北师大新版九年级上图形的相似综合测试题(20210113203831)讲课讲稿
- 格式:pdf
- 大小:419.86 KB
- 文档页数:8
九年级数学上册《第四章图形的相似》单元综合测试(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册《第四章图形的相似》单元综合测试(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册《第四章图形的相似》单元综合测试(含解析)(新版)北师大版的全部内容。
《第四章图形的相似》一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF=12cm2,则S△AO的值为()BA.12cm2ﻩB.24cm2 C.36cm2ﻩD.48cm22.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A.ﻩB.10C.或10ﻩD.以上答案都不对3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.ﻩB.ﻩC.D.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有( )A.2条ﻩB.3条C.4条ﻩD.5条5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.ﻩB.ﻩC.ﻩD.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于( )A.8ﻩB.6 C.4ﻩD.37.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP 与△ECP相似的是( )A.∠APB=∠EPCﻩB.∠APE=90° C.P是BC的中点D.BP:BC=2:38.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是( )A.BF2=AF2B.BF2=AF2ﻩC.BF2>AF2ﻩD.BF2<AF29.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为( )A. B.C.ﻩD.10.在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出( )A.6条 B.3条C.4条 D.5条二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.12.已知:===,2b+3d﹣5f=9,则2a+3c﹣5e= .13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM的面积为.14.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是.15.如图,已知梯形AECF中,已知点D是AB边的中点,AF∥BC,CG=3,GA=1,若△AEG的面积为1,那么四边形BDGC的面积为.16.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q 两点,则AP:PQ:QC= .三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FEC.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.ﻬ《第四章图形的相似》参考答案与试题解析一、选择题:1.如图,在平行四边形ABCD中,E为DC的中点,AE交BD于点F,S△DEF=12cm2,则S△AOB 的值为( )A.12cm2ﻩB.24cm2ﻩC.36cm2D.48cm2【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得出AB=DC=2DE,OD=OB,DC∥AB,求出△DFE∽△BFA,推出===,=()2=,==,求出△AFB的面积是48cm2,△ADF 的面积是24cm2,求出△ABD的面积即可.【解答】解:∵E为DC的中点,∴DC=2DE,∵四边形ABCD是平行四边形,∴AB=DC=2DE,OD=OB,DC∥AB,∴△DFE∽△BFA,∴===,=()2=()2=,==,∵S△DEF=12cm2,∴△AFB的面积是48cm2,△ADF的面积是24cm2,∴△ABD的面积是72cm2,∵DO=OB,∴△ADO和△ABO的面积相等,∴S△AOB的值为×72cm2=36cm2,故选C.【点评】本题考查了相似三角形的性质和判定,平行四边形的性质的应用,解此题的关键是求出△AFB的面积和△ADF的面积.2.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于()A.ﻩB.10C.或10 D.以上答案都不对【考点】相似三角形的性质.【专题】分类讨论.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.3.(3分)在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A. B. C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.4.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条 B.3条C.4条 D.5条【考点】相似三角形的判定.【专题】常规题型;压轴题.【分析】根据已知及相似三角形的判定作辅助线即可求得这样的直线有几条.【解答】解:(1)作∠APD=∠C∵∠A=∠A∴△APD∽△ABC(2)作PE∥BC∴△APE∽△ABC(3)作∠BPF=∠C∵∠B=∠B∴△FBP∽△ABC(4)作PG∥AC∴△PBG∽△ABC所以共4条故选C.【点评】本题考查相似三角形的判定的运用.5.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.ﻩD.【考点】相似三角形的判定.【专题】网格型.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.6.正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于( )A.8ﻩB.6ﻩC.4 D.3【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;探究型.【分析】先根据题意画出图形,因为四边形ABCD是正方形,E是BC中点,所以CE=AD,由相似三角形的判定定理得出△CEF∽△ADF,再根据相似三角形的对应边成比例可得出==,再根据DF=DE﹣EF即可得出EF的长.【解答】解:如图所示:∵四边形ABCD是正方形,E是BC中点,∴CE=AD,∵AD∥BC,∴∠ADF=∠DEC,∠AFD=∠EFC,∴△CEF∽△ADF,∴==,=,即=,解得EF=4.故选C.【点评】本题考查的是相似三角形的判定与性质及正方形的性质,先根据题意判断出△CEF∽△ADF,再根据相似三角形的对应边成比例进行解答是解答此题的关键.7.已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是( )A.∠APB=∠EPC B.∠APE=90°C.P是BC的中点D.BP:BC=2:3【考点】相似三角形的判定;正方形的性质.【专题】压轴题.【分析】利用两三角形相似的判定定理,做题即可.【解答】解:利用三角形相似的判定方法逐一进行判断.A、B可用两角对应相等的两个三角形相似;D可用两边对应成比例且夹角相等的两个三角形相似进行判断.只有C中P是BC的中点不可推断.故选C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8.如图,矩形ABCD中,BE⊥AC于F,E恰是CD的中点,下列式子成立的是( )A.BF2=AF2ﻩB.BF2=AF2 C.BF2>AF2ﻩD.BF2<AF2【考点】相似三角形的判定与性质;矩形的性质;射影定理.【分析】此题即是探求BF2与AF2之间的关系.利用△ABF∽△CEF所得比例线段探究求解.【解答】解:根据射影定理可得BF2=AF×CF;∵△ABF∽△CEF,∴CF:AF=CE:AB=1:2∴BF2=AF×AF=AF2.故选A.【点评】本题主要考查了射影定理及三角形的相似的性质.9.(3分)如图,正方形ABCD的面积为1,M是AB的中点,连接CM、DM、AC,则图中阴影部分的面积为( )A.ﻩB. C.D.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.【解答】解:如图,过点E作HF⊥AB∵AM∥CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE∴AM:DC=EH:EF=1:2,FH=AD=1∴EH=,EF=.∴阴影部分的面积=S正﹣S△AME﹣S△CDE﹣S△MBC=1﹣﹣﹣=.故选B.【点评】本题考查了正方形的性质,相似三角形的判定和性质,找出各线段之间的比例关系是本题解题的关键.10.在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出( )A.6条B.3条ﻩC.4条ﻩD.5条【考点】相似三角形的判定;坐标与图形性质.【专题】常规题型;分类讨论.【分析】△AOB是直角三角形,所作的以点D,C,O为顶点的三角形中∠COD=90度,OC与AD可能是对应边,这样就可以求出CD的长度,以C为圆心,以所求的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与BD是对应边时,又有两条满足条件的直线,共有四条.【解答】解:以点D,C,O为顶点的三角形中∠COD=90度,当OC与AO是对应边,以C为圆心,以CD的长度为半径作圆,圆与x轴有两个交点,因而这样的直线就是两条.同理,当OC与OB是对应边时,又有两条满足条件的直线,所以共有四条.故选C.【点评】本题主要考查了三角形的相似,注意到分两种情况进行讨论是解决本题的关键.二、填空题:11.如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为.【考点】相似多边形的性质.【分析】根据相似多边形对应边的比相等,设出原来矩形的长与宽,就可得到一个方程,解方程即可求得.【解答】解:根据条件可知:矩形AEFB∽矩形ABCD.∴=.设AD=x,AB=y,则AE=x.则=,即:x2=y2.∴=2.∴x:y=:1.即原矩形长与宽的比为:1.故答案为::1.【点评】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.12.已知:===,2b+3d﹣5f=9,则2a+3c﹣5e= .【考点】比例的性质.【分析】根据等比性质解答即可.【解答】解:∵===,∴=,∵2b+3d﹣5f=9,∴2a+3c﹣5e=×9=6.故答案为:6.【点评】本题考查了比例的性质,熟记并理解等比性质是解题的关键.13.如图,在Rt△ABC中,∠C=90°,MN⊥AB于M,AM=8cm,AC=AB,BC=15cm,则四边形BCNM的面积为 .【考点】相似三角形的判定与性质.【分析】由△AMN∽△ACB,推出==,由AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,由BC=15,推出k=5,AC=20,AB=25,根据四边形BCNM的面积=S△ABC﹣S△AMN 即可解决问题.【解答】解:∵MN⊥AB,∴∠AMN=∠C=90°,∵∠A=∠A,∴△AMN∽△ACB,∴==,∵AC:AB=4:5,设AC=4k,AB=5k,则BC=3k,∵BC=15,∴3k=15,∴k=5,AC=20,AB=25,∴MN=6,AN=8,∴四边形BCNM的面积=S△ABC﹣S△AMN=×20×15﹣×8×6=126.故答案为126.【点评】本题考查相似三角形的性质和判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.14.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是 .【考点】正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据题意,先设CE=x,S△BEF=a,再求出S△ADF的表达式,利用四部分的面积和等于正方形的面积,得到x与a的关系,那么两部分的面积比就可以求出来.【解答】解:设CE=x,S△BEF=a,∵CE=x,BE:CE=2:1,∴BE=2x,AD=BC=CD=AD=3x;∵BC∥AD∴∠EBF=∠ADF,又∵∠BFE=∠DFA;∴△EBF∽△ADF∴S△BEF:S△ADF===,那么S△ADF= a.∵S△BCD﹣S△BEF=S四边形EFDC=S正方形ABCD﹣S△ABE﹣S△ADF,∴x2﹣a=9x2﹣×3x•2x﹣,化简可求出x2=;∴S△AFD:S四边形DEFC=:=:=9:11,故答案为9:11.【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方.15.如图,已知梯形AECF中,已知点D是AB边的中点,AF∥BC,CG=3,GA=1,若△AEG 的面积为1,那么四边形BDGC的面积为 .【考点】相似三角形的判定与性质;梯形.【分析】先求出△AFG的面积,然后找出S△CEG=9S△AFG=3,再求出S△AFD=2S△AFC=2×=,S△=S△AFD=,最后用面积差即可.DEB【解答】解:AF∥BC,CG=3,GA=1,∴,∴FG=EF,∵AF∥BC,∴,∵D是AB的中点,∴AD=BD,∴ED=FD,∴FD=EF,∵=,∴S△AFG=S△AEG=,∵AF∥BC,∴△CEG∽△AFG,∴,∴S△CEG=9S△AFG=3,∵FG=EF,FD=EF,∴FD=2FG,∴DG=FG,∴S△AFD=2S△AFC=2×=,∵△BED≌△AFD,∴S△DEB=S△AFD=,∴S四边形BDGC的面积=S△CGE﹣S△BED=3﹣=.【点评】此题是相似三角形的性质和判定,主要考查了相似三角形的性质,面积比等于相似比的平分,等底的两三角形面积的比等于高的比,解本题的关键是求出△AFG的面积.16.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ﹣AP=AC,QC=AC﹣AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.三、解答题:(共36分)17.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.【考点】平行线分线段成比例;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得AD∥BC,AB∥CD,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴=,=,∴=,即CF2=GF•EF.【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.18.(8分)已知:如图AD•AB=AF•AC,求证:△DEB∽△FEC.【考点】相似三角形的判定.【专题】证明题.【分析】利用两边对应比值相等,且夹角相等的两三角形相似,进而得出即可.【解答】证明:∵AD•AB=AF•AC,∴=,又∵∠A=∠A,∴△DEB∽△FEC.【点评】此题主要考查了相似三角形的判定,熟练掌握判定定理是解题关键.19.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)求证:AM2=AD•DM;(3)根据(2)的结论你能找出图中的黄金分割点吗?【考点】黄金分割;勾股定理;正方形的性质.【分析】(1)由勾股定理求PD,根据AM=AF=PF﹣PA=PD﹣PA,DM=AD﹣AM求解; (2)由(1)计算的数据进行证明;(3)根据(2)的结论得:=,根据黄金分割点的概念,则点M是AD的黄金分割点.【解答】(1)解:在Rt△APD中,PA=AB=1,AD=2,∴PD==,∴AM=AF=PF﹣PA=PD﹣PA=﹣1,DM=AD﹣AM=2﹣(﹣1)=3﹣;(2)证明:∵AM2=(﹣1)2=6﹣2,AD•DM=2(3﹣)=6﹣2,∴AM2=AD•DM;(3)点M是AD的黄金分割点.理由如下:∵AM2=AD•DM,∴═=,∴点M是AD的黄金分割点.【点评】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM 的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.20.已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.【考点】相似三角形的判定与性质.【专题】证明题.【分析】首先连接AF,可证得△AFC∽△BFA,然后由相似三角形的对应边成比例证得FA2=FB•FC,则可得FD2=FB•FC.【解答】证明:连接AF,∵EF是AD的垂直平分线,∴AF=DF,∴∠FAE=∠FDE,∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,∴∠FAB=∠C,∵∠AFB是公共角,∴△AFB∽△CFA,∴,∴FA2=FB•FC,即FD2=FB•FC.【点评】此题考查了相似三角形的判定与性质,线段垂直平分线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.已知,如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD,垂足为E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,.(1)求AC的长;(2)求EG的长.【考点】相似三角形的判定与性质;角平分线的性质;勾股定理;三角形中位线定理.【专题】几何图形问题.【分析】(1)∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可;(2)根据勾股定理求出BC的长度为8,再根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE和△AFE全等,根据全等三角形对应边相等,CE=EF,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=BC.【解答】解:(1)∵CE⊥AD,∴∠AEC=90°,∵∠ACB=90°,∴∠AEC=∠ACB,又∠CAE=∠CAE,∴△ACE∽△ADC,∴,即AC2=AE•AD,∵AE•AD=16,∴AC2=16,∴AC=4;(2)在△ABC中,BC===8,∵AD平分∠CAB交BC于点D,∴∠CAE=∠FAE,∵CE⊥AD,∴∠AEC=∠AEF=90°,在△ACE和△AFE中,,∴△ACE≌△AFE(ASA),∴CE=EF,∵EG∥BC,∴EG=BC=×8=4.【点评】本题主要考查两角对应相等,两三角形相似,相似三角形对应边成比例,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟练掌握性质并灵活运用是解题的关键,难度适中.以上就是本文的全部内容,可以编辑修改。
第四章 图形的相似(单元综合卷)一、单选题1.若0234a b c ==≠,则22a b c a-+= ( ) A .45 B .54 C .34 D .无法确定【答案】B【解析】【分析】设比值为k ,然后用k 表示出a 、b 、c ,再代入算式进行计算即可求解.【详解】 设234a b c k ===、 则2a k =、3b k =、4c k =、 ∴2223452224a b c k k k a k -+⨯-+==⨯. 故选、B .【点睛】本题考查了比例的性质,利用设“k ”法表示出a 、b 、c 是解题的关键,设“k ”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.2.若、ABC、、DEF ,且、ABC 与、DEF 的面积比是94,则、ABC 与、DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【解析】【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】、、ABC、、DEF、、ABC与、DEF的面积比是9 4、、、ABC与、DEF的相似比为3 2、、、ABC与、DEF对应中线的比为3 2、故选D、【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.如图,在ABC中,点D在BC边上,连接AD,点G在线段AD上,过点G作//GE BD,交AB边于点E,作//GF AC,交BC边于点F,则下列结论中一定正确的是()A.AB AGAE AD=B.DF DGCF AD=C.FG EGAC BD=D.AE CFBE DF=【答案】D 【解析】由GE、BD、GF、AC利用平行线分线段成比例,可得出AE AGBE DG=,AG CFDG DF=,进而可得出AE CFBE DF=,此题得解.【详解】、GE、BD,GF、AC,、AE AGBE DG=,AG CFDG DF=,、AE CF BE DF=.故选:D.【点睛】本题考查了平行线分线段成比例,利用平行线分线段成比例,找出AE AGBE DG=,AG CFDG DF=是解题的关键.4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把、EFO缩小为、E′F′O,且、E′F′O与、EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【答案】C【解析】【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】、点E(﹣4,2),以O为位似中心,按2:1的相似比把、EFO缩小为、E'F'O,、点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.5.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为(、A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,、同一时刻物高与影长成正比例,、AE、ED=1、0.4、即AE、4.6=1、0.4、、AE=11.5米,、AB=AE+EB=11.5+0.3=11.8米,、树的高度是11.8米、故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.6.如图所示的两个四边形相似、则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.下列条件中,能使ABC DEF ∽△△成立的是( )A .、C =98°,、E =98°,AC DE BC DF; B .AB =1,AC =1.5,BC =2,EF =8,DE =10,FD =6C .、A =、F =90°,AC =5,BC =13,DF =10,EF =26;D .、B =35°,BC =10,BC 上的高AG =7;、E =35°,EF =5,EF 上的高DH =3.5【答案】D【解析】【分析】根据相似三角形的判定定理对四个选项进行分析即可.【详解】A 、若、ABC~、DEF ,则AC DF =BC EF,故本选项错误; B 、若、ABC~、DEE ,则AB AC BC ==DE DF EF 而AB 1=DE 10≠AC 1.5=DF 6,故本选项错误; C 、若、ABC~、DEF ,、A =90°,则、D =90°,故本选项错误;D 、BC AG ==2EF DH且、AGC =、BHF =90°,因此、AGC、、BHF ,所以、C =、F ,而、B =、E =35°,因此可判断相似,故本选项正确;所以D 选项是正确的.【点睛】本题考查的是相似三角形的判定定理,解答此类题目时要熟知相似三角形的判定方法,即:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似8.如图,、ABC 中,点D 在AB 上,过点D 作DE、BC 交AC 于点E ,过点E 作 EF、AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( 、A .BD BF FG FC =B .DE AE BC AC = C .AD AE AB AC = D .BF AD BC AB= 【答案】A【解析】因为DE、BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF、AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB = 故选A.9.如图, ABC 中, 90C ∠=︒,3,4,AC BC M ==是BC 边上的动点,过M 作//MN AB 交AC 于点,N P 是MN 的中点,当PA 平分BAC ∠时, BM =( )A .2011B .2013C .1511D .2513【答案】A【解析】【分析】根据题意作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,利用相似三角形判定证得BMF BAC ∽,进而设3,PD PE MF x ===建立方程求解即可.【详解】解:作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,则,PD PE MF BMF BAC ==∽.、3,4,AC BC ==、5AB =设3,PD PE MF x ===则26,5CM PD x BM x ===由65114,BC x x x =+==得420 =,1111x BM =. 故选:A .【点睛】 本题考查三角形动点问题,熟练掌握相似三角形判定并运用方程结合思维进行分析是解题的关键. 10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分、DCB 交BD 于点F ,且、ABC =60°,AB =2BC ,连接OE ,下列结论:、、ACD =30°;、S 平行四边形ABCD =AC BC ⋅;、OE :AC =1:4;、S 、OCF =2S 、OEF .其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 是平行四边形,得到、ABC=、ADC=60°,、BAD=120°,根据角平分线的定义得到、DCE=、BCE=60°推出、CBE 是等边三角形,证得、ACB=90°,求出、ACD=、CAB=30°,故、正确; 由AC、BC ,得到S、ABCD=AC•BC ,故、正确;根据直角三角形的性质得到,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :AC=6,故、错误;由三角形的中位线可得BC、OE ,可判断、OEF、、BCF ,根据相似三角形的性质得到CF BC EF OE==2,求得S 、OCF =2S 、OEF ;故、正确.【详解】解:、四边形ABCD是平行四边形,、、ABC=、ADC=60°,、BCD=120°,、CE平分、BCD交AB于点E,、、DCE=、BCE=60°、、CBE是等边三角形,、BE=BC=CE,、AB=2BC,、AE=BC=CE,、、ACB=90°,、、ACD=、CAB=30°,故、正确;、AC、BC,、S、ABCD=AC•BC,故、正确,在Rt、ACB中,、ACB=90°,、CAB=30°,,、AO=OC,AE=BE,、OE=12 BC,、OE:6;故、错误;、AO=OC,AE=BE,、OE、BC,、、OEF、、BCF , 、CF BC EF OE==2 、S 、OCF :S 、OEF =CF EF =2, 、S 、OCF =2S 、OEF ;故、正确.故选C .【点睛】本题考查了平行四边形的性质、三角形中位线、相似三角形的性质,熟练掌握并灵活运用是解题的关键.二、填空题11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =, 4.8EF =,则DE 的长为__________.【答案】3.6【解析】【分析】根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.12.已知x 是正整数,且x 是4和16的比例中项,那么x =______.【答案】8【解析】【分析】根据比例中项的性质进行求解.【详解】解:、x 是4和16的比例中项,且是正整数,、241664x =⨯=,解得8x =.故答案是:8.【点睛】本题考查比例中项的性质,解题的关键是掌握比例中项的性质.13.如图,、ABC 与、A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__、【答案】(9,0)【解析】【分析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【答案】4【解析】【分析】根据题意,画出示意图,易得:Rt、EDC、Rt、CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】如图:过点C作CD、EF,由题意得:、EFC是直角三角形,、ECF=90°,、、EDC=、CDF=90°,、、E+、ECD=、ECD+、DCF=90°,、、E=、DCF,、Rt、EDC、Rt、CDF,有EDDC=DCFD;即DC2=ED FD,代入数据可得DC2=16,DC=4;故答案为4.【点睛】本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.15.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC 的长为_____.【解析】【分析】根据相似多边形的性质列出比例式,计算即可.【详解】、矩形ABCD与矩形EABF相似,、AEAB=ABAD,即121AD=1AD,解得,AD,、矩形ABCD 的面积=AB •AD ,.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.16.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.【答案】6【解析】【分析】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,因为////AB EF DC ,//AD BC ,所以、AEG、、ADC、、CFG、、CBA ,有6中组合,据此可得出答案.【详解】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,、////AB EF DC ,//AD BC ,、、AEG、、ADC、、CFG、、CBA共有6个组合分别为:、AEG、、ADC ,、AEG、、CFG ,、AEG、、CBA ,、ADC、、CFG ,、ADC、、CBA ,、CFG、、CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17.如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.【答案】9或16【解析】【分析】根据相似三角形的判断,要使得、ADE与、ABC相似,已经满足、BAC=、DAE,因此只要两边对应成比例即可,由于本题中三角形相似,对应点没有确定,因此分两种情况,画出图形,然后根据相似三角形对应边成比例,就出AE的长.【详解】第一种情况:当、ABC、、ADE时,如图、;、、ABC、、ADE,、AB AC AD AE=,、AB=24,AC=18,AD=12,、2418 12AE=,、AE=9.第二种情况:当、ABC、、AED ,如图、;、、ABC、、AED , 、AB AC AE AD=, 、AB =24,AC =18,AD =12, 、241812AE =, 、AE =16.故填9或16.考点:相似三角形的性质.18.如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【答案】1:20【解析】【分析】根据、BDE和、CDE高相同得到BE:EC=1:4,再证明、BDE、、BAC,利用面积比等于相似比的平方即可解题.【详解】、、BDE和、CDE高相同,且:1:4BDE CDES S=,、BE:EC=1:4,、//DE AC、、BDE、、BAC,即BE:BC=1:5、:BDE BACS S=1:25、:BDE ACDS S=1、、25-1-4、=1:20【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉相似三角形性质是解题关键.19.如图,在矩形ABCD中,BC=4,AB=2,Rt、BEF的顶点E在边CD上,且、BEF=90°,EF=12 BE,DF BE=_____.【解析】【分析】过F作FG、CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG=12EC,GE=2=CD;设EC=x,则DG=x,FG=12x,再根据勾股定理,即可得到CE2=94,最后依据勾股定理进行计算,即可得出BE的长.【详解】解:如图所示,过F作FG、CD,交CD的延长线于G,则、G=90°,、四边形ABCD是矩形,、、C=90°,AB=CD=2,又、、BEF=90°,、、FEG+、BEC=90°=、EBC+、BEC,、、FEG=、EBC,又、、C=、G=90°,、、BCE、、EGF,、FG GE EF EC CB BE ==,即142EG CE EC ==, 、FG =12EC ,GE =2=CD , 、DG =EC ,设EC =x ,则DG =x ,FG =12x , 、Rt、FDG 中,FG 2+DG 2=DF 2,、(12x )2+x 22, 解得x 2=94, 即CE 2=94,、Rt、BCE 中,BE ==.【点睛】本题主要考查了相似三角形和勾股定理的结合,准确分析计算是解题的关键.20.如图,在直角坐标系中,将OAB 绕原点旋转到OCD ,其中()3,1A -、()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为_______.【答案】913,55⎛⎫- ⎪⎝⎭【解析】【分析】连接AC 、BD ,设点C 的坐标为(a ,b ),根据平面直角坐标系中任意两点之间的距离公式即可求出OA 、OB ,由旋转的性质即可求出OC 和OD ,从而证出OAC、OBD ,列出比例式即可求出AC ,再利用平面直角坐标系中任意两点之间的距离公式列出方程即可求出结论.【详解】解:连接AC 、BD ,设点C 的坐标为(a ,b )、()3,1A -、()4,3B ,=5由旋转的性质可得,OD=OB=5,、AOC=、BOD、点D 的坐标为(5,0),OA OC OB OD==OAC、OBD、AC OA BDOB== 解得AC=2、()()222210314a b a b ⎧+=⎪⎨++-=⎪⎩ 解得:95135a b ⎧=-⎪⎪⎨⎪=⎪⎩或31a b =-⎧⎨=-⎩ 、点C 在第二象限,、95135a b ⎧=-⎪⎪⎨⎪=⎪⎩即点C 913,55⎛⎫- ⎪⎝⎭ 故答案为:913,55⎛⎫- ⎪⎝⎭. 【点睛】此题考查的是坐标与图形的变化、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式,此题难度较大,掌握旋转的性质、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.三、解答题21.化简并求值:已知2,235a c e a c e b d f===-+=,求b -2d+3f 的值. 【答案】52【解析】【分析】 由2a c e b d f===可知2,2,2a b c d e f ===,代入235a c e -+=易得b -2d+3f 的值. 【详解】 解:2a c e b d f=== 2,2,2a b c d e f ∴===232462(23)5a c e b d f b d f ∴-+=-+=-+=5232b d f ∴-+=【点睛】 本题考查了比例的性质,灵活的利用比例进行等量代换是解题的关键.22.如图,已知DE、BC ,FE、CD ,AF =3,AD =5,AE =4.(1)求CE 的长;(2)求AB 的长.【答案】(1)CE=83;(2)AB=253.【解析】【分析】(1)根据平行线分线段成比例定理列出比例式求出AC即可解决问题;(2)根据平行线分线段成比例定理列出比例式,然后代入数据计算即可.【详解】解:(1)、FE、CD,、AEAC=AFAD,即4AC=35,解得,AC=203,则CE=AC﹣AE=203﹣4=83;(2)、DE、BC,、ADAB=AEAC,即5AB=4203,解得,AB=253.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.如图,在、ABC中,点D,E分别在边AB,AC上,、AED=、B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:、ADF、、ACG;(2)若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2、1.【解析】(1)欲证明、ADF、、ACG,由可知,只要证明、ADF=、C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:、、AED=、B,、DAE=、DAE,、、ADF=、C,、,、、ADF、、ACG.(2)解:、、ADF、、ACG,、,又、,、,、1.24.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.【答案】详见解析【解析】【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:、四边形ABCD 是平行四边形,、AD BC ∥,AB CD ∥. 、GF DF CF BF =,CF DF EF BF= 、GF CF CF EF =, 即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.25.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点、ABC (顶点是网格线的交点),在建立的平面直角坐标系中,、ABC 绕旋转中心P 逆时针旋转90°后得到、A 1B 1C 1、、1)在图中标示出旋转中心P ,并写出它的坐标;、2)以原点O 为位似中心,将、A 1B 1C 1作位似变换且放大到原来的两倍,得到、A 2B 2C 2,在图中画出、A 2B 2C 2,并写出C 2的坐标.【答案】、1、见解析、P点坐标为(3、1、、、2、作图见解析、C2的坐标为(2、4)或(﹣2、、4、、【解析】【分析】、1)作BB1和AA1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或-2得到对应点A2、B2、C2的坐标,然后描点即可得到、A2B2C2、【详解】、、、1)如图,点P为所作,P点坐标为(3、1、、、2)如图,、A2B2C2为所作,C2的坐标为(2、4)或(﹣2、、4、、【点睛】本题考查了位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.26.如图,在平行四边形ABCD中,过点A作AE、BC,垂足为E,连接DE,F为线段DE上一点,且、AFE=、B(1)求证:、ADF、、DEC;(2)若AB=8,AE的长.【答案】(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似、ADF、、DEC.(2)利用、ADF、、DEC,可以求出线段DE的长度;然后在在Rt、ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:、四边形ABCD是平行四边形,、AB、CD,AD、BC、、C+、B=180°,、ADF=、DEC、、AFD+、AFE=180°,、AFE=、B,、、AFD=、C在、ADF与、DEC中,、、AFD=、C,、ADF=、DEC,、、ADF、、DEC(2)、四边形ABCD是平行四边形,、CD=AB=8.由(1)知、ADF、、DEC,、AD AF DE CD=,、AD CDDE12AF⋅===在Rt、ADE中,由勾股定理得:AE6===27.如图,在菱形ABCD中,60C︒∠=,4AB=,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若DAG FEG∠=∠,、求证:、AGE∽、DGF;、求DF的长.【答案】(1)DE=(2)、详见解析;、1.【解析】【分析】(1)只要证明DE 是等边、DBC 的高即可解决问题;(2)、由、AGD、、EGF ,可得AG DG EG FG=,即可推出AG EG DG FG =又、AGE=、DGF ,即可推出、AGE、、DGF ; 、根据相似求出EF,再根据勾股定理求出FH 的长,再求出CF 即可解决问题.【详解】解:(1)连结BD4604122∵四边形是菱形,∵△是等边三角形∵点是边的中点ABCD CB CD AB C CDB DB DC BC E BC BE EC BC DE BCDE ︒∴===∠=∴∴===∴===∴⊥∴==(2)、DAG FEG AGD EGFAGD EGFAG DG EG FG AG EG DG FGAGE DGFAGE DGF∠=∠∠=∠∴∴=∴=∠=∠∴∵,△∽△又∵△∽△ 、,9030,901222131∵△∽△∵又∵过点作于点在△中,AGE DGF DE BCEAG GDF C AGD EGF AGE DGFGFE ADG DE EF AE E EH DC HRt ECH FH CF FH CH DF CD CF ︒︒︒⊥∴∠=∠=-∠=∠=∠∠=∠∴∠=∠==∴===⊥==∴=+=+=∴=-=【点睛】此题考查菱形的性质、相似三角形的判定和性质、直角三角形30°角性质、勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,所以中考常考题型.。
《第4章图形的相似》一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S 四边形A´B´C´D´=()A.1:9 B.1:3 C.1:4 D.1:58.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF 的长是()A.B.C.D.二、填空题11.若,则= .12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k= .13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k= .14.在△ABC中,AB=12cm,BC=18cm,AC=24cm,另一个与它相似的△A′B′C′的周长为18cm,则△A′B′C各边长分别为.15.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.16.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.17.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是.三、解答题19.已知线段a,b,c,d成比例,且a=6dm,b=3dm,d=dm,求线段c的长度.20.若=,求的值.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.22.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.24.某小区居民筹集资金1600元,计划在两底分别为10m、20m梯形空地上种植种植花木,如图:(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD地带种满花后(图中阴影部分),共花了160元,计算种满△BMC地带所需费用.(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m2、10元/m2,应选哪种花木,刚好用完所筹资金?25.如图,已知在△ABC和△EBD中,.(1)若△ABC与△EBD的周长之差为60cm,求这两个三角形的周长.(2)若△ABC与△EBD的面积之和为812cm2,求这两个三角形的面积.26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?《第4章图形的相似》参考答案与试题解析一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M【考点】相似三角形的判定.【专题】压轴题;网格型;数形结合.【分析】根据两三角形三条边对应成比例,两三角形相似进行解答.【解答】解:设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【考点】相似三角形的性质.【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.3.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【考点】平行线分线段成比例.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对【考点】相似三角形的判定;相似多边形的性质.【专题】数形结合.【分析】甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC ∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.【解答】解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选:A.【点评】此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF 是解题关键.7.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S 四边形A´B´C´D´=()A.1:9 B.1:3 C.1:4 D.1:5【考点】位似变换.【分析】四边形ABCD与四边形A′B′C′D′位似,四边形ABCD∽四边形A′B′C′D′,可知AD∥A′D′,△OAD∽△OA′D′,求出相似比从而求得S四边形ABCD:S四边形A´B´C´D´的值.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,∴四边形ABCD∽四边形A′B′C′D′,∴AD∥A′D′,∴△OAD∽△OA′D′,∴OA:O′A′=AD:A′D′=1:3,∴S四边形ABCD:S四边形A´B´C´D´=1:9.故选:A.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.8.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m【考点】相似三角形的应用.【分析】根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x 的值,再减去身高即可得出小刚举起的手臂超出头顶的高度.【解答】解:设手臂竖直举起时总高度xm,列方程得:=,解得x=2.2,2.2﹣1.7=0.5m,所以小刚举起的手臂超出头顶的高度为0.5m.故选:A.【点评】本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A .= B . =C . =D . =【考点】相似三角形的判定与性质.【分析】由DE ∥BC ,可得△ADE ∽△ABC ,然后由相似三角形的对应边成比例可得,然后由=,即可判断A 、B 的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C 、D 的正误.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴,∵=,∵=, 故A 、B 选项均错误;∵△ADE ∽△ABC ,∴==, =()2=,故C 选项正确,D 选项错误.故选C .【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.10.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB=1,CD=3,那么EF 的长是( )A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键.二、填空题11.若,则= .【考点】比例的性质.【专题】常规题型.【分析】根据比例的性质求出的值,然后两边加1进行计算即可得解.【解答】解:∵,∴﹣2=,=2+=,∴+1=+1,即=.故答案为:.【点评】本题考查了比例的性质,根据已知条件求出的值是解题的关键.12.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k= 3 .【考点】比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.13.已知一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比k= .【考点】相似三角形的性质.【分析】由一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,根据相似比等于对应边的比,即可求得答案.【解答】解:∵一个三角形的三边长分别为6,8和10,与其相似的一个三角形的最短边长为18,∴较小三角形与较大三角形的相似比k==.故答案为:. 【点评】此题考查了相似比的定义.此题比较简单,解题的关键是熟记定义.14.在△ABC 中,AB=12cm ,BC=18cm ,AC=24cm ,另一个与它相似的△A ′B ′C ′的周长为18cm ,则△A ′B ′C 各边长分别为 4cm ,6cm ,8cm .【考点】相似三角形的性质.【分析】由△A ′B ′C ′∽△ABC ,根据相似三角形周长的比等于相似比,即可求得答案.【解答】解:∵△A ′B ′C ′∽△ABC ,∴△A ′B ′C ′的周长:△ABC 的周长=A ′B ′:AB ,∵在△ABC 中,AB=12cm ,BC=18cm ,AC=24cm ,∴△ABC 的周长为:54cm ,∵△A ′B ′C ′的周长为18cm ,∴A ′B ′:AB=A ′C ′:AC=B ′C ′:BC=,∴A ′B ′=4cm ,B ′C ′=6cm ,A ′C ′=8cm .故答案为:4cm ,6cm ,8cm .【点评】此题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.15.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 5 .【考点】解直角三角形的应用.【专题】计算题;压轴题.【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【解答】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=4.∴AB′=AC+CB′=AC+CB=5.即光线从点A到点B经过的路径长为5.【点评】本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键.16.如图,AB 、CD 相交于点O ,OC=2,OD=3,AC ∥BD ,EF 是△ODB 的中位线,且EF=2,则AC 的长为 .【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB ,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF 是△ODB 的中位线,∴DB=2EF=2×2=4,∵AC ∥BD ,∴△AOC ∽△BOD ,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.17.如图,在△ABC 中,DE ∥BC , =,△ADE 的面积是8,则△ABC 的面积为 18 .【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定,可得△ADE∽△ABC,根据相似三角形的性质,可得答案.【解答】解;∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵=,∴=()2=,,∴S△ABC=18,故答案为:18.【点评】本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DEFC的面积之比是9:11 .【考点】正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据题意,先设CE=x,S△BEF=a,再求出S△ADF的表达式,利用四部分的面积和等于正方形的面积,得到x与a的关系,那么两部分的面积比就可以求出来.【解答】解:设CE=x,S△BEF=a,∵CE=x,BE:CE=2:1,∴BE=2x,AD=BC=CD=AD=3x;∵BC∥AD∴∠EBF=∠ADF,又∵∠BFE=∠DFA;∴△EBF∽△ADF∴S△BEF:S△ADF===,那么S△ADF=a.∵S△BCD﹣S△BEF=S四边形EFDC=S正方形ABCD﹣S△ABE﹣S△ADF,∴x2﹣a=9x2﹣×3x•2x﹣,化简可求出x2=;∴S△AFD:S四边形DEFC=:=:=9:11,故答案为9:11.【点评】此题运用了相似三角形的判定和性质,还用到了相似三角形的面积比等于相似比的平方.三、解答题19.已知线段a,b,c,d成比例,且a=6dm,b=3dm,d=dm,求线段c的长度.【考点】比例线段.【分析】根据比例线段的定义得出=,即=,解之可得c.【解答】解:根据题意,=,即=,解得:c=3,答:线段c的长度为3dm.【点评】本题主要考查比例线段,掌握比例线段的定义是关键.20.若=,求的值.【考点】比例的性质.【分析】首先由已知条件可得x=,然后再代入即可求值.【解答】解:∵=,∴8x﹣6y=x﹣y,x=,∴==.【点评】此题主要考查了比例的性质,关键是掌握内项之积等于外项之积.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.【考点】勾股定理的逆定理.【专题】探究型.【分析】令=k.根据a+b+c=12,得到关于k的方程,求得k值,再进一步求得a,b,c的值,从而判定三角形的形状.【解答】解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【点评】此题能够利用方程求得k的值,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.22.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.23.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【考点】相似三角形的判定;正方形的性质;平行线分线段成比例.【专题】计算题;证明题.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.24.(10分)(2012•富顺县校级模拟)某小区居民筹集资金1600元,计划在两底分别为10m、20m梯形空地上种植种植花木,如图:(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD地带种满花后(图中阴影部分),共花了160元,计算种满△BMC地带所需费用.(2)若其余地带有玫瑰、茉莉两种可供选择,单价分别为12元/m2、10元/m2,应选哪种花木,刚好用完所筹资金?【考点】相似三角形的应用.【专题】应用题.【分析】(1)易得△AMD∽△BMC,根据BC=2AD可得S△BMC=4S△AMD,据此可得种满△BMC的花费;(2)根据每平方米8元来看,△AMD面积为20平米方米,△BMC面积为80平方米,因此可以得出梯形的高也就是两三角形高的和为12米,那么可得梯形面积为180平方米,还有80平方米未种,800元未用,所以要选择每平方米十元的茉莉花.【解答】解:(1)∵四边形ABCD是梯形,∴AD∥BC,∴∠MAD=∠MCB,∠MDA=∠MBC,∴△AMD∽△CMB,∴S△AMD:S△BMC=(10:20 )2=1:4.∵种植△AMD地带花费160元,单价为8元/m2,∴S△AMD=20m2,∴S△CMB=80m2,∴△BMC地带所需的费用为8×80=640(元);(2)设△AMD的高为h1,△BMC的高为h2,梯形ABCD的高为h.∵S△AMD=×10h1=20,∴h1=4,∵S△BCM=×20h2=80,∴h2=8,∴S梯形ABCD=(AD+BC)•h=×(10+20)×(4+8)=180.∴S△AMB+S△DMC=180﹣20﹣80=80(m2),∵160+640+80×12=1760(元),160+640+80×10=1600(元),∴应种植茉莉花刚好用完所筹集的资金.【点评】此题主要考查了相似三角形的性质以及应用;求得梯形的高是解决本题的难点;用到的知识点为:相似三角形的面积比等于相似比的平方.25.如图,已知在△ABC和△EBD中,.(1)若△ABC与△EBD的周长之差为60cm,求这两个三角形的周长.(2)若△ABC与△EBD的面积之和为812cm2,求这两个三角形的面积.【考点】相似三角形的判定与性质.【分析】(1)根据已知条件得到△ABC∽△DBE,根据相似三角形的性质:相似三角形周长的比等于相似比即可得到结论;(2)根据已知条件得到△ABC∽△DBE,根据相似三角形的性质:相似三角形面积的比等于相似比的平方即可得到结论;【解答】解:(1)∵,∴△ABC∽△DBE,∴△ABC的周长:△EBD的周长=,设△ABC的周长为5k,△EBD的周长为2k,∴5k﹣2k=60,∴k=20,∴△ABC的周长=100cm,△EBD的周长=40cm;(2)∵,∴△ABC∽△DBE,∴=()2=,∵△ABC与△EBD的面积之和为812cm2,∴S△ABC=812×=700.【点评】本题考查了相似三角形的判定和性质,三角形的面积和周长,熟练掌握相似三角形的判定和性质是解题的关键.26.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?【考点】相似三角形的应用.【专题】几何图形问题.【分析】根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE 相似,再根据相似三角形对应边成比例列式求解即可.【解答】解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,∴=,解得BD=13.6.答:河宽BD是13.6米.【点评】本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.。
北师大版数学九年级上册第四章图形的相似单元综合练习含答案1. 以下条件中,不能判定△ABC 与△A′B′C′相似的是( )A .∠A=45°,∠C=26°,∠A′=45°,∠B′=109°B .AB =2,AC =32,BC =2,A′B′=6,A′C′=9,B′C′=12 C .AB =1.5,AC =1514,∠A=36°,A′B′=2.1,A′C′=1.5,∠A′=36° D .AB =2,BC =1,∠C=90°,A′B′= 2,B′C′= 22,∠C′=90° 2. a b =52,那么以上等式中,不一定正确的选项是( ) A .2a =5b B.a 5=b 2 C .a +b =7 D.a +b b =723. 如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE ∥BC 交AC 于点E ,假定线段DE =5,那么线段BC 的长为( )A .7.5B .10C .15D .204. 如图,▱ABCD 中,G 是BC 延伸线上一点,AG 与BD 交于点E ,与DC 交于点F ,那么图中相似三角形共有( )A .3对B .4对C .5对D .6对5. 如图,△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,那么CF 等于( )A .1B .2C .3D .46. 如图,在△ABC 中,假设DE 与BC 不平行,那么以下条件中,不能判别△ADE ∽△ABC 的是( )A .∠ADE =∠CB .∠AED =∠B C.AD AB =DE BC D.AD AC =AE AB7. 小刚在打网球时,为使球恰恰能过网(网高为0.9 m),且落在对方区域离网5 m 的位置上,他击球的高度是2.25 m ,那么他应站在离网的( )A .15 m 处B .10 m 处C .8 m 处D .7.5 m 处8. 如图,D ,E 区分是△ABC 的边AB ,AC 上的一点,DE ∥BC ,AF ⊥BC 于点F ,交DE 于点G ,且AD ∶AB =5∶12,那么AG AF的值为( ) A.125 B.512 C.712 D.759. 两个相似三角形的相似比是1∶2,其中较小三角形的周长为6 cm ,那么较大的三角形的周长为( )A .3 cmB .6 cmC .9 cmD .12 cm10. 图中两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P11. 如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩展到原来的2倍,失掉△A′B′O.假定点A 的坐标是(1,2),那么点A′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)12. 在比例尺为1∶2 000的地图上测得A ,B 两地间的图上距离为5 cm ,那么A ,B 两地间的实践距离为________m.13. 如图,直线AD ∥BE ∥CF ,BC =13AC ,DE =4,那么EF 的值是________. 14. 如图,在平行四边形ABCD 中,点E 是边BC 上的黄金联系点,且BE >CE ,AE 与BD 相交于点F ,那么BF ∶FD 的值为________.15. 如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,那么旗杆AB 的高为________m.16. △ABC ∽△DEF ,相似比为1∶2,且△ABC 的边AC 上的高为8,那么△DEF 的边DF 上的高为________.17. 如图,在△ABC 中,点D ,E 区分是AB ,AC 上的点,DE ∥BC ,且AD =AB ,△ADE 的周长为6 cm ,那么△ABC 的周长为________cm.18. 小华自制了一个简易的幻灯机,其任务状况如下图,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,那么屏幕上小树的高度是________cm.19. 如图,△OAB 与△OA ′B ′是相似比为1∶2的位似图形,点O 为位似中心,假定△OAB 内一点P (x ,y )与△OA ′B ′内一点P ′是一对对应点,那么点P ′的坐标是____________.20. x ∶y ∶z =2∶3∶4,求x +2y -z x -y +3z的值. 21. 如图,是小明设计用手电来测量古城墙高度的表示图,点P 处放一水平的平面镜,光线从点A 动身经平面镜反射后刚好射到古城墙CD 的顶端C 处,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,求古城墙的高度CD.22. 如图,小明拿着一把厘米刻度尺,站在距电线杆约30 m 的中央,把手臂向前伸直,刻度尺竖直,刻度尺上18个刻度恰恰遮住电线杆,手臂长约60 cm ,小明能求出电线杆的高度吗?假定能,请你替小明写出求解进程.参考答案:1---11 BCCDB CDBDD C12. 10013. 214. 5-1215. 916. 1617. 1818. 6019. (-2x ,-2y)20. 解:设x =2k ,y =3k ,z =4k ,∴原式=2k +6k -4k 2k -3k +12k =4k 11k =411. 21. 解:由题意可得△PAB∽△PCD,∴PB PD =AB CD ,即1.812=1.2CD,解得CD =8,故古城墙的高度为8 m. 22. 解:可以求出电线杆的高度.过点A 作AN⊥EF 于N ,交BC 于M.∵BC∥EF,∴AM ⊥BC 于M ,∴△ABC ∽△AEF ,∴BC EF =AM AN,∵AM =0.6,AN =30,BC =0.18,∴EF =BC×AN AM =0.18×300.6=9 (m ).故电线杆的高度为9米.。
北师大版九年级上册第四章图形的相似复习测试题一一、选择题(每小题3分,共45分)离是 ( )A. 1250千米B. 125千米C. 12.5千米D. 1.25千米2.已知ba =513,则a−ba+b 的值是( )A.23 B. 32 C. 94 D. 493.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似4.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( ) A .2 B .3 C .6 D .54 5.如图,已知BC ∥DE ,则下列说法不正确的是( )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点6.如图,身高为1.6 m 的吴格霆想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( )A .6.4 mB .7.0 mC .8.0 mD .9.0 m(第5题图) (第6题图) (第7题图) (第8题图) (第9题图)7.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( )A .60 mB .40 mC .30 mD .20 m 8.“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E ”与下面四个较小“E ”中的哪一个是位似图形( )A .左上B .左下C .右上D .右下9.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)10.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( )A .2∶3B .2∶5C .4∶9 D.2∶311.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( )A .∠C =2∠AB .BD 平分∠ABC C .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点 12. 如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ︰FC 等于( ) A.3︰2B.3︰1C.1︰1D.1︰2(第10题图) (第11题图) (第12题图) (第14题图) (第15题图) 13. 关于对位似图形的表述,下列命题正确的有( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心; ③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P ,P′与位似中心O 的距离满足OP=k•OP′.A .①②③④B .②③④C .②③D .②④14. 如图,在△ABC 中,DE ∥BC ,ADDB =12,则下列结论中正确的是( ) A. AEAC =12 B. DEBC =12 C.△ADE 的周长△ABC 的周长=13 D.△ADE 的面积△ABC 的面积=1315.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 的个数是( )A .1个B .2个C .3个D .4个 二、填空题(每小题5分,共25分)16.如果ab =c d=ef=k (b +d +f ≠0),且a +c +e =3(b +d +f ),那么k =_______.17.如图,在△ABC 中,点P 是AC 上一点,连接BP .要使△ABP ∽△ACB ,则必须有∠ABP=________或∠APB =________或ABAP =________., (第17题图) (第18题图) (第19题图) (第20题图) 18.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =________. 19.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.20.在正方形 ABCD 中,点 E 是 BC 边上一点,且 BE ∶E C =2∶1, A E 与 B D 交于点 F ,则 △AFD 与四边形 DFEC 的面积之比是________.三、解答题(共80分)21.(8分)已知线段 a,b,c,d 成比例,且a =6 cm ,b =3 dm ,d =32 dm ,求线段 c 的长度.22. (8分)已知 a,b,c 是 △ABC 的三边长,a+43=b+32=c+84 ,且a +b +c =12,试判断 △ABC第18题图AB C DE F的形状.23.(10分)如图,点D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD =4,求线段CD的长.24.(10分)如图,矩形ABCD为台球桌面.AD=260 cm,AB=130 cm.球目前在E点位置,AE =60 cm.如果小丁瞄准了BC边上的点F将球打进去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.25.(10分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.26.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F 为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC ;(2)若AB=8,AD =63,AF=43,求AE的长.27.(12分) 如图,在平面直角坐标系中,已知OA=12 cm,OB=6 cm,点P从O点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q 同时出发,用t(单位:秒)表示移动的时间(06t≤≤),那么:(1)当t为何值时,△POQ与△AOB相似?(2)设△POQ的面积为S,求S关于t的函数解析式。
北师大版初三数学上册《图形的相似及相似图形的性质》知识讲解及例题演练【学习目标】1、了解比例线段的概念及有关性质,明确相似比的含义并能灵活运用比例的性质进行运算求值;2、能通过生活中的实例认识图形的相似,能通过观看直观地判定两个图形是否相似以及相似图形的性质.【要点梳理】要点一、相似图形1.定义:具有相同形状的图形称为相似图形.要点诠释:(1) 相似图形对应线段的比叫相似比;(2) 相似图形的周长比等于相似比;(3)相似图形的面积比等于相似比的平方.要点二、比例线段1.两条线段的比:在使用同一长度单位的情形下,表示两条线段长度的数值的比,叫做这两条线段的比.2.成比例线段:关于四条线段a 、b 、c 、d ,假如其中两条线段的比与另两条线段的比相等,如a:b=c:d ,我们就说这四条线段是成比例线段,简称比例线段.3.比例的差不多性质:假如b c ,a d=那么ad=bc.要点诠释:(1)a ,b ,c ,d 叫做那个比例的项,a ,b 叫做比例外项,b ,c 叫做比例内项.(2)若a:b=b:c ,则b2=ac (b 称为a,c 的比例中项)4.比例的性质:(1)合分比性质:假如ac ,bd =那么a b c d b d ±±=;(2)等比性质:假如a c m ......b d n ===(b+d+……+n ≠0),那么a c ......m a .b d ......n b +++=+++ 【典型例题】类型一、比例线段1. 下列四组线段中,成比例线段的有( )A .3cm 、4cm 、5cm 、6cmB .4cm 、8cm 、3cm 、5cmC .5cm 、15cm 、2cm 、6cmD .8cm 、4cm 、1cm 、3cm【答案】C.【解析】四个选项中只有,故选C. 【总结升华】依照成比例线段的定义. 举一反三:【变式】判定下列线段a 、b 、c 、d 是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=,c=,d=. 【答案】(1) ∵ ,, ∴ ,∴ 线段a 、b 、c 、d 不是成比例线段.(2) ∵ ,,∴ 线段a 、b 、c 、d 是成比例线段. 2. 已知线段a 、b 、c 满足a :b :c=3:2:6,且a+2b+c=26.(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.【答案】解:(1)∵a :b :c=3:2:6,∴设a=3k ,b=2k ,c=6k ,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;(2)∵x 是a 、b 的比例中项,∴x2=ab ,∴x2=4×6,∴x=62或x= -62(不合题意,舍去), 即x 的值为62.【总结升华】本题考查了比例线段及其相关运算,注意利用代数的方法解决较为简便.3. 已知32=y x ,则y x y x 32+-= . 【思路点拨】由32=y x,则可设x=2k ,y=3k ,然后把x=2k ,y=3k 代入原式进行分式的运算即可.【答案与解析】解:∵32=y x ,∴设x=2k ,y=3k ,∴原式=1119234=+-k k k k . 故答案为111. 【总结升华】本题考查了比例性质:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.举一反三:【变式】已知xyz ≠0且x y z x y z z y x+++===k ,求k 的值. 【答案】解:∵xyz ≠0∴x ≠0,y ≠0,z ≠0,①当x+y+z ≠0时,∵x y z x y z z y x+++===k , ∴k=2;②当x+y+z=0时,x+y=-z,z+x=-y,y+z=-x,∴k=-1.综上所述,k=2或-1.类型二、相似图形4. 指出下列各组图中,哪组确信是相似形__________:(1)两个腰长不等的等腰三角形(2)两个半径不等的圆(3)两个面积不等的矩形(4)两个边长不等的正方形【思路点拨】要注意:(1)相似图形确实是指形状相同,但大小不一定相同的图形;(2)假如两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.【答案】(2) (4).【解析】 (1)等腰三角形的形状不一定相同,因此两个腰长不等的等腰三角形不一定相似;(3)中面积不等的两个矩形,尽管它们的边数相同,对应角相等,但对应边的比不一定相等,因此无法确定它们一定相似;(2)(4)中两个半径不等的圆与两个边长不等的正方形差不多上形状完全相同的图形,是相似形.【总结升华】识别两个图形是否是相似形,能够从形状来识别,关于多边形,也能够用“对应角相等,对应边的比相等”来识别.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比差不多上1:2,尽管它们的摆放方法、位置不一样,但这并可不能阻碍到它们相似性.类型三、相似多边形5.如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD .(1)求证:EB=GD ;(2)若∠DAB=60°,AB=2,AG=3,求GD 的长.【思路点拨】(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD 交AC 于点P ,则BP ⊥AC ,依照∠DAB=60°得到112BP AB ==,然后求得EP=32,最后利用勾股定理求得EB 的长即可求得线段GD 的长即可.【答案与解析】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,【总结升华】本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.。
北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,在中,、为边的三等分点,,点为与的交点.若,则为()A.1B.2C.D.32、如图,A,B是双曲线上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC的面积为1,D为OB的中点,则k的值为()A. B.2 C.4 D.83、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG 最小值为( )A. B. C. D.4、小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米5、如果两个相似三角形的面积之比是1:2,那么这两个相似三角形的周长比是()A.2:1B.1:C.1:2D.1:46、如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B 1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)7、两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF= CE= 则关于的函数图象大致是()A. B. C. D.8、如图,在△ABC中,∠ACB=Rt∠,AC=2,点D是边AB上的一个动点,以CD 为直径作⊙O交AB的另一点于F,交AC的另一点于E,将点E绕点F按逆时针方向旋转120°得到点E',当点D在线段BF上时,点E'始终在⊙O上,则点D 由B出发,运动到与点F重合停止,点E'所经过的路径的长是()A. B. C. D.9、如图,射线OC分别交反比例函数,的图象于点A,B,若OA:OB=1:2,则k的值为()A.2B.3C.4D.610、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.11、△ABC与△DEF相似,且相似比是,则△DEF与△ABC的相似比是()A. B. C. D.12、某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m13、如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2 cm 2B.4 cm 2C.8 cm 2D.16 cm 214、如图,已知在平面直角坐标系中,点是坐标原点,是直角三角形,,,点在反比例函数上,若点在反比例函数上,则的值为( )A. B. C. D.15、如图,已知矩形ABCD满足AB:BC=1:,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为()A.4B.4C.2D.1二、填空题(共10题,共计30分)16、如图,在中,∠C=90°,AC=3,BC=4,把绕C点旋转得到,其中点在线段AB上,那么的正切值等于________17、如图,在中,AD平分,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若,,,求BD的长是________.18、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.19、如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,A(﹣4,0),C(0,6),如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B的对应点B′的坐标是________.20、如图,直线,分别交直线m,n于点A,B,C,D,E,F,若,,,则EF的长为________.21、在Rt△ABC中,∠C=90°,AB=13,(如图),将△ABC绕点C旋转后,点A落在斜边AB上的点A’,点B落在点B’,A’B’与边BC相交于点D,那么的值为________.22、如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为________23、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.24、如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体在暗盒中所成的像的高度为,那么物体的高度应为________ .25、在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得AO=18m,BO=21m,延长AO,BO分别到D,C两点,使OC=6m,OD=7m,又测得CD=5m,则河塘宽AB=________m.三、解答题(共5题,共计25分)26、已知=,求的值.27、如图,在锐角△ABC中,AB=4,BC=5,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,连接AA1, CC1,若△ABA1的面积为4,求△CBC 1的面积.28、王老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯时,为避免上楼时墙角碰头,设计墙角到楼梯的竖直距离为,他量得客厅高,楼梯洞口宽,阁楼阳台宽.请你帮助王老师解决问题:要使墙角到楼梯的竖直距离为,楼梯底端到墙角的距离是多少米?29、感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC 上.若∠B=∠C=∠DPE=45°,BC=6 ,CE=4,求DE的长30、四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.①请直接写出AE的长度;②当DE⊥CF时,试求出CF长度.(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.探究:当∠B与∠EPC满足什么关系时,成立?并证明你的结论.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、B6、C7、C8、D9、C10、B11、A12、C13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。