=-+-+-+=,故100i i a =∑104=. 故选:C. 8.C 【解析】 【分析】由题,线段AB 平行于x 轴,直线3y x =-倾斜角α固定,A 到直线3y x =-的距离为d ,则sin dABα=,故求AB 最小转为求d 最小,即为当过点A 处的切线与直线3y x =-平行求出曲线232ln 2y x x =-的导函数,当导函数的函数值等于tan α时,可求得切点,进而求得切点到直线3y x =-的距离,此即为最小的d ,则AB 最小值可求. 【详解】由题,设A 到直线3y x =-的距离为d ,直线3y x =-的倾斜角为α,则sin dABα=, 又tan 1α=,AB ∴=,故AB 最小即d 最小,即为当过点A 处的切线与直线3y x =-平行时最小, 由曲线231,0y x x x '=-=>,得1x =,所以切点为31,2A ⎛⎫ ⎪⎝⎭, 可求得点A 到直线3y x =-的距离最小值为mind==故min min 72AB ==, 故选:C 9.AD 【解析】 【分析】求出μ、σ的值,可判断AB 选项;利用3σ原则可判断C 选项;利用正态密度曲线的对称性可判断D 选项. 【详解】对于A 选项,该校学生的体能检测结果的期望为75μ=,A 对;对于B 选项,该校学生的体能检测结果的标准差为9σ==,B 错; 对于C 选项,275185760μσ-=-=<, 所以,()()()11602220.977222P X P X P μσμσξμσ><>-=+-<<+=,C 错; 对于D 选项,60902μ+=,所以,()()6090P X P X ≤=>, 所以,该校学生的体能不达标的人数和优秀的人数大致相等,D 对. 故选:AD. 10.BC【分析】选项AB :根据题意并结合乘法原理即可求解;选项CD :利用部分均匀分组消序的方法进行分组,然后进行全排列即可求解. 【详解】对于选项AB:若需要将5名志愿者分配到甲、乙、丙、丁4个小区开展工作,则每个志愿者都有4种可能,根据计数原理之乘法原理,则有45=1024种不同的方法,故A 错误,B 正确,对于选项CD :若每个小区至少分配一名志愿者,则有一个小区有两名志愿者,其余小区均有1名志愿者,由部分均匀分组消序和全排列可知,把5名志愿者分成4组,有211145321433240C C C C A A =种不同的分配方法, 故C 正确,D 错误. 故选:BC. 11.BD 【解析】对函数()g x 求导,求出单调区间和极值,可判断选项A ,B ;根据极小值的大小可得函数的零点个数,判断选项C ;利用()g x 在()1,-+∞上为增函数,比较()2g 与()g e 的大小关系,判断出选项D . 【详解】 函数()()x f x g x e =,则()()()xf x f xg x e '-'=, 当1x >-时,()()0f x f x '->,故()g x 在()1,-+∞上为增函数,A 错误;当1x <-时,()()0f x f x '-<,故()g x 在(),1-∞-单调递减,故1x =-是函数g (x )的极小值点,B 正确;若()10g -<,则()y g x =有两个零点, 若()10g -=,则()y g x =有一个零点,若()10g ->,则()y g x =没有零点,故C 错误;()g x 在()1,-+∞上为增函数,则()()2g g e <,即()()22e f f e e e<,化简得2()(2)e e f e e f >,D 正确; 故选:BD 【点睛】本题考查导数在单调性中的应用,考查函数的极值,考查函数的零点问题,考查利用单调性比较大小,属于中档题. 12.ABC 【解析】 【分析】分别就1i =,2,3计算概率得出数学期望,憨厚逐一分析各选项即可得出结论. 【详解】解:X 表示交换后甲盒子中的红球数,Y 表示交换后乙盒子中的红球数,当1i =时,则()()1133114492216C C P X P Y C C =====, ()()1111114414016C C P X P Y C C =====, ()()1131114433128C C P X P Y C C ====⨯=, ①()19315234168162E X =⨯+⨯+⨯=, ()19133201161682E Y =⨯+⨯+⨯=,故A 正确,C 正确; 当2i =时,()()223322441134C C P X P Y C C =====,()()112313224412222C C C P X P Y C C ====⨯⨯=,()()1111313122441314C C C C P X P Y C C ====⨯=,①()21111232424E X =⨯+⨯+⨯=,()21113212424E Y =⨯+⨯+⨯=,故B 正确;当3i =时,()()3333334410416C C P X P Y C C =====, ()()321331334431328C C C P X P Y C C ====⨯⨯=,()()21123113334492216C C C C P X P Y C C ====⨯=,①()31393012168162E X =⨯+⨯+⨯=, ①()()23E X E X >,故D 错误. 故选:ABC. 13.0.8##45【解析】 【分析】由正态分布对称性得()()15P P ξξ<=>,结合()()591P P ξξ<=<解得()50.1P ξ>=,即可求解. 【详解】由题意知:()()15P P ξξ<=>,故()()595P P ξξ<=>,即()()1595P P ξξ->=>,解得()50.1P ξ>=,故()15120.10.8P ξ<<=-⨯=. 故答案为:0.8. 14.24 【解析】 【详解】第一步:先排2名男生有222A =种,第二步:排女生,3名女生全排形成了4个空有336A =种,第三步,将这1个老师插入3名女生形成的2空(不含3名女生两端的空)中,根据分步计数原理可得,共有23123224A A A =种,故答案为24. 15.0.6【解析】 【分析】由题意知,()~10X B p ,,根据二项分布的概率、方差公式计算即可. 【详解】由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布, 所以()()101 2.4D X p p =-=, 所以0.6p =或0.4p =.由()()46P X P X =<=,得()()6444661010C 1C 1p p p p -<-, 即()221p p -<, 所以0.5p >, 所以0.6p =, 故答案为:0.6. 【点睛】本题主要考查的是二项分布问题,根据二项分布求概率,再利用方差公式求解即可. 16. 1 2011##9111【解析】 【分析】令0x =,即可求出0a ,再将22012e x n n a a x a x a x =+++++两边求导数,即可得到()121n n a n a +=+,即可得到121n n a a n +=+,从而得到11121n n a na n n +⎛⎫=- ⎪+⎝⎭,再用裂项相消法求和即可; 【详解】解:因为22012e x n n a a x a x a x =+++++,令0x =,即00e a =,所以01a =;()()221121e 2e21xxn n n n a a x na x n a x -+'==++++++又220122e 2222x n n a a x a x a x =+++++,所以()121n n a n a +=+,所以121n n a a n +=+,所以()1211211n n a n n n n na +⎛⎫==- ⎪++⎝⎭所以10101111111120212231011121111n n n n a nn na +==⎛⎫==--+-+⎛⎫+-⎪ =⎝⎝⎭⎪+⎭∑∑ 故答案为:1;201117.(1)10n =(2)20222A B +=,2260662A B -=, 【解析】 【分析】(1)先求出二项式展开式的通项公式,然后由2011513a a a =-列方程可求出n 的值,(2)分别令1x =,1x =-求出202201220222A B a a a a +=+++⋅⋅⋅+=,2022012202120224A B a a a a a -=-+-⋅⋅⋅-+=,进而可求出22A B -的值,(1)二项式(13)n x -展开式的通项公式为1(3)(3)r r r r rr n n T C x C x +=-=-,则001122012(3),(3),(3)n n n a C a C a C =-=-=-,因为2011513a a a =-,所以221(3)1513(3)n n C C -=--,化简得2329100n n --=,(10)(31)0n n -+=,得10n =或13n =-(舍去),(2)当2022n =时,()22022202220223012313x a a x a x a x a x -=+++++,令1x =,得202220220122022(2)2a a a a +++⋅⋅⋅+=-=, 令1x =-,得2022012202120224a a a a a -+-⋅⋅⋅-+=,因为0242022+A a a a a =+++,1352021B a a a a =++++,所以202201220222A B a a a a +=+++⋅⋅⋅+=,2022012202120224A B a a a a a -=-+-⋅⋅⋅-+=,所以22202220226066()()242A B A B A B -=+-=⋅=,18.(1)证明见解析,最大值为32;(2)06,π⎡⎤⎢⎥⎣⎦、5,26ππ⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)利用函数奇偶性的定义可证得结论成立,再利用二倍角公式结合二次函数的基本性质可求得函数()f x 的最大值;(2)求导得出()()2cos 12sin f x x x '=-,然后求出不等式()0f x '≥在[]0,π上的解集,即可得出结论. (1)解:函数()f x 的定义域[],ππ-,又()()()2sin cos 22sin cos 2f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,当[]0,x π∈时,0sin 1x ≤≤,()22sin cos 22sin 2sin 1f x x x x x =+=-++2132sin 22x ⎛⎫=--+ ⎪⎝⎭,所以当1sin 2x =时,函数()f x 的最大值为32. (2)解:当[]0,x π∈时,()22sin 2sin 1f x x x =-++,对其求导得()()4sin cos 2cos 2cos 12sin f x x x x x x '=-+=-, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,cos 0x ≥,只需12sin 0x -≥,解得0,6x π⎡⎤∈⎢⎥⎣⎦,当,2x π⎛⎤∈π ⎥⎝⎦时,cos 0x <,只需12sin 0x -≤,解得5,26x ππ⎛⎤∈ ⎥⎝⎦,综上函数()f x 在[]0,π上的单调递增区间有06,π⎡⎤⎢⎥⎣⎦、5,26ππ⎡⎤⎢⎥⎣⎦.19.(1)74;(2)0.8186;(3)分布列见解析;期望为65.【解析】 【分析】(1)根据频率分布直方图以及平均数的计算方法计算即可.(2)依据(2)(6494)P X P X μδμδ-<≤+=<≤,按公式计算即可.(3)先得到随机变量ξ的取值,并分别计算相应的概率,然后列出分布列,并按期望公式计算即可. 【详解】解:(1)根据频率分布直方图得:(550.01650.02750.045850.02950.005)1074x =⨯+⨯+⨯+⨯+⨯⨯=.(2)由题意知~(74,100)X N ,0.68270.9545(2)(6494)0.81862P X P X μδμδ+-<≤+=<≤==.(3)由于[50,60),[60,70)和[80,90)的频率之比为:1:2:2,故抽取的10人中[50,60),[60,70)和[80,90)分别为:2人,4人,4人, 随机变量ξ的取值可以为0、1、2、3,363101(0)6C P C ξ===,21641301(1)2C C P C ξ===,23164103(2)10C C P C ξ===,343101(3)30C P C ξ===, ξ的分布列为:11316()01236210305E ξ∴=⨯+⨯+⨯+⨯=20.(1)1 (2)4 【解析】 【分析】(1)先求导,再利用()e 3f '=解出a 即可;(2)先参变分离得到minln 1x x x k x +⎛⎫> ⎪-⎝⎭,再构造函数ln ()(1)1x x xg x x x +=>-,求导确定单调性后求出min ()g x 的范围,即可求出k 的最小值. (1)由题意知:()ln 1f x a x =++',()e lne 13f a '=++=,解得1a =; (2)由(1)知:()ln f x x x x =+,存在1x > 使 ()()1k x f x -> 成立等价于minln 1x x x k x +⎛⎫> ⎪-⎝⎭,令ln ()(1)1x x x g x x x +=>-, 则()()()221ln 1(1)ln ln 2()11x x x x x x x g x x x ++-++--'==--,令()ln 2(1)h x x x x =-->,则1()10h x x'=->,所以()h x 在(1,)+∞上单增, 又(3)1ln30,(4)2ln 40h h =-<=->,故存在0(3,4)x ∈使0()0h x =,即00ln 20x x --=, 故当0(1,)x x ∈时,()0,()g x g x '<单减,故当0(,)x x ∈+∞时,()0,()'>g x g x 单增, 故()000000min 00002ln ()()11x x x x x x g x g x x x x +-+====--,故0k x >, 又0(3,4)x ∈且k Z ∈,故k 的最小值为4. 21.(1)127(2)分布列见解析,4027【解析】 【分析】(1)前两局和棋最后一局甲胜,按照乘法公式计算概率即可;(2)X 的所有可能取值为1,2,3,4,依次计算出概率,列出分布列,再计算期望即可. (1)前两局和棋最后一局甲胜,111133327P =⨯⨯=. (2)X 的所有可能取值为1,2,3,4,乙慢棋比赛胜概率16P =,乙快棋比赛胜概率13P =,乙超快棋比赛胜概率34P =.()()11211121,22633339P X P X ⎛⎫==+===⨯+= ⎪⎝⎭, ()()1111211113,4.33332733327P X P X ⎛⎫==⨯⨯+===⨯⨯= ⎪⎝⎭X ∴的分布列为()222140123439272727E X ∴=⨯+⨯+⨯+⨯=.22.(1)见解析;(2)(0,1). 【解析】 【详解】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)∈+∞a ,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a >-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(),-∞+∞,()()()()2221121x x x x f x ae a e ae e =+---'=+,(①)若0a ≤,则()0f x '<,所以()f x 在(),-∞+∞单调递减. (①)若0a >,则由()0f x '=得ln x a =-.当(),ln x a ∈-∞-时,()0f x '<;当()ln ,x a ∈-+∞时,()0f x '>,所以()f x 在(),ln a -∞-单调递减,在()ln ,a -+∞单调递增.(2)(①)若0a ≤,由(1)知,()f x 至多有一个零点.(①)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为()1ln 1ln f a a a-=-+. ①当1a =时,由于()ln 0f a -=,故()f x 只有一个零点; ①当()1,a ∈+∞时,由于11ln 0a a-+>,即()ln 0f a ->,故()f x 没有零点; ①当()0,1a ∈时,11ln 0a a-+<,即()ln 0f a -<. 又()()4222e 2e 22e 20f a a ----=+-+>-+>,故()f x 在(),ln a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>- ⎪⎝⎭,则()()00000000e e 2e 20n n n nf n a a n n n =+-->->->.由于3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()f x 在()ln ,a -+∞有一个零点.综上,a 的取值范围为()0,1.点睛:研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.。
2020-2021西安市高新第一中学高中必修二数学下期中试卷(及答案)一、选择题1.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B .21C .22D .22.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个 B .有有限多个 C .有无限多个 D .不存在3.如图,已知正方体1111ABCD A B C D -中,异面直线1AD 与1A C 所成的角的大小是( )A .30oB .60oC .90oD .120o4.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 5.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 3P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π 6.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A .26B .5C .26D .42+ 7.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( ) A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭ 8.已知点()1,2-和3,0⎛⎫ ⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( )A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫ ⎪⎝⎭ C .25,36ππ⎛⎫ ⎪⎝⎭ D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9.已知实数,x y 满足250x y ++=,那么22x y +的最小值为( )A .5B .10C .25D .21010.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .153B .53C .64D .10411.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶2 12.如图,正四面体ABCD 中,,EF 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立二、填空题13.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v ,则点A 的横坐标为________.14.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.15.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.16.若圆的方程为2223()(1)124k x y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 . 17.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。
高2021级数学 第1 页 共 4 页 高2021级数学 第 2页 共 4 页高2021级高二下学期期中质量检测 2023.04.25理科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、考号填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题号的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数−=+z 1i2i,则=z ( ) A .1BCD2.数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是( )A .至少有一本政治与都是数学B .至少有一本政治与都是政治C .至少有一本政治与至少有一本数学D .恰有1本政治与恰有2本政治 3.已知复数=+∈∈z a b a b i R,R )(,且+=−z 12i 1i )(,则−=a b ( )A .52B .51C .−52D .−514.从甲、乙等6名专家中任选2人前往某地进行考察,则甲、乙2人中至少有1人被选中的概率为( ) A .54B .32C .52D .535.命题p :“∀∈−+>x x mx R,102”,命题q :“<m 2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 6.命题“∃∈+∞a 0,)[,>a a sin ”的否定形式是( )A .∈+∞∀a 0,)[,≤a a sinB .∃∈+∞a 0,)[,≤a a sinC .∀∈−∞a ,0)(,≤a a sinD .∃∈−∞a ,0)(,>a a sin7.)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列a n }{称为“斐波那契数列”,则=a 7( ) A .8B .13C .18D .23. B . C . .9.地铁让市民不再为公交车的拥挤而烦恼,地下交通的容量大、速度快、准点率高等特点弥补了 单一地面交通的不足.成都地铁9号线每5分钟一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是( )A .0.6B .0.8C .0.4D .0.210.已知命题∀∈p x :R ,>−x sin 1;命题∃∈+=+q x y x y x y :,R,sin sin sin )(,则下列命题是真命题的是( ) A .∧p q B .∧⌝p q )( C .∨⌝p q )( D .⌝∧p q )(11.已知−=x a x 012在∈+∞x 0,)(上有两个不相等的实数根,则实数a 的取值范围是( )A .⎝⎦⎥ ⎛⎤e 20,1B .⎝⎭⎪⎛⎫2e 0,1C .⎝⎦⎥ ⎛⎤1,e 2e 1D .⎝⎭⎪⎛⎫1,e 2e 112.函数=f x x ln 2)(的图象与函数=−+−−xg x x x x 2e e 1)(的图象交点的横坐标x 0,则e x xln 200= ( ) A .−ln 2B .-21C .21D .ln 2高2021级数学 第3 页 共 4 页 高2021级数学 第4页 共 4 页第二部分(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
精品文档2021年高二数学第二学期期中试题 理考试须知:1.本卷共4页;2.本卷答案必须做在答案卷上,做在试题上无效;3.答题前请在答题卷密封线内填好相关栏目; 4.不得使用计算器。
一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 复数等于(▲)A .B .C .D .2.设表示不同的直线,表示不同的平面,给出下列四个命题:①若,且则; ②若,且,则; ③若,则;④若且,则.其中正确命题的个数是(▲)A .B .C .D .3. 若函数f (x )=-x e x,则下列命题正确的是(▲)A .对任意a ∈⎝⎛⎭⎪⎫-∞,1e ,都存在x ∈R,使得f (x )>a B .对任意a ∈⎝ ⎛⎭⎪⎫1e ,+∞,都存在x ∈R,使得f (x )>a C .对任意x ∈R,都存在a ∈⎝⎛⎭⎪⎫-∞,1e ,使得f (x )>a D .对任意x ∈R,都存在a ∈⎝ ⎛⎭⎪⎫1e ,+∞,使得f (x )>a 4.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为,直径为4的球的体积为,则(▲) A . B . C . D . 5. “”是“直线与圆 相交”的(▲)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.曲线在点处的切线方程是(▲) A . B .C .D .7.设动直线与函数的图象分别交于点,则的最小值为(▲) A . B . C . D . 8.将正整数排成右下表:则在表中数字xx 出现在(▲)A .第44行第78列B .第45行第78列C .第44行第77列D .第45行第77列……9.已知,分别是双曲线:的两个焦点,双 曲线和圆:的一个交点为,且,那么双曲线 的离心率为(▲) A . B . C . D . 10.已知函数有且仅有两个不同的零点,,则(▲)A .当时,,B .当时,,C .当时,,D .当时,,二、填空题:本大题有7小题,每小题4分,共28分。
2022-2023学年四川省成都市高二下学期期中考试数学(理)试题一、单选题1.已知i 为虚数单位,复数1iiz -=,则z =()A .1B .2C .3D .2【答案】B【分析】由复数的四则运算可得1i z =--,再由复数模的计算公式求解即可.【详解】解:因为21i (1i)i(i i )1i i i iz --⋅===--=--⋅,所以22(1)(1)2z =-+-=.故选:B.2.如图茎叶图记录了甲乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则运动员乙成绩的方差为()A .2B .3C .9D .16【答案】A【分析】根据甲、乙二人的平均成绩相同求出x 的值,再根据方差公式求出乙的方差即可.【详解】因为甲乙二人的平均成绩相同,所以8789909193888990919055x+++++++++=,解得2x =,故乙的平均成绩8889909192905++++=,则乙成绩的方差222222[(8890)(8990)(9090)(9190)(9290)]25s -+-+-+-+-==.故选:A.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,则双曲线C 的离心率为()A .2B .2C .3D .5【答案】D 【分析】先求得ba,进而求得双曲线的离心率.【详解】依题意,双曲线的一条渐近线方程为20,2x y y x -==,所以2222222,15b c c a b b e a a a a a +⎛⎫=====+= ⎪⎝⎭.故选:D4.已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是()A .若m α ,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α ,m n ⊥,则n α⊥【答案】B【分析】根据空间直线与平面间的位置关系判断.【详解】对于A ,若m α ,n α∥,则m 与n 相交、平行或异面,故A 错误;对于B ,若m α⊥,n α⊥,由线面垂直的性质定理得m n ∥,故B 正确;对于C ,若m α⊥,m n ⊥,则n α∥或n ⊂α,故C 错误;对于D ,若m α ,m n ⊥,则n 与α相交、平行或n ⊂α,故D 错误.故选:B .5.“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【分析】由直线()34420m x y -+-=与直线220mx y +-=平行可求得m 的值,集合充分条件、必要条件的定义判断可得出结论.【详解】若直线()34420m x y -+-=与直线220mx y +-=平行,则()()23442342m mm m ⎧-=⎪⎨--≠-⎪⎩,解得4m =.因此,“4m =”是“直线()34420m x y -+-=与直线220mx y +-=平行”的充要条件.故选:C.6.执行该程序框图,若输入的a 、b 分别为35、28,则输出的=a ()A .1B .7C .14D .28【答案】B【分析】根据程序框图列举出循环的每一步,即可得出输出结果.【详解】第一次循环,35a =,28b =,a b ¹成立,a b >成立,则35287a =-=;第二次循环,7a =,28b =,a b ¹成立,a b >不成立,则28721b =-=;第三次循环,7a =,21b =,a b ¹成立,a b >不成立,则21714b =-=;第四次循环,7a =,14b =,a b ¹成立,a b >不成立,则1477b =-=.7a b ==,则a b ¹不成立,跳出循环体,输出a 的值为7.故选:B.7.函数()()22e xf x x x =-的图像大致是()A .B .C .D .【答案】B【分析】由函数()f x 有两个零点排除选项A ,C ;再借助导数探讨函数()f x 的单调性与极值情况即可判断作答.【详解】由()0f x =得,0x =或2x =,选项A ,C 不满足,即可排除A ,C由()()22e x f x x x =-求导得()()22e xx x f '=-,当2x <-或2x >时,()0f x ¢>,当22x -<<时,()0f x '<,于是得()f x 在(),2-∞-和()2,+∞上都单调递增,在()2,2-上单调递减,所以()f x 在2x =-处取极大值,在2x =处取极小值,D 不满足,B 满足.故选:B8.已知曲线1cos :sin x C y θθ=+⎧⎨=⎩(θ为参数).若直线323x y +=与曲线C 相交于不同的两点,A B ,则AB 的值为A .12B .32C .1D .3【答案】C【详解】分析:消参求出曲线C 的普通方程:22(1)1x y -+=,再求出圆心(1,0)到直线的距离d ,则弦长222AB r d =-.详解:根据22cos sin 1θθ+=,求出曲线C 的普通方程为22(1)1x y -+=,圆心(1,0)到直线的距离3233231d -==+,所以弦长222AB r d =-321=14=-,选C.点睛:本题主要考查将参数方程化为普通方程,直线与圆相交时,弦长的计算,属于中档题.9.过椭圆C :()222210x y a b a b +=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=【答案】A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A10.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是A .413B .21313C .926D .31326【答案】A【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒=,所以213DF AB =.所以所求概率为224=1313DEF ABC S S ∆∆⎛⎫= ⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.11.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,4=AD ,E 为PC 的中点,则面PCD 与直线BE 所成角的余弦值为()A .35B .23015C .2515D .10515【答案】D【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法结合同角三角函数的基本关系可求得面PCD 与直线BE 所成角的余弦值.【详解】因为PA ⊥平面ABCD ,四边形ABCD 为矩形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()2,0,0B 、()2,4,0C 、()0,4,0D 、()002P ,,、()1,2,1E ,设平面PCD 的法向量为(),,n x y z = ,()2,0,0DC =uuu r,()0,4,2DP =-uuu r ,则20420n DC x n DP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取1y =,可得()0,1,2n = ,()1,2,1BE =- ,所以,4230cos ,1565BE n BE n BE n⋅===⨯⋅,所以,22230105sin ,1cos ,11515BE n BE n ⎛⎫=-=-= ⎪ ⎪⎝⎭,因此,面PCD 与直线BE 所成角的余弦值为10515.故选:D.12.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是()①01a <<;②122x x a +<;③121x x ⋅>;④2111x x a->-;A .1个B .2个C .3个D .4个【答案】C【分析】由()0f x =可得1ln xa x+=,设()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,利用导数分析函数()g x 的单调性与极值,数形结合可判断①;构造函数()()2h x f x f x a ⎛⎫=-- ⎪⎝⎭,其中10x a <<,分析函数()h x 的单调性,可判断②③;分析出1211e x x <<<、1210x x a<<<,利用不等式的基本性质可判断④.【详解】由()0f x =可得ln 1x a x+=,令()ln 1x g x x +=,其中0x >,则直线y a =与函数()g x 的图象有两个交点,()2ln xg x x '=-,由()0g x '>可得01x <<,即函数()g x 的单调递增区间为()0,1,由()0g x '<可得1x >,即函数()g x 的单调递减区间为()1,+∞,且当10e x <<时,()ln 10x g x x+=<,当1e x >时,()ln 10x g x x +=>,如下图所示:由图可知,当01a <<时,直线y a =与函数()g x 的图象有两个交点,①对;对于②,由图可知,1211ex x <<<,因为()11ax f x a x x -'=-=,由()0f x ¢>可得10x a<<,由()0f x '<可得1x a >,所以,函数()f x 的增区间为10,a ⎛⎫⎪⎝⎭,减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则必有1210x x a <<<,所以,110x a <<,则121x a a->,令()()222ln ln h x f x f x x a x x ax a a a ⎛⎫⎛⎫⎛⎫=--=----+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中10x a <<,则()212112022a x a h x a x x x x a a ⎛⎫- ⎪⎝⎭'=-+=<⎛⎫-- ⎪⎝⎭,则函数()h x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,所以,()110h x h a ⎛⎫>= ⎪⎝⎭,即()1120f x f x a ⎛⎫--> ⎪⎝⎭,即()112f x f x a ⎛⎫<- ⎪⎝⎭,又()20f x =,可得()212f x f x a ⎛⎫<- ⎪⎝⎭,因为函数()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭,则212x x a >-,即122x x a +>,②错;对于③,由1122ln 1ln 1ax x ax x =+⎧⎨=+⎩,两式相加整理可得()1212ln 22x x x x a a ++=>,所以,()12ln 0x x >,可得121x x >,③对;对于④,由图可知1211ex x <<<,则11x ->-,又因为21x a >,所以,2111x x a->-,④对.故选;C.【点睛】证明极值点偏移的相关问题,一般有以下几种方法:(1)证明122x x a +<(或122x x a +>):①首先构造函数()()()2g x f x f a x =--,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()()()1112122g x f x f a x f x f a x =--=--与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与12a x -的大小,从而证明相应问题;(2)证明212x x a <(或212x x a >)(1x 、2x 都为正数):①首先构造函数()()2a g x f x f x ⎛⎫=- ⎪⎝⎭,求导,确定函数()y f x =和函数()y g x =的单调性;②确定两个零点12x a x <<,且()()12f x f x =,由函数值()1g x 与()g a 的大小关系,得()()()2211211a a g x f x f f x f x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭与零进行大小比较;③再由函数()y f x =在区间(),a +∞上的单调性得到2x 与21a x 的大小,从而证明相应问题;(3)应用对数平均不等式12121212ln ln 2x x x xx x x x -+<<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.二、填空题13.已知函数()sin cos f x x x =+,则π4f ⎛⎫'= ⎪⎝⎭______.【答案】0【分析】求出()f x ',代值计算可得出π4f ⎛⎫' ⎪⎝⎭的值.【详解】因为()sin cos f x x x =+,则()cos sin f x x x '=-,故πππcos sin 0444f ⎛⎫'=-= ⎪⎝⎭.故答案为:0.14.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:x23 3.5 4.57y26384360a则表中a 的值为___________.【答案】88【分析】根据样本平均值满足回归直线方程求解.【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.15.已知函数f (x )=e x +ax ﹣3(a ∈R ),若对于任意的x 1,x 2∈[1,+∞)且x 1<x 2,都有()()()211212x f x x f x a x x -<-成立,则a 的取值范围是__.【答案】(﹣∞,3]【分析】原不等式等价于()()1212f x a f x a x x ++<,构造()()f x ah x x+=,由函数单调性的定义可知,h (x )在[1,+∞)上单调递增,即有h '(x )≥0在[1,+∞)上恒成立,亦即a ﹣3≤xe x ﹣e x 在[1,+∞)上恒成立,构造g (x )=x e x ﹣e x ,由导数求解函数g (x )的最小值,即可得到a 的取值范围.【详解】原不等式等价于()()1212f x a f x a x x ++<,令()()f x ah x x+=,则不等式等价于h (x 1)<h (x 2)对于任意的x 1,x 2∈[1,+∞)且x 1<x 2都成立,故函数h (x )在[1,+∞)上单调递增,又函数f (x )=e x +ax ﹣3,则()e 3x ax a h x x +-+=,所以h '(x )2e e 30x x x ax -+-=≥在[1,+∞)上恒成立,即x e x﹣e x +3﹣a ≥0在[1,+∞)上恒成立,即a ﹣3≤x e x ﹣e x 在[1,+∞)上恒成立,令g (x )=x e x ﹣e x ,因为g '(x )=x e x >0在[1,+∞)上恒成立,所以g (x )在[1,+∞)上单调递增,则g (x )≥g (1)=0,所以a ﹣3≤0,解得a ≤3,所以实数a 的取值范围是(﹣∞,3].故答案为:(﹣∞,3].16.已知点F 为抛物线28y x =的焦点,()2,0M -,点N 为抛物线上一动点,当NFNM最小时,点N 恰好在以M 、F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为______.【答案】222+【分析】作出图形,分析可知MN 与抛物线28y x =相切时,NFNM取最小值,设直线MN 的方程为2x my =-,将该直线的方程与抛物线的方程联立,求出m 的值,进而可求出点N 的坐标,利用双曲线的定义求出a 的值,结合c 的值可得出22221b ca a=-,即为所求.【详解】抛物线28y x =的焦点为()2,0F ,其准线为:2l x =-,如下图所示:过点N 作NE l ⊥,垂足为点E ,由抛物线的定义可得NF NE =,易知//EN x 轴,则NMF MNE ∠=∠,所以,cos cos NF NE MNE NMF MNMN==∠=∠,当NFNM取最小值时,NMF ∠取最大值,此时,MN 与抛物线28y x =相切,设直线MN 的方程为2x my =-,联立228x my y x=-⎧⎨=⎩可得28160y my -+=,则264640m ∆=-=,解得1m =±,由对称性,取1m =,代入28160y my -+=可得28160y y -+=,解得4y =,代入直线MN 的方程2x y =-可得2x =,即点()2,4N ,则224NF =+=,()2222442MN =++=,设双曲线的标准方程为()222210,0x y a b a b -=>>,由双曲线的定义可得2424a MN NF =-=-,所以,()221a =-,又因为2c =,则()221221c a ==+-,所以,()222221211222b c a a =-=+-=+.故答案为:222+.三、解答题17.在直角坐标系xOy 中,直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A ,B 两点,设()2,0M ,求MA MB 的值.【答案】(1)3230x y --=,24y x=(2)323【分析】(1)根据直线参数方程消掉参数t 即可得到直线的普通方程;(2)由直线参数方程中t 的几何意义即可求解.【详解】(1)∵直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),∴消去t 可得直线l 的普通方程为:3230x y --=.∵曲线C 的极坐标方程为2sin 4cos 0ρθθ-=,即22sin 4cos 0ρθ-ρθ=,又∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为24y x =.(2)将12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入24y x =,得238320t t --=,显然0∆>,即方程有两个不相等的实根,设点A ,B 在直线l 的参数方程中对应的参数分别是1t ,2t ,则1283t t +=,12323t t =-,∴12323MA MB t t ==.18.已知函数()32f x x x ax b =-++,若曲线()y f x =在()()0,0f 处的切线方程为1y x =-+.(1)求a ,b 的值;(2)求函数()y f x =在[]22-,上的最小值.【答案】(1)1a =-;1b =(2)9-【分析】(1)根据函数的切线方程即可求得参数值;(2)判断函数在[]22-,上单调性,进而可得最值.【详解】(1)由已知可得()01f b ==.又()232f x x x a '=-+,所以()01f a '==-.(2)由(1)可知()321f x x x x =--+,()2321f x x x '=--,令()0f x ¢>,解得13x <-或1x >,所以()f x 在12,3⎡⎫--⎪⎢⎣⎭和[]1,2上单调递增,在1,13⎡⎫⎪⎢⎣⎭上单调递减.又()29f -=-,()10f =,所以函数()y f x =在[]22-,上的最小值为9-.19.某校组织全体学生参加“数学以我为傲”知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:[40,50),[50,60),[60,70),……,[90,100],统计结果如图所示:(1)试估计这100名学生得分的平均数(同一组中的数据用该组区间中点值代表);(2)现在按分层抽样的方法在[80,90)和[90,100]两组中抽取5人,再从这5人中随机抽取2人参加这次竞赛的交流会,求两人都在[90,100]的概率.【答案】(1)70.5(2)110【分析】(1)根据频率分布直方图直接代入平均数的计算公式即可求解;(2)根据分层抽样在[)80,90分组中抽取的人数为15531015⨯=+人,在[]90,100分组中抽取的人数为2人,利用古典概型的概率计算公式即可求解.【详解】(1)由频率分布直方图的数据,可得这100名学生得分的平均数:()450.01550.015650.02750.03850.015950.011070.5x =⨯+⨯+⨯+⨯+⨯+⨯⨯=分.(2)在[)80,90和[]90,100两组中的人数分别为:100×(0.015×10)=15人和100×(0.01×10)=10人,所以在[)80,90分组中抽取的人数为15531015⨯=+人,记为a ,b ,c ,在[]90,100分组中抽取的人数为2人,记为1,2,所以这5人中随机抽取2人的情况有:()()()()()()()()()(){},,,1,2,1,2,1,2,12ab ac bc a a b b c c Ω=,共10种取法,其中两人得分都在[]90,100的情况只有(){}12,共有1种,所以两人得分都在[]90,100的概率为110P =.20.在如图所示的几何体中,四边形ABCD 是边长为2的正方形,四边形ADPQ 是梯形,PD //QA ,PD ⊥平面ABCD ,且22PD QA ==.(1)求证:BC ⊥平面QAB ;(2)求平面PBQ 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)66【分析】(1)由PD ⊥平面ABCD ,PD //QA ,可得QA ⊥平面ABCD ,进而得到QA BC ⊥,结合BC AB ⊥,进而得证;(2)以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点建立空间直角坐标系,找出平面PBQ 与平面PCD 的法向量,根据两面的法向量即可求解.【详解】(1)证明:∵PD ⊥平面ABCD ,PD //QA ,∴QA ⊥平面ABCD .∵BC ⊂平面ABCD ,∴QA BC ⊥.在正方形ABCD 中,BC AB ⊥,又AB QA A ⋂=,AB ,QA ⊂平面QAB ,∴BC ⊥平面QAB .(2)建立空间直角坐标系如图:以DA 为x 轴,DC 为y 轴,DP 为z 轴,D 为原点,则有()2,2,0B ,()002P ,,,()2,0,1Q ,()0,2,1QB =- ,()2,0,1PQ =- ,设平面PBQ 的一个法向量为(),,m x y z = ,则有00m QB m PQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020y z x z -=⎧⎨-=⎩,令2z =,则1x =,1y =,()1,1,2m = ,易知平面PCD 的一个法向量为()1,0,0n =r ,设平面PBQ 与平面PCD 所成二面角的平面角为α,则16cos 616m n m n α⋅===⨯⋅ ,即平面PBQ 与平面PCD 所成锐二面角的余弦值66.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别为1F 、2F ,P 为C 的上顶点,且12PF F △的周长为423+.(1)求椭圆C 的方程;(2)设过定点()0,2M 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)2214x y +=(2)332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)由椭圆的定义以及离心率可得出a 、c 的值,进而可求得b 的值,由此可得出椭圆C 的方程;(2)分析可知直线l 的斜率存在,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由0∆>结合0OA OB ⋅> 可求得k 的取值范围.【详解】(1)设椭圆C 的半焦距为c .因为12PF F △的周长为121222423PF PF F F a c ++=+=+,①因为椭圆C 的离心率为32,所以32c a =,②由①②解得2a =,3c =.则221b a c =-=,所以椭圆C 的方程为2214x y +=.(2)若直线l x ⊥轴,此时,直线l 为y 轴,则A 、O 、B 三点共线,不合乎题意,设直线l 的方程为2y kx =+,设()11,A x y 、()22,B x y ,联立()22221141612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,()()()222Δ164411216430k k k =-+⨯=->,解得234k >,由韦达定理可得1221641k x x k +=-+,1221241x x k =+,则()()()2121212122224y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,A 、O 、B 不共线,则cos 0AOB ∠>,即()()()22221212121221213216412441k k k OA OB x x y y k x x k x x k +-++⋅=+=++++=+ 22164041k k -=>+,解得204k <<,所以,2344k <<,解得322k -<<-或322k <<,所以实数k 的取值范围为332,,222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2ln f x x x ax a =-+.(1)若()f x a ≤,求a 的取值范围;(2)若()f x 存在唯一的极小值点0x ,求a 的取值范围,并证明()0210a f x -<<.【答案】(1)1[,)e +∞(2)12a <;证明见解析;【分析】(1)可利用分离参数法,将问题转化为ln x a x ≥恒成立,然后研究ln ()x g x x=的单调性,求出最大值;(2)通过研究()f x '在()0,∞+内的变号零点,单调性情况确定唯一极小值点;若不能直接确定()f x '的零点范围及单调性,可以通过研究()g x '的零点、符号来确定()f x '的单调性,和特殊点(主要是能确定()f x '符号的点)处的函数值符号,从而确定()f x 的极值点的存在性和唯一性.【详解】(1)()f x 的定义域为()0,∞+.由()f x a ≤,得ln x a x ≥在()0,x ∈+∞恒成立,转化为max ln ()x a x ≥令ln ()x g x x =,则21ln ()x g x x -'=,∴ln ()x g x x=在()0,e 单调递增,在(),e +∞单调递减,∴()g x 的最大值为1(e)g e=,∴1a e ≥.∴a 的取值范围是1[,)e+∞.(2)设()()g x f x '=,则()ln 12g x x ax =+-,1()2g x a x'=-,0x >.①当a<0时,()0g x '>恒成立,()g x 在()0,∞+单调递增,又()1120g a =->,212121()21122(1)0a a a g e a ae a e ---=-+-=-<所以()g x 存在唯一零点()10,1x ∈.当()10,x x ∈时,()()0f x g x '=<,当()1,1x x ∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x x =.②当0a =时,()ln 1g x x =+,()g x 在()0,∞+单调递增,1()0g e =,所以()g x 在()0,∞+有唯一零点1e.当1(0,)∈x e时,()()0f x g x '=<,当1(,1)x e∈时,()()0f x g x '=>.所以()f x 存在唯一的极小值点01x e =.③当0a >时,令()0g x '>,得1(0,)2x a ∈;令()0g x '<,得1(,)2x a ∈+∞,∴()g x 在1(0,)2a 单调递增,在1(,)2a+∞单调递减,所以()g x 的最大值为1()ln(2)2g a a =-④当102a <<时,1()0g e<,()1120g a =->,1()02g a >,21212()212(1)10l 1n g a a aa a =-+-<--+-=-<(或用11111()20a a g eae a --=-<)由函数零点存在定理知:()g x 在区间()0,1,()1,+∞分别有一个零点2x ,3x 当()20,x x ∈时,()()0f x g x '=<;当()23,x x x ∈时,()()0f x g x '=>;所以()f x 存在唯一的极小值点02x x =,极大值点3x .⑤当12a ≥时,102g a ⎛⎫≤ ⎪⎝⎭,()()0f x g x '=≤所以()f x 在()0,∞+单调递减,无极值点.由①②④可知,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭,当()00,x x ∈时,()0f x '<;所以()f x 在()00,x 单调递减,()0,1x 单调递增.所以()0(1)0f x f <=.由()000ln 120f x x ax '=+-=,得00ln 21x ax =-.所以20000ln ()f x x ax ax =-+2000(21)x ax ax a=--+200ax a x =+-2000()(21)1f x a ax a x --=--+[]00(1)(1)1x a x =-+-,因为0(0,1)x ∈,1,2a ⎛⎫∈-∞ ⎪⎝⎭,所以010x -<,()01112102a x +-<⨯-=所以()0(21)0f x a -->,即()021f x a >-;所以()0210a f x -<<.【点睛】本题通过导数研究函数的零点、极值点的情况,一般是先研究导函数的零点、单调性,从而确定原函数的极值点存在性和个数.同时考查学生运用函数思想、转化思想解决问题的能力和逻辑推理、数学运算等数学素养.。
学年下学期高二数学期中考试理科试题Modified by JACK on the afternoon of December 26, 20202016-2017学年下学期高二数学期中考试试题(理科)以下公式或数据供参考: ⒈1221;ni ii nii x y nx ya y bxb xnx==-⋅=-=-∑∑.⒉对于正态总体2(,)N μσ取值的概率:在区间(,)μσμσ-+、(2,2)μσμσ-+、(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%.3、参考公式4、))()()(()(22d b c a d c b a n K bc ad ++++=- n=a+b+c+d一、选择题:本大题共12小题,每小题5分,共60分.1.已知函数()3sin 2cos f x x x x =+-的图象在点()()00,A x f x 处的切线斜率为3,则0tan x 的值是( )A .12B .12-.2、 某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种 不同的工作,共有90种不同的选法,则男女生人数为( )A : 2,6B :3,5C :5,3D :6,23、为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( )(A) 1l 与2l 重合 (B) 1l 与2l 一定平行 (C) 1l 与2l 相交于点(,)x y (D) 无法判断1l 和2l 是否相交4、设()52501252x a a x a x a x -=++,那么024135a a a a a a ++++的值为( )A : -122121 B :-6160C :-244241D :-1 5、若()......x a a x a x a x -=++++929012915,那么......a a a a ++++0129的值是 ( )B.94C. 95D. 966、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32 B. 31 C. 1 D. 07、有一台X型号的自动机床在一个小时内不需要工人照看的概率为0.8,有四台这种型号的机床独立的工作,则在一小时内至多两台机床需要工人照看的概率为( )A :B :C :D :8、已知函数()f x ,()g x 满足()11f =,()11f '=,()12g =,()11g '=,则函数()()()2f x F xg x =的图象在1x =处的切线方程为( ) A .3450x y -+= B .3450x y --= C. 4350x y --= D .4350x y -+=9、如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前n 项之和为n S ,则21S 的值为( )A .66B .153C .295D .36110、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种11、某厂生产的零件外直径ξ~N (10,),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为和,则可认为( )A .上午生产情况正常,下午生产情况异常B .上午生产情况异常,下午生产情况正常C .上、下午生产情况均正常D .上、下午生产情况均异常12、甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是32,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( ) A.2027B.49C.827D.1627二、填空题(本大题共4小题,每小题5分,共20分) 13、已知函数()()221f x x xf '=+,则()1f ' .14、在求两个变量x 和y 的线性回归方程过程中,计算得51i i x =∑=25, 51i i y =∑=250,521ii x=∑=145, 51i i i x y =∑=1380,则该回归方程是 .15、某城市的交通道路如图,从城市的东南角A 不经过十字道路维修处C ,最近的走法种数有_________________。
陕西省延安市黄陵县2016-2017学年高二数学下学期期中试题 理(高新部)一、选择题(每题5分,共60分)1.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A .15 B .59C .53D .12.△ABC 中,b =30,c =15,C =26°,则此三角形解的情况是( ) A .一解 B .两解 C .无解 D .无法确定3.如果等腰三角形的周长是底边边长的5倍,那么它的顶角的余弦值为( ) A .518 B .34 C .32D .784.在△ABC 中,若a <b <c ,且c 2<a 2+b 2,则△ABC 为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不存在5.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .103mB .1003mC .2030mD .30m6.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( )A .5002mB .200mC .1 0002mD .1 000m7.在等差数列{a n }中,首项a 1=0,公差d ≠0.若a k =a 1+a 2+a 3+…+a 7,则k =( ) A .22 B .23 C .24D .258.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ) A .-1 B .1 C .3D .79.(2016·上海十校联考)已知{a n }为等差数列,a 1+a 3+a 5=9,a 2+a 4+a 6=15,则a 3+a 4=( )A .5B .6C .7D .810.下列命题正确的是( ) A .若ac >bc ,则a >b B .若a 2>b 2,则a >b C .若1a >1b,则a <bD .若a <b ,则a <b11.若a >b >0, c <d <0,则一定有( ) A .a c >b d B .a c <b d C .a d >b cD .a d <b c12.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2二、填空题(每题5分,共20分)13.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =. 14.在△ABC 中,已知a =23,b =2,A =60°,则B =_15.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为 .16.甲船在A 处发现乙船在北偏东60°的B 处,乙船正以a n mile/h 的速度向北行驶.已知甲船的速度是3a n mile/h ,问甲船应沿着 方向前进,才能最快与乙船相遇?三、解答题(70分,19题10分,其余12分)17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -b )cos C -c cos B =0. (1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.18.若等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8.求: (1)数列{a n }的首项a 1和公差d ; (2)数列{a n }的前10项和S 10的值.19.设数列{a n }是等差数列,b n =(12)a n 又b 1+b 2+b 3=218,b 1b 2b 3=18,求通项a n .20在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.21.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2A2+(cos B -3sin B )cos C =1.(1)求角C 的值;(2)若c =2,且△ABC 的面积为3,求a ,b .22.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12n mile ,渔船乙以10n mile/h 的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2h 追上.导学号 54742159(1)求渔船甲的速度;(2)求sin α的值. 参考答案1-6BBDBC 7-12 DABDDC 13.-5n 2+n214.30° 15.π616.北偏东30°17 (1)已知(2a -b )cos C -c cos B =0可化为(2sin A -sin B )cos C -sin C cos B =0,整理得2sin A cos C =sin B cos C +sin C cos B =sin(B +C )=sin A , ∵0<A <π,∴sin A ≠0,∴cos C =12,又0<C <π,∴C =π3.(2)由(1)知cos C =12,又a +b =13,c =7,∴由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =169-3ab , 即49=169-3ab ,∴ab =40,∴S △ABC =12ab sin C =12×40×sin π3=10 3.18 (1)根据题意,得⎩⎪⎨⎪⎧a 2+a 4=a 1+d +a 1+3d =8,a 2·a 4=a 1+da 1+3d =12,解得⎩⎪⎨⎪⎧a 1=8,d =-2.(2)S 10=10a 1+-2d =10×8+10×92×(-2)=-10. 19 ∵b 1b 2b 3=18,又b n =(12)a n ,∴(12)a 1·(12)a 2·(12)a 3=18.∴(12)a 1+a 2+a 3=18,∴a 1+a 2+a 3=3, 又{a n }成等差数列∴a 2=1,a 1+a 3=2, ∴b 1b 3=14,b 1+b 3=178,∴⎩⎪⎨⎪⎧ b 1=2b 3=18或⎩⎪⎨⎪⎧b 1=18b 3=2,即⎩⎪⎨⎪⎧a 1=-1a 3=3或⎩⎪⎨⎪⎧a 1=3a 3=-1,∴a n =2n -3或a n =-2n +5.20 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,∴-cos 2B =sin 2C ,又由A =π4, 即B +C =3π4,得-cos 2B =sin 2C =2sin C cos C ,解得tan C =2. (2)由tan C =2,C ∈(0,π)得sin C =255,cos C =55,又∵sin B =sin(A +C )=sin(π4+C ),∴sin B =31010,由正弦定理得c =223b ,又∵A =π4,12bc sin A =3,∴bc =62,故b =3.21 (1)∵2cos 2A2+(cos B -3sin B )cos C =1,∴cos A +cos B cos C -3sin B cos C =0, ∴-cos(B +C )+cos B cos C -3sin B cos C =0,∴-cos B cos C +sin B sin C +cos B cos C -3sin B cos C =0, ∴sin B sin C -3sin B cos C =0.又B 是△ABC 的内角,∴tan C =3(或2sin(C -π3)=0),又C 是△ABC 的内角,∴C =π3. (2)∵S △ABC =3,∴12ab sin π3=3,∴ab =4.又c 2=a 2+b 2-2ab cos C ,∴4=(a +b )2-2ab -ab , ∴a +b =4,又ab =4,∴a =b =2.22 (1)依题意可得,在△ABC 中,∠BAC =180°-60°=120°,AB =12,AC =10×2=20,∠BCA =α.由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos∠BAC=122+202-2×12×20×cos120°=784. 解得BC =28.所以渔船甲的速度为BC2=14n mile/h.(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α, 由正弦定理,得AB sin α=BCsin120°.即sin α=AB sin120°BC =12×3228=3314.。