[VIP专享]三角函数复习教案及习题
- 格式:pdf
- 大小:406.26 KB
- 文档页数:12
第三章三角函数 (1)第一节角的概念与任意角的三角函数 (2)第二节同角三角函数的基本关系式与诱导公式 (9)第三节三角函数的图象与性质 (16)第四节函数y=Asin(ωx+φ)的图象及三角函数模型的应用 (24)第五节和角公式 (37)第六节倍角公式与半角公式 (45)第七节正弦定理和余弦定理 (53)第八节正弦定理、余弦定理的应用举例 (61)第三章三角函数知识网络:学习重点:三角函数是高考命题的重点,分值约占10%~15%,一般是一个小题和一个大题,以中低档题为主.1.主要考查三角函数的图象与性质,简单的三角恒等变换,正、余弦定理及其应用,且题目常考常新.2.客观题主要涉及三角函数的求值,函数的图象及性质,解答题主要以三角变换为工具,综合考查函数的图象与性质;或以正、余弦定理为工具,结合三角变换考查解三角形的有关知识.3.高考命题中,本章常与平面向量相结合,既可以考查平面向量的运算,又可以考查三角函数式的化简和三角函数的性质,符合高考命题“要在知识点的交汇处命题”的要求.学法指导:1.立足基础,着眼于提高.立足课本,牢固掌握三角函数的概念、图象和性质;弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.要在灵、活、巧上下功夫,切不可死记硬背.2.突出数学思想方法.应深刻理解数与形的内在联系,理解众多三角公式的应用无一不体现等价转化思想.在解决三角函数的问题时仔细体会拆角、切化弦、三角函数归一的方法技能.3.抓住关键,三角函数的化简、求值中,要熟练掌握三角变换公式的应用,其中角的变换是解题的关键,注意已知与待求中角的关系,力争整体处理.4.注意三角函数与向量等内容的交汇渗透,这也是命题的热点之一.第一节 角的概念与任意角的三角函数学习目标:1.了解任意角的概念,了解弧度制的概念. 2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义 考点梳理:1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角. (2)从终边位置来看,可分为象限角与轴线角.(3)若β与α是终边相同的角,则β用α表示为β=2k π+α(k ∈Z ). 2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角. (2)角α的弧度数在半径为r 的圆中,弧长为l 的弧所对圆心角为αrad ,则α=lr. (3)角度与弧度的换算①n °=n π180rad ;②α rad =(180απ)°.(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =rα,扇形的面积为S =12lr =12r 2α.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x.(2)三角函数在各象限的符号一全正,二正弦,三正切,四余弦. 4.单位圆与三角函数线(1)单位圆:半径为1的圆叫做单位圆. (2)三角函数线. (3)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0). 思考:1.“角α为锐角”是“角α为第一象限角”的什么条件? 【提示】 充分不必要条件.2.终边在直线y =x 上的角的正弦值相等吗?【提示】 当角的终边一个在第一象限,一个在第三象限时,正弦值不相等. 学情自测:1.已知锐角α终边上一点A 的坐标是(2sin π3,2cos π3),则α弧度数是( )A .2 B.π3 C.π6 D.2π3【解析】 点A 的坐标为(3,1). ∴sin α=132+1=12,又α为锐角,∴α=π6.【答案】C12.(2012·江西高考)下列函数中,与函数y=定义域相同的函数为( )3xA .y =1sin x B .y =ln x xC .y =x e xD .y =sin x x【解析】 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中,x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0},故选D.【答案】 D3.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【解析】 由sin α<0,得α在第三、四象限或y 轴非正半轴上,又tan α>0,∴α在第三象限.【答案】 C4.弧长为3π,圆心角为135°的扇形半径为________,面积为________.【解析】 ∵l =3π,α=135°=3π4,∴r =l α=4,S =12lr =12×3π×4=6π.【答案】 4 6π5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.【解析】 由三角函数的定义,sin θ=y16+y2,又sin θ=-255<0,∴y <0且y 16+y2=-255, 解之得y =-8. 【答案】 -8 典例探究:例1(角的集合表示)(1)写出终边在直线y =3x 上的角的集合; (2)已知α是第三象限角,求α2所在的象限.【思路】(1)角的终边是射线,应分两种情况求解.(2)把α写成集合的形式,从而α2的集合形式也确定.【解答】 (1)当角的终边在第一象限时,角的集合为{α|α=2k π+π3,k ∈Z },当角的终边在第三象限时,角的集合为{α|α=2k π+43π,k ∈Z },故所求角的集合为{α|α=2k π+π3,k ∈Z }∪{α|α=2k π+43π,k ∈Z }={α|α=k π+π3,k ∈Z }.(2)∵2k π+π<α<2k π+32π(k ∈Z ),∴k π+π2<α2<k π+34π(k ∈Z ).当k =2n (n ∈Z )时,2n π+π2<α2<2n π+34π,α2是第二象限角, 当k =2n +1(n ∈Z )时,2n π+3π2<α2<2n π+74π,α2是第四象限角,综上知,当α是第三象限角时,α2是第二或第四象限角,变式训练1:若角θ的终边与π3角的终边相同,则在[0,2π)内终边与角θ3的终边相同的角为________.【解析】 ∵θ=π3+2k π(k ∈Z ),∴θ3=π9+23k π(k ∈Z ),当k =0,1,2时,θ3=π9,7π9,13π9.【答案】 π9,7π9,13π9例2(弧度制的应用)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若α=60°,R =10 cm ,求扇形的弧长l . (2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R =2 cm ,求扇形的弧所在的弓形的面积.【思路】(1)可直接用弧长公式,但要注意用弧度制;(2)可用弧长或半径表示出扇形面积,然后确定其最大值时的半径和弧长,进而求出圆心角α;(3)利用S 弓=S 扇-S △,这样就需要求扇形的面积和三角形的面积.【解答】 (1)l =10×π3=10π3(cm).(2)由已知得:l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以R =5时,S 取得最大值25,此时l =10,α=2 rad. (3)设弓形面积为S 弓.由题知l =2π3cm ,S 弓=S 扇-S △=12×2π3×2-12×22×sin π3=(2π3-3)(cm 2)变式训练2:已知半径为10的圆O 中,弦AB 的长为10,(1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形弧长l 及弧所在的弓形的面积S . 【解】(1)在△AOB 中,AB =OA =OB =10,∴△AOB 为等边三角形.因此弦AB 所对的圆心角α=π3.(2)由扇形的弧长与扇形面积公式,得l =α·R =π3×10=103π,S 扇形=12R ·l =12α·R 2=50π3.又S △AOB =12·OA ·OB ·sin π3=25 3.∴弓形的面积S =S 扇形-S △AOB =50(π3-32).例3(三角函数的定义)(1)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114C .-4D .4(2)已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.【思路】(1)求出点P 到原点O 的距离,根据三角函数的定义求解.(2)在直线上设一点P (4t ,-3t ),求出点P 到原点O 的距离,根据三角函数的定义求解,由于点P 可在不同的象限内,所以需分类讨论.【解答】 (1)点P 到原点O 距离|OP |=m 2+9,∴cos α=m m 2+9=-45,∴⎩⎪⎨⎪⎧m 2=16m <0,∴m =-4.【答案】 C(2)在直线3x +4y =0上任取一点P (4t ,-3t )(t ≠0), 则x =4t ,y =-3t ,∴r =|PO |=x 2+y 2=4t 2+-3t 2=5|t |, 当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,当t >0时,sin α=-35,cos α=45,tan α=-34.当t <0时,sin α=35,cos α=-45,tan α=-34.变式训练3:设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求4sin α-3tanα的值.【解】 ∵r =x 2+5,∴cos α=xx 2+5, 从而24x =xx 2+5,解得x =0或x =± 3. ∵90°<α<180°,∴x <0,因此x =- 3.则r =22,∴sin α=522=104,tan α=5-3=-153.故4sin α-3tan α=10+15.小结:一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. 两个技巧1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.2.利用单位圆和三角函数线是解简单三角不等式的常用技巧. 三点注意1.第一象限角、锐角、小于90°的角是三个不同的概念,前者是象限角,后两者是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.注意熟记0°~360°间特殊角的弧度表示,以方便解题.课后作业(十六) 角的概念与任意角的三角函数一、选择题图3-1-21.(2013·宁波模拟)如图3-1-2,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)【解析】 设P (x ,y ),由三角函数定义知sin θ=y ,cos θ=x ,故点P 的坐标为(cos θ,sin θ).【答案】 A2.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2sin 1【解析】 由题设,圆弧的半径r =1sin 1,∴圆心角所对的弧长l =2r =2sin 1.【答案】 C3.(2013·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称【解析】 由题意知角α与角θ的终边相同,角β与角-θ的终边相同,又角θ与角-θ的终边关于x 轴对称,故选C.【答案】 C4.若角α的终边在直线y =-2x 上,且sin α>0,则cos α和tan α的值分别为( )A.55,-2 B .-55,-12 C .-255,-2 D .-55,-2【解析】 由题意知,角α的终边在第二象限,在角α的终边上取点P (-1,2),则r =5,从而cos α=-15=-55,tan α=2-1=-2,故选D.【答案】 D5.(2013·昆明模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【解析】 由题意知x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x 2=9,∴x =-3,∴tan α=-43.【答案】 D6.已知点P (sin 3π4,cos 34π)在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4 【解析】 由已知得P (22,-22),∴tan θ=-1且θ是第四象限角,∴θ=7π4. 【答案】 D二、填空题7.(2013·潍坊模拟)若角120°的终边上有一点(-4,a ),则a 的值是________. 【解析】 由题意知-a4=tan 120°,∴-a4=-3,∴a =4 3.【答案】 438.已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=________.【解析】 因为角α的终边落在直线y =-3x (x <0)上, 所以角α是第二象限角,因此sin α>0,cos α<0, 故|sin α|sin α-|cos α|cos α=sin αsin α--cos αcos α=1+1=2. 【答案】 29.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.【解析】 由题意知点Q 是角2π3的终边与单位圆的交点,设Q (x ,y ),则y =sin2π3=32,x =cos 2π3=-12,故Q (-12,32). 【答案】 (-12,32)三、解答题10.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值.【解】 ∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22,因此sin θ+cos θ=- 2.11.已知扇形OAB 的圆心角α为120°,半径长为6, (1)求AB 的长;(2)求AB 所在弓形的面积.【解】 (1)∵α=120°=2π3,r =6,∴AB 的长l =2π3×6=4π. (2)∵S 扇形OAB =12lr =12×4π×6=12π,S △ABO =12r 2·sin2π3=12×62×32=93, ∴S 弓形=S 扇形OAB -S △ABO =12π-9 3.12.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值.【解】 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ).所以,sin α=-2a a 2+-2a 2=-25,cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15, cos β=2a 2a 2+a 2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25·15+15·25+(-2)×12=-1.第二节 同角三角函数的基本关系式与诱导公式学习目标:1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x cos x=tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.考点梳理:1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α(α≠π2+k π,k ∈Z ).组数 一 二 三四五 角 α+2k π(k∈Z ) -αα+(2k +1)π(k ∈Z )α+π2-α+π2正弦 sin α -sin_α -sin_α cos_α cos_α 余弦 cos α cos_α -cos_α -sin_α sin_α正切 tan α-tan_α tan_α口诀函数名不变符号看象限思考:1.有人说sin(kπ-α)=sin(π-α)=sin α(k∈Z),你认为正确吗?【提示】不正确.当k=2n(n∈Z)时,sin(kπ-α)=sin(2nπ-α)=-sin α;当k =2n +1(n ∈Z )时,sin(k π-α)=sin(2n π+π-α)=sin(π-α)=sin α. 2.sin(-π-α)如何使用诱导公式变形?【提示】 sin(-π-α)=-sin(π+α)=sin α.学情自测:1.已知cos(α-π)=-513,且α是第四象限角,则sin α=( )A .-1213 B.1213 C.512 D .±1213【解析】 ∵cos(α-π)=cos(π-α)=-cos α=-513,∴cos α=513,又α是第四象限角,∴sin α<0,则sin α=-1-cos 2α=-1213.【答案】 A2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6 D.π3【解析】 由sin(π+θ)=-3cos(2π-θ)得 -sin θ=-3cos θ, ∴tan θ=3,又|θ|<π2,∴θ=π3,故选D.【答案】 D3.sin 585°的值为( )A .-22 B.22 C .-32 D.32【解析】 sin 585°=sin(360°+225°)=sin 225°=sin(180°+45°)=-sin 45°=-22.【答案】 A4.若cos α=-35且α∈(π,3π2),则tan α=( )A.34B.43 C .-34 D .-43【解析】 ∵cos α=-35,且α∈(π,3π2),∴sin α=-1-cos 2α=-1--352=-45,∴tan α=sin αcos α=43.【答案】 B5.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则sin 2α=( )A .-1B .-22 C.22 D .1【解析】 因为sin α-cos α=2,所以1-2sin αcos α=2,即sin 2α=-1.【答案】A典例探究:例1(同角三角函数关系式的应用)(1)(2013·潍坊模拟)已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是( )A.25 B .-25C .-2D .2 (2)(2013·银川模拟)已知α∈(π,3π2),tan α=2,则cos α=________.【思路】 (1)先根据已知条件求得tan α,再把所求式变为用tan α表示的式子求解;(2)切化弦,结合sin 2α+cos 2α=1求解.【解答】 (1)由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,即tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=25. (2)依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15;又α∈(π,3π2),因此cos α=-55.【答案】 (1)A (2)-55, 变式训练1:(2012·大纲全国卷)已知α为第二象限角,sin α=35,则sin 2α=( )A .-2425B .-1225 C.1225 D.2425【解析】 ∵α为第二象限角且sin α=35,∴cos α=-1-sin 2α=-45,∴sin 2α=2sin α·cos α=2×35×(-45)=-2425.【答案】 A例2(诱导公式的应用) (1)已知tan α=2,sin α+cos α<0,则sin 2π-α·sin π+α·cos π+αsin 3π-α·cos π+α=________.(2)已知α为第三象限角,f (α)=sin α-π2·cos 3π2+α·tan π-αtan -α-π·sin -α-π,①化简f (α);②若cos(α-3π2)=15,求f (α)的值.【思路】(1)先利用诱导公式对原式进行化简,再根据tan α=2,结合α的范围和同角三角函数关系式求解;(2)①直接利用诱导公式化简约分.②利用α在第三象限及同角三角函数关系的变形式得f (α).【解答】 (1)原式=-sin α·-sin α·-cos α-sin α·cos α=sin α,∵tan α=2>0,∴α为第一象限角或第三象限角.又sin α+cos α<0,∴α为第三象限角,由tan α=sin αcos α=2,得sin α=2cos α代入sin 2α+cos 2α=1,解得sin α=-255.【答案】 -255(2)①f (α)=sin α-π2·cos 3π2+α·tan π-αtan -α-π·sin -α-π=-cos α·sin α·-tan α-tan α·sin α=-cos α.②∵cos(α-3π2)=15,∴-sin α=15,从而sin α=-15.又α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=265.变式训练2:(1)(2013·烟台模拟)sin 600°+tan 240°的值等于( )A .-32 B.32 C.3-12 D.3+12(2)(2013·台州模拟)已知f (x )=a sin(πx +α)+b cos(πx +β)+4(a ,b ,α,β为非零实数),若f (2 012)=5,则f (2 013)=( ) A .3 B .5 C .1 D .不能确定【解析】 (1)sin 600°+tan 240°=sin(360°+240°)+tan(180°+60°)=sin(180°+60°)+tan 60°=-sin 60°+tan 60°=-32+3=32.(2)∵f (2 012)=a sin(2 012π+α)+b cos(2 012π+β)+4 =a sin α+b cos β+4=5, ∴a sin α+b cos β=1,∴f (2 013)=a sin(2 013π+α)+b cos(2 013π+β)+4=-a sin α-b cos β+4=-(a sin α+b cos β)+4=-1+4=3. 【答案】 (1)B (2)A例3(sin α±cos α与sin α·cos α的关系)(2013·扬州模拟)已知-π<x <0,sin x +cos x =15.(1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x1-tan x的值.【思路】(1)利用平方关系,设法沟通sin x -cos x 与sin x +cos x 的关系;(2)先利用倍角公式、商数关系式化为角x 的弦函数,再设法将所求式子用已知表示出来.【解答】(1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.又∵-π<x <0,∴sin x <0,又sin x +cos x >0, ∴cos x >0,sin x -cos x <0,7 5.故sin x-cos x=-(2)sin 2x +2sin 2x 1-tan x =2sin x cos x +sin x 1-sin xcos x=2sin x cos x cos x +sin x cos x -sin x =-2425×1575=-24175.变式训练3:已知-π2<x <0,sin x +cos x =15.(1)求sin x -cos x 的值; (2)求tan x 的值.【解】(1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,∵(sin x -cos x )2=1-2sin x cos x =4925.又∵-π2<x <0,∴sin x <0,cos x >0,sin x -cos x <0,故sin x -cos x =-75.(2)由(1)得sin x -cos x =-75,故由⎩⎪⎨⎪⎧sin x +cos x =15sin x -cos x =-75,得sin x =-35,cos x =45,∴tan x =sin x cos x =-3545=-34.小结:一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限. 两个防范1.利用诱导公式进行化简求值时,要注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要注意判断三角函数值的符号.三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α进行弦、切互化.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4等.课后作业(十七) 同角三角函数的基本关系式与诱导公式一、选择题1.(2013·郑州模拟)记cos(-80°)=k ,那么tan 100°=( )A.1-k2kB .-1-k2kC.k1-k 2 D .-k1-k2【解析】 由cos(-80°)=k ,得cos 80°=k ,∴sin 80°=1-k 2,∴tan 100°=tan(180°-80°)=-tan 80°=-1-k2k.【答案】 B2.(2013·温州模拟)若cos(π2+θ)=32,且|θ|<π2,则tan θ=( )A .- 3 B.33 C .-33D.3 【解析】 ∵cos(π2+θ)=32,∴-sin θ=32,即sin θ=-32, ∵|θ|<π2,∴θ=-π3,∴tan θ=tan(-π3)=- 3.【答案】 A3.(2013·济南模拟)已知α∈(-π2,0),sin(-α-3π2)=55则sin(-π-α)=( )A.55B.255 C .-55 D .-255【解析】 ∵sin(-α-3π2)=-sin(3π2+α)=cos α=55,且α∈(-π2,0),∴sin α=-1-cos 2α=-1-525=-255, ∴sin(-π-α)=-sin(π+α)=sin α=-255.【答案】 D4.(2013·保定模拟)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A .-43 B.54 C .-34 D.45【解析】 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ =tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45. 【答案】 D5.(2013·普宁模拟)若sin θ+cos θsin θ-cos θ=2,则sin θcos 3θ+cos θsin 3θ的值为( ) A .-81727 B.81727 C.82027 D .-82027【解析】 ∵sin θ+cos θsin θ-cos θ=2,∴sin θ=3cos θ,∴sin θcos 3θ+cos θsin 3θ=3cos 2θ+127cos 2θ=8227cos 2θ由⎩⎪⎨⎪⎧sin θ=3cos θ,sin 2θ+cos 2θ=1得cos 2θ=110,∴sin θcos 3θ+cos θsin 3θ=82027. 【答案】 C6.若sin α是5x 2-7x -6=0的根,则sin -α-3π2sin 3π2-αtan 22π-αcos π2-αcos π2+αsin π+α=( )A.35B.53C.45D.54【解析】 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α-cos αtan 2αsin α-sin α-sin α=-1sin α=53.【答案】 B 二、填空题7.已知sin(π4+α)=32,则sin(3π4-α)的值为________.【解析】 sin(3π4-α)=sin[π-(π4+α)]=sin(π4+α)=32.【答案】328.(2013·青岛模拟)已知tan α=2,则7sin 2α+3cos 2α=________.【解析】 7sin 2α+3cos 2α=7sin 2α+3cos 2αsin 2α+cos 2α=7tan 2α+3tan 2α+1=7×22+322+1=315. 【答案】 3159.已知sin(x +π6)=14,则sin(7π6+x )+cos 2(5π6-x )=________.【解析】 原式=-sin(π6+x )+cos 2(π6+x )=-14+(1-142)=1116.【答案】 1116三、解答题10.已知函数f (x )=1-sin x -3π2+cos x +π2+tan 34πcos x.(1)求函数y =f (x )的定义域;(2)设tan α=-43,求f (α)的值.【解】 (1)由cos x ≠0,得x ≠π2+k π,k ∈Z ,所以函数的定义域是{x |x ≠π2+k π,k ∈Z }.(2)∵tan α=-43,∴f (α)=1-sin α-3π2+cos α+π2+tan 34πcos α=1-cos α-sin α-1cos α=-cos α-sin αcos α=-1-tan α=13.11.已知tan(α+87π)=a .求证:sin 157π+α+3cos α-137πsin 207π-α-cos α+227π=a +3a +1. 【证明】 由已知得左边=sin[π+α+87π]+3cos[α+8π7-3π]sin[4π-α+87π]-cos[2π+α+87π]=-sin α+87π-3cos α+87π-sin α+87π-cos α+87π=tan α+87π+3tan α+87π+1=a +3a +1=右边,所以原等式成立.12.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.【解】 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =22或cos A =-22.(1)当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=712π.(2)当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角,∴A =34π,B =56π,不合题意.综上知,A =π4,B =π6,C =712π.第三节三角函数的图象与性质学习目标:1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.考点梳理:1.周期函数和最小正周期对于函数f (x ),如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.若在所有周期中,存在一个最小的正数,那么这个最小的正数叫做f (x )的最小正周期.y =sin x y =cos x y =tan xπ1.是否每一个周期函数都有最小正周期?【提示】 不一定.如常数函数f (x )=a ,每一个非零数都是它的周期.2.正弦函数和余弦函数的图象的对称轴及对称中心与函数图象的关键点是什么关系? 【提示】 y =sin x 与y =cos x 的对称轴方程中的x 都是它们取得最大值或最小值时相应的x .对称中心的横坐标都是它们的零点. 学情自测:1.函数y =tan 3x 的定义域为( )A .{x |x ≠32π+3k π,k ∈Z }B .{x |x ≠π6+k π,k ∈Z }C .{x |x ≠-π6+k π,k ∈Z }D .{x |x ≠π6+k π3,k ∈Z }【解析】 由3x ≠π2+k π,k ∈Z 得x ≠π6+k π3,k ∈Z ,故选D.【答案】 D2.函数f (x )=2cos(x +5π2)是( ) A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的偶函数【解析】 f (x )=2cos(x +52π)=2cos(x +π2)=-2sin x ,故f (x )是最小正周期为2π的奇函数.【答案】 A3.(2012·福建高考)函数f (x )=sin(x -π4)的图象的一条对称轴是( ) A .x =π4 B .x =π2C .x =-π4D .x =-π2【解析】 法一 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z . 取k =-1,则x =-π4. 法二 x =π4时,y =sin(π4-π4)=0,不合题意,排除A ;x =π2时,y =sin(π2-π4)=22,不合题意,排除B ;x =-π4时,y =sin(-π4-π4)=-1,符合题意,C 项正确;而x =-π2时,y =sin(-π2-π4)=-22,不合题意,故D 项也不正确. 【答案】 C 4.比较大小:sin(-π18)________sin(-π10). 【解析】 ∵-π2<-π10<-π18<0, ∴sin(-π18)>sin(-π10). 【答案】 >5.函数y =2-3cos(x +π4)的最大值为________,此时x =________. 【解析】 当cos(x +π4)=-1时,函数有最大值5, 此时,x +π4=π+2k π,k ∈Z , 即x =34π+2k π,k ∈Z . 【答案】 5 34π+2k π,k ∈Z 典例探究:例1(三角函数的定义域和值域)(1)(2012·山东高考)函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1-3(2)函数y =1tan x -1的定义域为________. 【思路】(1)先确定πx 6-π3的范围,再数形结合求最值; (2)由tan x -1≠0且x ≠k π+π2,k ∈Z 求解. 【解答】 (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6, ∴sin(π6x -π3)∈[-32,1]. ∴y ∈[-3,2],∴y max +y min =2- 3.(2)要使函数有意义,必须有⎩⎪⎨⎪⎧ tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎪⎨⎪⎧ x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }. 【答案】 (1)A (2){x |x ≠π4+k π且x ≠π2+k π,k ∈Z }, 变式训练1:(1)函数y =2sin x -1的定义域为________.(2)当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________. 【解析】 (1)由2sin x -1≥0得sin x ≥12,∴2k π+π6≤x ≤2k π+5π6,k ∈Z , 故函数的定义域为[2k π+π6,2k π+56π](k ∈Z ). (2)∵x ∈[π6,76π] ∴-12≤sin x ≤1, 又y =3-sin x -2cos 2x =2sin 2x -sin x +1=2(sin x -14)2+78, ∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2. 【答案】 (1)[2k π+π6,2k π+5π6](k ∈Z ) (2)782 例2(三角函数的单调性)(2012·北京高考)已知函数f (x )=sin x -cos x sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递减区间.【思路】(1)求定义域时考虑分母不为零,然后对f (x )解析式进行化简,转化成正弦型函数的形式,再求周期;(2)求单调递减区间时利用整体代换,把ωx +φ当作一个整体放入正弦的减区间内解出x即为减区间,不要忽略对定义域的考虑.【解答】(1)由sin x≠0得x≠kπ(k∈Z),故f(x)的定义域为{x∈R|x≠kπ,k∈Z}.因为f(x)=sin x-cos x sin 2xsin x=2cos x(sin x-cos x)=sin 2x -cos 2x -1=2sin(2x -π4)-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ). 由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ), 得k π+3π8≤x ≤k π+7π8(k ∈Z ). 所以f (x )的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ). 变式训练2:(2013·武汉模拟)已知函数y =sin(π3-2x ),求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.【解】由y =sin(π3-2x )可化为y =-sin(2x -π3). (1)周期T =2πω=2π2=π. (2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 所以x ∈R 时,y =sin(π3-2x )的减区间为[k π-π12,k π+5π12],k ∈Z . 取k =-1,0可得函数在[-π,0]上的单调递减区间为[-π,-7π12]和[-π12,0]. 例3(三角函数的奇偶性、周期性和对称性)设函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2),给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形; ③它的图象关于点(π3,0)成中心对称图形; ④在区间[-π6,0)上是增函数. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).【思路】本题是一个开放性题目,依据正弦函数的图象及单调性、周期性以及对称性逐一判断.【解答】若①、②成立,则ω=2ππ=2;令2·π12+φ=k π+π2,k ∈Z ,且|φ|<π2,故k =0,∴φ=π3.此时f (x )=sin(2x +π3),当x =π3时,sin(2x +π3)=sin π=0,∴f (x )的图象关于(π3,0)成中心对称;又f (x )在[-5π12,π12]上是增函数,∴在[-π6,0)上也是增函数,因此①②⇒③④,用类似的分析可得①③⇒②④.因此填①②⇒③④或①③⇒②④.【答案】①②⇒③④或①③⇒②④,变式训练3:已知函数f (x )=sin(πx -π2)-1,则下列说法正确的是( ) A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数【解析】周期T =2ππ=2,f (x )=sin(πx -π2)-1=-cos πx -1,因此函数f (x )是偶函数,故选B.【答案】 B小结:两条性质1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.对称性:正、余弦函数的图象既是轴对称图形,又是中心对称图形且最值点在对称轴上,正切函数的图象只是中心对称图形.三种方法求三角函数值域(最值)的方法:(1)利用sin x 、cos x 的有界性;(2)化为y =A sin(ωx +φ)+k 的形式,逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.课后作业(十八) 三角函数的图象与性质一、选择题1.(2013·银川模拟)下列函数中,最小正周期为π,且图象关于直线x =π3对称的函数是( )A .y =2sin(2x +π3)B .y =2sin(2x -π6)C .y =2sin(x 2+π3) D .y =2sin(2x -π3) 【解析】根据函数的最小正周期为π,排除C ,又图象关于直线x =π3对称,则f (π3)=2或f (π3)=-2,代入检验知选B. 【答案】 B2.函数y =tan(π4-x )的定义域是( ) A .{x |x ≠π4} B .{x |x ≠-π4} C .{x |x ≠k π+π4,k ∈Z } D .{x |x ≠k π+3π4,k ∈Z }【解析】y =tan(π4-x )=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠n π+3π4,k ∈Z ,故选D.【答案】 D3.函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54] 【解析】 f (x )=(sin x +12)2-54, ∵sin x ∈[-1,1],∴-54≤f (x )≤1, ∴f (x )的值域为[-54,1]. 【答案】 C4.(2013·日照质检)函数y =sin 2x 的图象向右平移φ(φ>0)个单位,得到的图象关于直线x =π6对称,则φ的最小值为( ) A.5π12 B.11π6 C.11π12D .以上都不对 【解析】 函数y =sin 2x 的图象平移后所得图象对应的函数解析式为y =sin 2(x -φ)=sin(2x -2φ),其图象关于x =π6对称,所以2·π6-2φ=k π+π2(k ∈Z ),解得φ=-k 2π-π12(k ∈Z ),故当k =-1时,φ的最小值为5π12. 【答案】 A5.(2013·北京模拟)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <bC .b <a <cD .b <c <a【解析】 ∵f (x )=sin x +3cos x =2sin(x +π3), ∴函数f (x )的图象关于直线x =π6对称,从而f (π3)=f (0), 又f (x )在[0,π6]上是增函数,∴f (0)<f (π7)<f (π6),即c <a <b . 【答案】 B6.已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,,且当x =π2时,f (x )取得最大值,则( ) A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数【解析】 ∵T =6π,∴ω=2πT =2π6π=13, ∴13×π2+φ=2k π+π2, ∴φ=2k π+π3(k ∈Z ). ∵-π<φ≤π,∴令k =0得φ=π3.∴f (x )=2sin(x 3+π3). 令2k π-π2≤x 3+π3≤2k π+π2,k ∈Z ,则6k π-5π2≤x ≤6k π+π2,k ∈Z .易知f (x )在区间[-2π,0]上是增函数. 【答案】 A 二、填空题7.(2013·延吉模拟)已知f (x )=A sin(ωx +φ),f (α)=A ,f (β)=0,|α-β|的最小值为π3,则正数ω=________.【解析】 由|α-β|的最小值为π3知函数f (x )的周期T =43π,∴ω=2πT =32.【答案】 328.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f (x )的取值范围是________.【解析】 依题意得ω=2,所以f (x )=3sin(2x -π6).因为x ∈[0,π2],所以2x -π6∈[-π6,56π],所以sin(2x -π6)∈[-12,1],所以f (x )∈[-32,3].【答案】 [-32,3]9.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④ 三、解答题10.已知函数f (x )=sin x cos x +sin 2x ,(1)求f (π4)的值;(2)若x ∈[0,π2],求f (x )的最大值及相应的x 值.【解】 (1)∵f (x )=sin x cos x +sin 2x ,∴f (π4)=sin π4cos π4+sin 2π4=(22)2+(22)2=1.(2)f (x )=sin x cos x +sin 2x =12sin 2x +1-cos 2x 2=12(sin 2x -cos 2x )+12=22sin(2x -π4)+12, 由x ∈[0,π2]得2x -π4∈[-π4,3π4],所以,当2x -π4=π2,即x =38π时,f (x )取到最大值为2+12.11.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8, (1)求φ;(2)求函数y =f (x )的单调增区间.【解】 (1)∵直线x =π8是函数f (x )图象的一条对称轴,∴2×π8+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z ,又-π<φ<0,∴φ=-34π.(2)由(1)知f (x )=sin(2x -34π),令-π2+2k π≤2x -34π≤π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z . 因此y =f (x )的单调增区间为[π8+k π,58π+k π],k ∈Z .12.(2013·潍坊模拟)已知向量a =(A sin ωx ,A cos ωx ),b =(cos θ,sin θ),f (x )=a ·b +1,其中A >0,ω>0,θ为锐角.f (x )的图象的两个相邻对称中心的距离为π2,且当x =π12时,f (x )取得最大值3. (1)求f (x )的解析式;(2)将f (x )的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g (x )的图象,若g (x )为奇函数,求φ的最小值.【解】 (1)f (x )=a ·b +1=A sin ωx ·cos θ+A cos ωx ·sin θ+1=A sin(ωx +θ)+1,∵f (x )的图象的两个相邻对称中心的距离为π2,∴T =π=2πω,∴ω=2.∵当x =π12时,f (x )的最大值为3,∴A =3-1=2,且有2·π12+θ=2k π+π2(k ∈Z ).∴θ=2k π+π3,∵θ为锐角,∴θ=π3.∴f (x )=2sin(2x +π3)+1.(2)由题意可得g (x )的解析式为g (x )=2sin[2(x +φ)+π3],∵g (x )为奇函数,∴2φ+π3=k π,φ=k π2-π6(k ∈Z ),∵φ>0,∴当k =1时,φ取最小值π3.第四节 函数y =A sin(ωx +φ)的图象及三角函数模型的应用学习目标:1.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 考点梳理:1.2.3.由(1)先平移后伸缩 (2)先伸缩后平移思考:1.五点作法作y =A sin(ωx +φ)的图象,首先确定哪些数据?【提示】 先确定ωx +φ,即先使ωx +φ等于0,π2,π,3π2,2π,然后求出x的值.2.在图象变换时运用“先平移后伸缩”与“先伸缩后平移”两种途径,向左或向右平移的单位个数为什么不一样?【提示】 可以看出,前者平移|φ|个单位,后者平移|φω|个单位,原因在于相位变换和周期变换都是针对变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误. 学情自测:1.已知简谐运动f (x )=2sin(π3x +φ)(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3【解析】 由题意知f (0)=2sin φ=1,∴sin φ=12,又|φ|<π2,∴φ=π6,又T =6,故选A.【答案】 A2.把y =sin 12x 的图象上点的横坐标变为原来的2倍得到y =sin ωx 的图象,则ω的值为( )A .1B .4 C.14D .2【解析】 横坐标变为原来的2倍,则x 变为12x ,故得到的函数解析式为y =sin 14x ,故选C.【答案】 C3.将函数y =sin x 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再把所π10个单位,得到图象的函数解析式为( )得图象上所有的点向右平行移动A .y =sin(2x -π10)B .y =sin(2x -π20)C .y =sin(12x -π10)D .y =sin(12x -π20)【解析】 将y =sin x 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得到的图象解析式为y =sin 12x ,再把所得图象上所有点向右平移π10个单位,得到的图象解析式为y =sin 12(x -π10)=sin(12x -π20).【答案】 D4.已知函数y =A sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图3-4-1所示,则( )图3-4-1A .ω=1,φ=π6B .ω=1,φ=-π6C .ω=2,φ=π6D .ω=2,φ=-π6【解析】 由图象知A =1,T =4(712π-π3)=π,∴2πω=π,ω=2,排除A ,B ,再由2×π3+φ=π2,得φ=-π6. 【答案】 D5.(2012·安徽高考)要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位【解析】 ∵y =cos(2x +1)=cos 2(x +12),∴只要将函数y =cos 2x 的图象向左平移12个单位即可,故选C.【答案】 C 典例探究:例1(函数y =A sin(ωx +φ)的图象变换)(1)(2012·浙江高考)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )(2)(2013·大连模拟)设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3 【思路】(1)写出变换后的函数解析式,再根据图象变换找图象;(2)平移后与原图象重合,则平移量是周期的整数倍. 【解答】(1)y =cos 2x +1――→横坐标伸长2倍纵坐标不变y =cos x +1――→向左平移1个单位长度y =cos(x +1)+1――→向下平移1个单位长度y =cos(x +1).结合选项可知应选A.(2)设函数的周期为T ,由题意知kT =43π,k ∈Z ,∴T =4π3k ,∴ω=32k ,k ∈Z ,又ω>0,∴k =1时,ω有最小值32,故选C.【答案】 (1)A (2)C 变式训练1:(1)(2013·济南模拟)要得到函数y =sin(2x -π3)的图象,只需将函数y =sin 2x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π6个单位D .向右平移π6个单位(2)(2013·青岛质检)将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位,则所得函数图象对应的解析式为( )A .y =sin(12x -π3)B .y =sin(2x -π6)C .y =sin 12xD .y =sin(12x -π6)【解析】 (1)∵y =sin(2x -π3)=sin 2(x -π6),∴只需将函数y =sin 2x 的图象向右平移π6个单位即可.(2)将函数图象上所有点的横坐标伸长到原来的2倍得到y =sin(12x -π3)的图象,然后。
一、任意角的三角函数1、与角α终边相同的角的集合为 .2、弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º3、弧长公式:l = 扇形面积公式:s = .4、定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ; tan α= ;例1、已知角θ的终边经过点P ()(0),sin m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.练习1、角α的终边经过点P (6,x ),且,135cos -=α则____=x 2、如果α与︒80角终边相同,那么2α是第几象限角? 3、一个扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积。
二、同角三角函数的关系及诱导公式1、同角三角函数的基本关系式平方关系 商数关系2、诱导公式: 记忆:奇变偶不变,符号看象限例2、已知αsin =54,且α是第二象限角,求cos α,tan α的值 例3、已知11tan tan -=-αα,求下列各式的值. ①ααααcos sin cos 3sin +-;②2cos sin sin 2++ααα 练习1. sin(π4+α)sin (π4-α)的化简结果为2、已知tan α=512,求sin α, cos α的值 3 、已知81cos sin =⋅αα,且24παπ<<,则ααsin cos -的值是 4、 )619sin(π-的值等于 5、 若21)sin(=+A π,则=-)23cos(A π_________________ 6、已知sinx+cosx=15,x ∈[0,π],则tanx 的值是[学后反思]____________________________________________________一、两角和与差的三角函数sin(α±β)=____________________ cos(α±β)= tan(α±β)=二、二倍角的正弦、余弦、正切sin2α= cos2α= = = tan2α=降幂公式:__________sin 2=α __________cos 2=α三、形如x b x a cos sin ±的化简 =±x b x a cos sin例1、求)10tan 31(50sin ︒︒+的值例2、求值:140cos 40cos 2)40cos 21(40sin 2-︒+︒︒+︒例3、已知x x x x f cos sin sin 3)(2+-=; (1) 求)625(πf 的值; (2) 设2341)2(),,0(-=∈απαf ,求sinα的值.例4、已知2π-<x <0,sin x+cos x= 51 。
《三角函数》复习教案【知识网络】学法:1.注重化归思想的运用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等2.注意数形结合思想的运用.如讨论函数性质等问题时,要结合函数图象思考,便易找出解题思路和问题答案.第1课 三角函数的概念【学习目标】理解任意角的概念、弧度的意义. 能正确地进行弧度与角度的换算. 掌握终边相同角的表示方法. 掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义. 掌握三角函数的符号法则. 【考点梳理】考点一、角的概念与推广1.任意角的概念:正角、负角、零角 2.象限角与轴线角:与α终边相同的角的集合:},2|{Z k k ∈+=απββ三角函数知识框架图第一象限角的集合:{|22,}2k k k Z πβπβπ<<+∈第二象限角的集合:{|22,}2k k k Z πβπβππ+<<+∈第三象限角的集合:3{|22,}2k k k Z πβππβπ+<<+∈ 第四象限角的集合:3{|222,}2k k k Z πβπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2k k Z πββπ=+∈终边在坐标轴上的角的集合:{|,}2k k Z πββ=∈ 要点诠释:要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 考点二、弧度制1.弧长公式与扇形面积公式: 弧长l r α=⋅,扇形面积21122S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数).2.角度制与弧度制的换算:180π=;18010.017451()57.305718'180rad rad rad ππ=≈=≈=;要点诠释:要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α=, cos x r α=, tan y x α=,cot x y α=,sec rxα=,csc r y α=.2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线.3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是{|,}2k k Z πααπ≠+∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈.4. 三角函数值在各个象限内的符号:要点诠释:①三角函数的定义是本章内容的基础和出发点,正确理解了三角函数的定义,则三角函数的定义域、三角函数在各个象限内的符号以及同角三角函数之间的关系便可以得到牢固掌握.利用定义求三角函数值时,也可以自觉地根据角的终边所在象限进行分情况讨论.②三角函数线是三角函数的几何表示,是处理有关三角问题的重要工具,它能把某些繁杂的三角问题形象直观地表达出来.有关三角函数值的大小比较问题、简单三角不等式及简单三角方程的解集的确定等问题的解决常结合使用三角函数线,这是数形结合思想在三角中的具体运用. 【典型例题】类型一、角的相关概念 例1.已知θ是第三象限角,求角2θ的终边所处的位置. 【答案】2θ是第二或第四象限角 【解析】方法一:∵θ是第三象限角,即322,2k k k Z πππθπ+<<+∈, ∴3,224k k k Z πθπππ+<<+∈,当2k n =时,322,224n n n Z πθπππ+<<+∈, ∴2θ是第二象限角, 当21k n =+时,3722,224n n n Z πθπππ+<<+∈, ∴2θ是第四象限角, ∴2θ是第二或第四象限角. 方法二:由图知:2θ的终边落在二,四象限. 【总结升华】(1)要熟练掌握象限角的表示方法.本题容易误认为2θ是第二象限角,其错误原因为认为第三象限角的范围是3(,)2ππ.解决本题的关键就是为了凑出2π的整数倍,需要对整数进行分类.(2)确定“分角”所在象限的方法:若θ是第k (1、2、3、4)象限的角,利用单位圆判断nθ,(*n N ∈)是第几象限角的方法:把单位圆上每个象限的圆弧n 等份,并从x 正半轴开始,沿逆时针方向依次在每个区域标上1、2、3、4,再循环,直到填满为止,则有标号k 的区域就是角nθ (*n N ∈)终边所在的范围。
三角函数的复习教案教案标题:三角函数的复习教案教案目标:1. 复习学生对三角函数的基本概念和性质的理解。
2. 强化学生对三角函数的图像、周期、幅值和相位的掌握。
3. 提高学生解决与三角函数相关问题的能力。
4. 激发学生对数学的兴趣和学习动力。
教学资源:1. 教材:包括相关章节的教科书和练习册。
2. 多媒体设备:投影仪、电脑等。
3. 白板、彩色笔等。
教学过程:引入:1. 利用多媒体设备播放一个与三角函数相关的实际应用视频或图片,引起学生对三角函数的兴趣,并与他们讨论三角函数在现实生活中的应用。
概念复习:2. 回顾三角函数的基本定义:正弦函数、余弦函数和正切函数。
3. 通过示意图和实例,复习三角函数的图像、周期、幅值和相位的概念。
4. 引导学生回顾三角函数的性质,如奇偶性、周期性、对称性等。
图像练习:5. 在白板上绘制不同的三角函数图像,并要求学生根据图像确定函数的周期、幅值和相位。
6. 给学生一些练习题,要求他们根据函数的图像绘制出函数的表达式。
计算与问题解决:7. 给学生提供一些计算题和问题,要求他们运用三角函数的性质和公式进行计算和解决问题。
8. 强调解题过程中的思考方法和步骤,鼓励学生互相讨论和交流解题思路。
拓展应用:9. 提供一些拓展应用题,让学生运用三角函数解决实际问题,如测量高度、角度等。
10. 鼓励学生自主思考和探索,引导他们发现三角函数在不同学科和领域中的应用。
总结:11. 对本节课的内容进行总结,并强调三角函数的重要性和应用价值。
12. 鼓励学生继续深入学习和探索三角函数的更多应用和性质。
作业布置:13. 布置相关的练习题和作业,巩固学生对三角函数的理解和应用能力。
14. 鼓励学生在作业中提出问题和困惑,并在下节课中进行解答和讨论。
教案评估:15. 观察学生在课堂上的参与度和表现。
16. 收集学生完成的作业,评估他们对三角函数的掌握程度。
17. 针对学生的学习情况,进行个别辅导和指导。
第2课时简单的三角恒等变换【课程标准】能运用两角和与差的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式,并进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆).【考情分析】考点考法:高考命题常以角为载体,考查二倍角公式、升幂降幂公式、半角公式;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.二倍角的正弦、余弦、正切公式(1)公式S2α:sin2α=2sinαcosα.(2)公式C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)公式T2α:tan2α=2tan1-tan2.2.常用的部分三角公式(1)1-cosα=2sin22,1+cosα=2cos22.(升幂公式) (2)1±sinα=(sin2±cos2)2.(升幂公式) (3)sin2α=1-cos22,cos2α=1+cos22,tan2α=1-cos21+cos2.(降幂公式)3.半角公式sin2=±cos2=±tan2=±=sin 1+cos=1-cos sin.【基础小题·自测】类型辨析改编易错高考题号12431.(多维辨析)(多选题)下列说法正确的是()A .半角的正弦、余弦公式实质就是将倍角的余弦公式逆求而得来的B .存在实数α,使tan 2α=2tan αC .cos 22=1-cos2D .tan 2=sin 1+cos =1-cos sin【解析】选ABD .由半角公式、二倍角公式可知,选项A 正确;因为当α=0时,tan 2α=2tan α=0,所以选项B 正确;因为由二倍角公式可知:cos θ=2cos 22-1,所以cos 22=1+cos2,因此选项C 错误;因为tan2=sin2cos 2=2sin2cos22cos 22=sin 1+cos ,tan 2=sin2cos 2=2sin2cos22cos 22=1-cossin ,所以选项D 正确.2.(必修第一册P223练习5改条件)cos 2π12-cos 25π12=()A .12B .33C .22D .32【解析】选D .因为cos5π12=sin(π2-5π12)=sin π12,所以cos 2π12-cos 25π12=cos 2π12-sin 2π12=cos(2×π12)=cos π6=32.3.(2023·新高考Ⅱ卷)已知α为锐角,cos α=1+54,则sin2=()A .3-58B .-1+58C .3-54D .-1+54【解析】选D .cos α=1+54,则cos α=1-2sin 22,故2sin 22=1-cos α=3-54,即sin 22=3-58=(5)2+12-2516=(5-1)216,因为α为锐角,所以sin2>0,所以sin 2=-1+54.4.(忽视隐含条件)已知2sin α=1+cos α,则tan2=()A .2B .12C .2或不存在D .12或不存在【解析】选D .当α=2k π+π(k ∈Z )时,满足2sin α=1+cos α,此时tan 2不存在;当α≠2k π+π(k ∈Z )时,tan2=sin1+cos =12.【核心考点·分类突破】考点一三角函数式的化简[例1](1)函数f (x )=sin 2x +3sin x cos x -12可以化简为()A .f (x )=sin(2x -π3)B .f (x )=sin(2x -π6)C .f (x )=sin(2x +π3)D .f (x )=sin(2x +π6)【解析】选B .f (x )=sin 2x +3sin x cos x -12=1-cos22+32sin 2x -12=32sin 2x -12cos 2x =sin(2x -π6).(2)已知0<θ<π,(1+sinrcos )(sin 2-cos 2)________.【解析】由θ∈(0,π)得0<2<π2,所以cos2>0,所以2+2cos =2.又(1+sin θ+cos θ)(sin 2-cos 2)=(2sin 2cos2+2cos 22)(sin 2-cos2)=2cos2(sin 22-cos 22)=-2cos2cos θ.故原式=-2cos2cos 2cos2=-cos θ.答案:-cos θ【解题技法】三角函数式化简的解题策略(1)从三角函数名、角以及幂的差异三方面入手进行适当变形,结合所给的“形”的特征求解;(2)注意弦切互化、异名化同名、异角化同角、降幂升幂.【对点训练】1.化简:2cos 4-2cos 2r122tan(π4-psin 2(π4+p =__________.【解析】原式=12(4cos 4-4cos 2r1)2×sin(π4-pcos(π4-p ·cos 2(π4-p =(2cos 2-1)24sin(π4-pcos(π4-p =cos 222sin(π2-2p =cos 222cos2=12cos 2x.答案:12cos 2x2.化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.【解析】原式=1-cos22·1-cos22+1+cos22·1+cos22-12cos 2αcos 2β=1-cos2-cos2rcos2vos24+1+cos2rcos2rcos2vos24-12cos 2α·cos 2β=12+12cos 2αcos 2β-12cos 2αcos 2β=12.答案:12【加练备选】化简:2sin (π-)+sin2cos 22=________.【解析】2sin (π-)+sin2cos 22=2sinr2sinvos 12(1+cos )=2sin (1+cos )12(1+cos )=4sin α.答案:4sin α考点二三角函数式的求值角度1给值求值[例2](2023·新高考Ⅰ卷)已知sin(α-β)=13,cos αsin β=16,则cos(2α+2β)=()A .79B .19C .-19D .-79【解析】选B.因为sin(α-β)=sinαcosβ-cosαsinβ=13,cosαsinβ=16,所以sinαcosβ=12,所以sin(α+β)=sinαcosβ+cosαsinβ=23,所以cos(2α+2β)=cos2(α+β)=1-2sin2(α+β)=1-2×(23)2=19.【解题技法】给值求值解题的两点注意(1)注意“变角”,使其角相同或具有某种关系.(2)注意公式的选择及其公式的逆应用.角度2给角求值[例3](2023·淄博模拟______.【解析】=14sin48°2sin48°=18.答案:18【解题技法】给角求值的解题策略(1)该问题一般所给出的角都是非特殊角,解题时一定要注意非特殊角与特殊角的关系;(2)要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.角度3给值求角[例4]若sin2α=55,sin(β-α)=1010,且α,π,β∈π则α+β的值是() A.7π4B.9π4C.5π4或7π4D.5π4或9π4【解析】选A.因为α4π,所以2α2π,因为sin2α=55,所以2α,π.所以αcos2α=-255,又因为sin(β-α)=1010,β∈π,所以β-α(β-α)=-31010,所以cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos2α-sin(β-α)sin2α=---1010×55=22,又α+β2π,所以α+β=7π4.【解题技法】给值求角的方法依条件求出所求角的范围,选择一个在角的范围内严格单调的三角函数求值.【对点训练】1.(2023·保定模拟)已知sin(θ-π4)=223,则sin2θ的值为()A.79B.-79C.29D.-29【解析】选B.由sin(θ-π4)=223,得sin(θ-π4)=sinθcosπ4-cosθsinπ4=22(sinθ-cosθ)=223,即sinθ-cosθ=43,等式两边同时平方,得1-sin2θ=169,所以sin2θ=-79.2.(2023·枣庄模拟)在平面直角坐标系xOy中,已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边经过点(-3,4),则tan2=()A.-12或2B.2C.-13或3D.3【解析】选B.因为角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边经过点(-3,4),所以sinα=45,cosα=-35,所以tan2=sin1+cos=451-35=2.3.已知sin(α-2)=55,sin(β-2)=1010,且α-2∈(0,π2),β-2∈(0,π2),则r2=__________.【解析】因为α-2∈(0,π2),β-2∈(0,π2),所以0<r2<π,cos(α-2)=255,cos(β-2)=31010.因为cos r2=cos[(α-2)+(β-2)]=cos(α-2)cos(β-2)-sin(α-2)sin(β-2)=255×31010-55×1010=22,所以r2=π4.答案:π44.化简求值:3-4sin20°+8sin320°2sin20°sin480°.【解析】原式=3-4sin20°(1-2sin 220°)2sin20°sin480°=3-4sin20°cos40°2sin20°sin480°=2sin (20°+40°)-4sin20°cos40°2sin20°sin480°=2sin (40°-20°)2sin20°sin480°=1sin480°=1sin120°=233.【加练备选】若tan 2α=-34,则sin2rcos 21+2sin 2=()A .-14或14B .34或14C .34D .14【解析】选D .由tan 2α=2tan1-tan 2=-34,可得tan α=3或tan α=-13.故sin2rcos 21+2sin 2=2sinvosrcos 23sin 2rcos 2=2tanr13tan 2r1,当tan α=3时,2×3+13×32+1=728=14;当tan α=-13时,2×(-13)+13×(-13)2+1=1343=14.考点三三角恒等变换的应用教考衔接教材情境·研习·典题类[例5](必修第一册P227·例10)如图,在扇形OPQ 中,半径OP =1,圆心角∠POQ =π3,C 是扇形弧上的动点,矩形ABCD 内接于扇形.记∠POC =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.【解题导思】看问题三角恒等变换中的最值问题提信息半径OP =1,圆心角∠POQ =3,矩形ABCD 内接于扇形,∠POC =α定思路借助角α并利用三角函数,把矩形ABCD 的长和宽表示出来,确定矩形ABCD面积的表达式,最后利用三角恒等变换和三角函数的性质确定最大面积【解析】在Rt△OBC中,OB=cosα,BC=sinα.在Rt△OAD中,D D=tanπ3=3.OA=33DA=33BC=33sinα,AB=OB-OA=cosα-33sinα.设矩形ABCD的面积为S,则S=AB·BC=(cosα-33sinα)sinα=sinαcosα-33sin2α=12sin2α-36(1-cos2α)=12sin2α+36cos2α-36(32sin2α+12cos2α)-36=α+π6)-36.由0<α<π3,得π6<2α+π6<5π6,所以当2α+π6=π2,即α=π6时,S最大-36=36.因此,当α=π6时,矩形ABCD的面积最大,最大面积为36.【高考链接】(2024·保定模拟)已知扇形POQ的半径为2,∠POQ=π3,如图所示,在此扇形中截出一个内接矩形ABCD(点B,C在弧P 上),则矩形ABCD面积的最大值为__________.【解析】作∠POQ的平分线OE,交AD于F,BC于E,连接OC,根据题意可知△AOD为等边三角形,则E为BC的中点,F为AD的中点,设∠COE=α,α∈(0,π6),CE=OC sinα=2sinα,则AD=BC=2CE=4sinα,则OF=32AD=23sinα,OE=OC cosα=2cosα,则AB=2cosα-23sinα,所以矩形ABCD的面积S=BC·AB=4sinα(2cosα-23sinα)=4sin2α+43cos2α-43=8sin(2α+π3)-43,当2α+π3=π2,即α=π12时,S取得最大值8-43,所以矩形ABCD面积的最大值为8-43.答案:8-43[溯源点评]两题的区别在于扇形内接矩形ABCD的方式不同,考虑该问题是否能转化为更简单的、熟悉的问题来解决.根据图形的对称性,作∠POQ的平分线,分别交AD,BC于点F,E,从而使整个问题又回到教材中的问题.。
第一章《三角函数》期末复习教案一、网络构建二、要点归纳1.任意角三角函数的定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin α,即sin α=y . (2)x 叫做α的余弦,记作cos α,即cos α=x . (3)y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0). 2.同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 3.诱导公式六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变,然后前面加一个把α视为锐角时原函数值的符号.记忆口诀为“奇变偶不变,符号看象限”.4.正弦函数、余弦函数和正切函数的性质函数y =sin xy =cos xy =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z值域[-1,1][-1,1]R对称性对称轴:x =k π+π2(k ∈Z );对称中心:(k π,0)(k ∈Z ) 对称轴:x =k π(k ∈Z );对称中心:⎝⎛⎭⎫k π+π2,0(k ∈Z )对称中心:⎝⎛⎭⎫k π2,0(k ∈Z ), 无对称轴奇偶性 奇函数 偶函数 奇函数 周期性最小正周期:2π 最小正周期:2π 最小正周期:π 单调性在⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z )上单调递增;在[-π+2k π,2k π] (k ∈Z )上单调递增;在[2k π,π+2k π]在开区间⎝⎛⎭⎫k π-π2,k π+π2 (k ∈Z )上单调递增在⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z )上单调递减(k ∈Z )上单调递减最值当x =π2+2k π(k ∈Z )时,y max =1;当x =-π2+2k π(k ∈Z )时,y min =-1当x =2k π(k ∈Z )时,y max =1;当x =π+2k π(k ∈Z )时,y min =-1无最值题型一 三角函数的化简与求值例1 已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化简f (α);(2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-47π4,求f (α)的值.考点 综合运用诱导公式化简、求值 题点 综合运用诱导公式化简、求值 解 (1)f (α)=sin α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.(2)由f (α)=sin α·cos α=18可知,(cos α-sin α)2=cos 2α-2sin α·cos α+sin 2α =1-2sin α·cos α=1-2×18=34.又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0,∴cos α-sin α=-32. (3)∵α=-47π4=-6×2π+π4,∴f ⎝⎛⎭⎫-47π4=cos ⎝⎛⎭⎫-47π4·sin ⎝⎛⎭⎫-47π4 =cos ⎝⎛⎭⎫-6×2π+π4·sin ⎝⎛⎭⎫-6×2π+π4 cos π4·sin π4=22×22=12.反思感悟 解决三角函数的化简与求值问题一般先化简再求值.在应用中,要注意掌握解题的技巧.比如:已知sin α±cos α的值,可求cos αsin α,注意应用(cos α±sin α)2=1±2sin αcos α. 跟踪训练1 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.考点 运用基本关系式求三角函数值 题点 运用基本关系式求三角函数值 解 (1)由sin α+cos α=15,得1+2sin αcos α=125,所以sin αcos α=-1225,因为α是三角形的内角,所以sin α>0,cos α<0, 所以sin α-cos α=(sin α-cos α)2 =(sin α+cos α)2-4sin αcos α =⎝⎛⎭⎫152+4825=75, 故得sin α=45,cos α=-35,所以tan α=-43.(2)1cos 2α-sin 2α=cos 2α+sin 2αcos 2α-sin 2α=1+tan 2α1-tan 2α, 又tan α=-43,所以1cos 2α-sin 2α=1+tan 2α1-tan 2α=-257. 题型二 三角函数的图象与性质例2 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值. 考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0, 于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.反思感悟 研究y =A sin(ωx +φ)的单调性、最值问题,把ωx +φ看作一个整体来解决.跟踪训练2 已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且A ⎝⎛⎭⎫π2,1,B (π,-1),则φ的值为 .考点 求三角函数解析式 题点 根据三角函数图象求解析式 答案 -5π6解析 根据函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象,且A ⎝⎛⎭⎫π2,1,B (π,-1),可得从点A 到点B 正好经过了半个周期,即12·2πω=π-π2,所以ω=2.再把点A ,B 的坐标代入可得2sin ⎝⎛⎭⎫2×π2+φ=-2sin φ=1,2sin(2×π+φ)=2sin φ=-1, 所以sin φ=-12,所以φ=2k π-π6,或φ=2k π-5π6,k ∈Z .又|φ|<π,所以φ=-π6或-5π6.当φ=-π6时不合题意,所以φ=-5π6.题型三 三角函数的最值或值域命题角度1 可化为y =A sin(ωx +φ)+k 型例3 求函数y =-2sin ⎝⎛⎭⎫x +π6+3,x ∈[0,π]的最大值和最小值. 考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 解 ∵x ∈[0,π],∴x +π6∈⎣⎡⎦⎤π6,7π6, ∴-12≤sin ⎝⎛⎭⎫x +π6≤1.当sin ⎝⎛⎭⎫x +π6=1,即x =π3时,y 取得最小值1. 当sin ⎝⎛⎭⎫x +π6=-12,即x =π时,y 取得最大值4. ∴函数y =-2sin ⎝⎛⎭⎫x +π6+3,x ∈[0,π]的最大值为4,最小值为1. 反思感悟 利用y =A sin(ωx +φ)+k 求值域时要注意角的取值范围对函数式取值的影响. 跟踪训练3 (2017·全国Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.15考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 答案 A解析 ∵⎝⎛⎭⎫x +π3+⎝⎛⎭⎫π6-x =π2, ∴f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6 =15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫π6-x =15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3 =65sin ⎝⎛⎭⎫x +π3≤65. ∴f (x )max =65.故选A.命题角度2 可化为二次函数型例4 函数y =-tan 2x +4tan x +1,x ∈⎣⎡⎦⎤-π4,π4的值域为 . 考点 正切函数的定义域、值域 题点 正切函数的值域 答案 [-4,4]解析 ∵-π4≤x ≤π4,∴-1≤tan x ≤1.令tan x =t ,则t ∈[-1,1], ∴y =-t 2+4t +1=-(t -2)2+5. ∴当t =-1,即x =-π4时,y min =-4,当t =1,即x =π4时,y max =4.故所求函数的值域为[-4,4].反思感悟 在换元时要立刻写出新元的范围,否则极易出错.跟踪训练4 (2017·全国Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是 . 考点 正弦、余弦函数的最大(小)值 题点 余弦函数的最大(小)值 答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. 题型四 数形结合思想在三角函数中的应用例5 如果关于x 的方程sin 2x -(2+a )sin x +2a =0在x ∈⎣⎡⎦⎤-π6,5π6上有两个实数根,求实数a 的取值范围.考点 三角函数中的数学思想 题点 三角函数中的数形结合思想 解 sin 2x -(2+a )sin x +2a =0, 即(sin x -2)(sin x -a )=0. ∵sin x -2≠0,∴sin x =a ,∴此题转化为求在x ∈⎣⎡⎦⎤-π6,5π6上,sin x =a 有两个实数根时a 的取值范围. 由y =sin x ,x ∈⎣⎡⎦⎤-π6,5π6与y =a 的图象(图略)知12≤a <1. 故实数a 的取值范围是⎣⎡⎭⎫12,1.反思感悟 数形结合思想贯穿了三角函数的始终,对于与方程解有关的问题以及在研究y =A sin(ωx +φ)(A >0,ω>0)的性质和由性质研究图象时,常利用数形结合思想. 跟踪训练5 方程lg|x |=sin ⎝⎛⎭⎫x +π3的实数根的个数为( ) A .4 B .5 C .6 D .7 考点 三角函数的数学思想 题点 三角函数中的数形结合思想 答案 C解析 由⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3≤1得-1≤lg|x |≤1,即110≤|x |≤10, 方程lg|x |=sin ⎝⎛⎭⎫x +π3实根的个数就是函数y =lg|x |与y =sin ⎝⎛⎭⎫x +π3图象公共点的个数, 当x >0时,两函数图象如图所示,两图象有3个公共点,同理,当x <0时,两图象也有3个公共点, 故两图象共有6个公共点,从而方程有6个实数根, 故选C.1.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α等于( ) A.223 B .-223 C.13 D .-13答案 D解析 cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 2.函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3考点 求三角函数的解析式 题点 根据三角函数的图象求解析式 答案 A解析 从图象可得34T =5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π=2πω,∴ω=2.又∵f ⎝⎛⎭⎫5π12=2sin ⎝⎛⎭⎫2×5π12+φ=2sin ⎝⎛⎭⎫5π6+φ=2, 且-π2<φ<π2,∴φ=-π3.3.函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个可能的值为( )A .-π4B .0 C.π4 D.3π4考点 三角函数图象的平移、伸缩变换 题点 三角函数图象的平移变换 答案 C解析 平移后的图象对应的函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ. 因为此函数为偶函数,中小学教育资源及组卷应用平台21世纪教育网() 所以π4+φ=π2+k π(k ∈Z ), 所以φ的一个可能值为π4. 4.y =2sin x sin x +2的最小值是( ) A .2 B .-2 C .1 D .-1考点 正弦、余弦函数的最大(小)值 题点 正弦函数的最大(小)值答案 B解析 由y =2sin x sin x +2=2-4sin x +2, 当sin x =-1时,y =2sin x sin x +2取得最小值-2. 5.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π6+a ,a 为常数. (1)求函数f (x )的最小正周期;(2)求函数f (x )的单调递增区间;(3)若x ∈⎣⎡⎦⎤0,π2时,f (x )的最小值为-2,求a 的值. 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用解 (1)f (x )=2sin ⎝⎛⎭⎫2x -π6+a , 所以f (x )的最小正周期T =2π2=π. (2)由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ), 得k π-π6≤x ≤k π+π3(k ∈Z ), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). (3)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, 所以当x =0时,f (x )取得最小值,即2sin ⎝⎛⎭⎫-π6+a =-2,故a =-1.。
第一章三角函数复习(一)教学目的【过程与方法】一、知识结构:二、知识要点:1. 角的概念的推广:(1) 正角、负角、零角的概念:(2) 终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合:}Z ,360|{∈+︒⋅==k k S αββ ① 象限角的集合:第一象限角集合为: ;第二象限角集合为: ;第三象限角集合为: ;第四象限角集合为: ;② 轴线角的集合:终边在x 轴非负半轴角的集合为: ;终边在x 轴非正半轴角的集合为: ;故终边在x 轴上角的集合为: ;终边在y 轴非负半轴角的集合为: ;终边在y 轴非正半轴角的集合为: ;故终边在y 轴上角的集合为: ;终边在坐标轴上的角的集合为: .2. 弧度制:我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制. 在弧度制下,1弧度记做1rad .(1) 角度与弧度之间的转换:① 将角度化为弧度: π2360=︒ π=︒180 rad 01745.01801≈=︒πrad n n 180π=︒② 将弧度化为角度:︒=3602π ︒=180π 815730.57)180(1'︒=︒≈︒=πrad ︒=) 180(πn n (2) 把上述象限角和轴线角用弧度表示.(3) 上述象限角和轴线角用弧度表示:; α⋅=r l 弧长公式:. 21lR S =扇形面积公式: 3. 任意角的三角函数:. 0 ),( (1)22>+=y x r y x P 是它与原点的距离,的坐标是其终边上任意一点是一个任意大小的角,设α ①;sin sin ry r y =ααα,即的正弦,记作叫做比值 ②;cos cos rx r x =ααα,即的余弦,记作叫做比值 ③.tan tan x y x y =ααα,即的正切,记作叫做比值(2) 判断各三角函数在各象限的符号:(3) 三角函数线:4. 同角三角函数基本关系式:(1) 平方关系: 1cos sin 22=+αα(2) 商数关系:αααcos sin tan =5. 诱导公式诱导公式(一) )Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ诱导公式(二)tan )tan(cos )cos(sin )sin(ααπααπααπ=+-=+-=+诱导公式(三)tan )tan(cos )cos(sin )sin(αααααα-=-=--=-诱导公式(四)sin(π-α)=sin αcos(π -α)=-cos αtan (π-α)=-tan α诱导公式(五)ααπααπααπtan )2tan(cos )2cos(sin )2sin(-=-=--=-对于五组诱导公式的理解 :可以是任意角;公式中的α .1.360,180, 180 , , )Z ( 360 .2符号看成锐角时原函数值的前面加上一个把它的同名三角函数值,于等的三角函数值,括为:这五组诱导公式可以概αααααα-︒-︒+︒-∈+︒⋅k k 函数名不变,符号看象限3.利用诱导公式将任意角三角函数转化为锐角三角函数的基本步骤:三、基础训练: ) ( sin ],2,[,23)(cos .1的值为则且已知αππααπ∈=+ 23 D. 21 C. 21- B. 21 A.±±23 D. 23 C. 21- B. 21 A.) ( )647(-cos .2-的值为π . __________)3cos(,tan )3tan(,101-)sin(3 .3=--=-=+παααπαπ则且若. _______)tan()cos(-)sin( .4=--⋅+απααπ化简: ) (cot tan ,32cos sin .5的值是则已知θθθθ+=+ 518- D. 45 C. 49 B. 185 A. . _____cos sin ,83cos sin .6=+=⋅ααααα是第三象限角,则且已知 四、典型例题:.),360,360(),2,2()2( _____630(1) 1.中绝对值最小的角,并求出的集合试写出角并且的终边经过点若角象限角;是第角,则后成为角边在按顺时针方向旋转是第二象限角,当其终若例A A P αααααθ︒︒-∈-︒ . ,30 125 (2) ___,43tan ___,34cos ___,3sin 2.(1)2求扇形的弧长和半径长弧度,面积为已知扇形的圆心角为计算:例cm πππππ===例3. 化简:设Z,∈k .])1cos[(])1sin[()cos()sin(απαπαπαπ-++++-k k k k 五、课堂小结1. 任意角的三角函数;2. 同角三角函数的关系;3. 诱导公式.六、课后作业1. 阅读教材P.67-P.68;2. 《习案》作业十六中1至6题.。
的对边与邻边的比便随之确定,这个比叫做∠
)特殊的勾股数 3
a
;
A=
c
b
,
A=
c
a
tan=
b 注:三角函数值是一个比值.
cos=__
α
°,斜边上的高是
(1tan60)tan45
60
--
17 如图1-l-
求BC
CD的值。
+ 6012
cos
a a=(-l)
2-1)
,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠.sin a D.1
12米行注目礼,当国旗升到旗
°,若他的双眼离地面1.3米,则旗杆高度为.某地夏季中午,当太阳移到屋顶上方偏东时,光线与地面成
米,要在窗子外面上方安装一个水平挡光板AC
,那么挡光板AC的宽度为=__________
,某同学站在自家的楼顶A处估测一底部不能直接到达的宝塔
2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需多
米)
,一艘军舰以30海里/时的速度由南向北航行,在
方向,半小时后航行到B处,看见灯塔。
《三角函数》复习课教学案一、教学目标:1.进一步巩固三角函数的图象、性质和三角变换;2.应用三角函数解决实际问题; 3.渗透数形结合与转化思想.教学目标(修改)1.会根据正、余弦函数的有界性和单调性求简单三角函数的最值和值域;2.运用转化思想,通过变形、换元等方法转化为代数函数求其给定区间内的值域和最 值。
3.通过对最值问题的探索与解决,提高运算能力,增强分析问题和解决问题能力。
体 现数学思想方法在解决三角最值问题中的作用。
二、教学过程: (一)知识点回顾:(略) (二)基础练习:1. 的值等于 .2.下列函数 中,既是以π为周期的奇函数,又是(0,)2π上的增函数的是 .3.若方程1cos sin 322cos +=-k x x x 有解,则k4.已知函数sin()y A x ωϕ=+(0,||A ϕπ><)的一段图象 如下图所示,则函数的解析式 .(三)例题选讲:例1.已知113cos ,cos()7142πααββα=-=<<且0<(1)求tan2α的值(2)求β的值例2.已知函数(1)求函数f(x)的最小正周期.(2)用五点法作出此函数在一个周期内的简图;并指出其减区间,对称轴和对称中心.(3)如何将此函数的图象变换到 的图象?tan ,cos2,sin 2,sin y x y x y x y x ====22x -3f(x)=sin2x +2y =3sin2x ⎡⎤⎢⎥⎣⎦πx ∈0,2f(x)-k >000cos75cos15(4)若 时, 恒成立,求实数k 的取值范围.10090ABCD ATPS P TS BC CD PQCR 思考题:如图是一块边长为米的正方形地皮,其中是一半径为米的扇形小山,是弧上一点,其余都是平地,现一开发商想在平地上建造一个有边落在与上的长方形停车场.求长方形停车场的最大面积和最小面积.(四)巩固练习:1.若函数()f x 图象上每一个点的纵坐标保持不变,横坐标伸长到原来的两倍,然后再将整个图象沿x 轴向右平移2π个单位,向下平移3个单位,恰好得到1sin 2y x =的图象,则()f x = .2.①存在实数α,使sin α·cos α=1;②)227cos(2)(x x f --=π是奇函数;③83π-=x 是函数)432s i n (3π-=x y 的图象的一条对称轴;④函数)c o s (s i n x y =的值域为]1c o s ,0[.其中正确命题的序号是 .3.函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f (1)a ≤,则a 的所有可能值为 .DABPRQSCT4.已知函数a R a a x x x x f ,(2cos 62sin 62sin )(∈++⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛+=ππ为常数). (1)求函数的最小正周期; (2)求函数的单调递减区间; (3)若⎥⎦⎤⎢⎣⎡∈2,0πx 时,f(x)的最小值为-2,求a 的值.。
三角函数的图像与性质知识梳理:1.函数sin 2x y =的最小正周期为 .2.函数s i n ()4y x π=+的单调增区间为 . 3.函数tan(2)3y x π=-的定义域为 . 4.不求值,判断下列各式的符号:(1)tan138tan143- (2)1317tan()tan()45ππ--- 题组2:三角函数的定义域与值域问题 例1求函数y =lgsin x +cos x -12的定义域.解:要使函数有意义,只需sin 0,1cos .2x x >⎧⎪⎨≥⎪⎩,∴22,22.33k x k k x k πππππππ<<+⎧⎪⎨-≤≤+⎪⎩∴定义域为(2,2]3k k πππ+(k ∈Z ).例2(1)求函数y =cos 2x +sin x ,x ∈[-4π,4π]的值域;(2)求函数co sc o sx y x -=+的值域;(3)若函数f (x )=a -b cos x 的b 的值.4π],∴t ∈ =-2时,(2)∵cos 3y x =+,∴33cos 1y x y +=-.∵|cos x |≤1,∴33||1y y+-≤1,∴-2≤y ≤-12.∴所求值域为[-2,-12].题组3:三角函数的单调性与对称性问题一般地,函数y =A sin(?x +?)的对称中心横坐标可由?x +?=k ?解得,对称轴可由?x +?=k ?+?2解得;函数y =A cos(?x +?)的对称中心、对称轴同理可得.例3求函数y =sin(4π-2x )的单调减区间. 解:∵定义域为R ,又sin(2)4y x π=--,∴要求s i n (2)4y x π=-的减区间即求sin(2)4y x π=-的增区间.∴222242k x k πππππ-≤-≤+∴388k x k ππππ-≤≤+(k ∈Z ).∴ 函数的定义域为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k∈Z ).变1求函数12log cos y x =的单调减区间.解:∵cos 0x >,∴定义域为(,)44k k ππππ-+(k ∈Z ). ∴要求12l o gc o s 2y x =的减区间即求c o s 2y x =在定义域内的增区间. ∴2222k x k πππ-<≤,∴函数的定义域为(,]4k k πππ-(k ∈Z ).变2已知函数tan y x ω=在(,)22ππ-内是增函数,则?的取值范围为 . 例4判断下列函数的奇偶性:(1)3()cos()2f x x x π=-; (2)()lg(sin f x x =;(3)21sin cos ()1sin x xf x x+-=+.答案:(1)偶函数;(2)奇函数;(3)非奇非偶函数.变1已知函数f (x )=sin(x +?x -? )为偶函数,求? 的值.解 ∵f (x )为偶函数,∴sin(x +?)+cos(x -? )=sin(-x +?-x -? ), ∴sin(x +?)+ sin(x -?cos(x +? )-cos(x -? )],化简得tan ? =,∴? =6k ππ-(k ∈Z ).题组4:综合与创新1.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.必要不充分2.函数f (x )=2 cos 2⎝ ⎛⎭⎪⎫12x -12-xx -1的对称中心坐标为________.(1,-1)3.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值. 解:(1)()2cos (sin cos )1sin 2cos22f x x x x x x x ⎛=-+=-=-⎝.因此,函数()f x 的最小正周期为π. (2)∵8π≤x ≤34π,∴0≤2x -4π≤54π,∴-2≤sin (2x -4π)≤1, ∴函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大值为,最小值为3π14f ⎛⎫=- ⎪⎝⎭.3.设函数232()cos 4sin cos 43422x xf x x t t t t =--++-+,x ∈R ,其中1t ≤,将()f x 的最小值记为()g t .(1)求()g t 的表达式;(2)讨论()g t 在区间(-1,1)内的单调性并求极值.解:(1)f (x )232sin 12sin 434x t x t t t =--++-+23(sin )433x t t t =-+-+.由于2(s i n )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(2)2()1233(21)(21)1g t t t t t '=-=+--1<<,.列表如下:由此可见, ()g t 在区间(1)2--,和(1)2,上单调递增,在区间1()221-,上单调递减,极小值为1()2g =2,极大值为1()2g -=4.2.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.2.解:(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π24sin ⎝ ⎛⎭⎪⎫2x +7π6-14sin ⎝ ⎛⎭⎪⎫2x +π6-1,lg g (x )>0,得g (x )>1, 4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为 ⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为 ⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 第26课时 三角函数的图像与性质知识梳理:1.函数sin 2xy =的最小正周期为 .2.函数s i n ()4y x π=+的单调增区间为 .3.函数tan(2)3yx π=-的定义域为 .4.不求值,判断下列各式的符号:(1)tan138tan143- (2)1317tan()tan()45ππ---题组2:三角函数的定义域与值域问题 例1求函数y =lgsin x +cos x -12的定义域.例2(1)求函数y =cos 2x +sin x ,x ∈[-4π,4π]的值域;(2)求函数cos 3cos 3x y x -=+的值域;(3)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求a , b 的值.题组3:三角函数的单调性与对称性问题一般地,函数y =A sin(?x +?)的对称中心横坐标可由?x +?=k ?解得,对称轴可由?x +?=k ?+?2解得;函数y =A cos(?x +?)的对称中心、对称轴同理可得.例3求函数y =sin(4π-2x )的单调减区间. 12log cos y x =的单调减区间. tan y x ω=在(,)22ππ-内是增函的取值范围为 .3()cos()2x x x π=-; ()lg(sin x x =;21sin cos ()1sin x xx x+-=+.f (x )=sin(x +?x -? )? 的值.f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.2.函数f (x )=2 cos 2⎝⎛⎭⎫12x -12-xx -1的对称中心坐标为________. 3.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值. 4.设函数232()cos 4sin cos 43422x xf x x t t t t =--++-+,x ∈R ,其中1t ≤,将()f x 的最小值记为()g t .(1)求()g t 的表达式;(2)讨论()g t 在区间(-1,1)内的单调性并求极值.5.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.。
三角函数复习教案直角三角形的边角关系1、定义角A 确定,那么A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA 。
即tanA=
b a A =∠∠的邻边的对边A 在Rt 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
即sinA=
c a =∠斜边的对边A ∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA 即cosA=c b =∠斜边的邻边A 2、直角三角形的性质在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 所对的边分别为。
c b a 、、(1)三边之间关系:222c b a =+(2)锐角之间关系:∠A+∠B=90°(3)边角之间关系:B b a A B c b A B c a A tan 1tan ,sin cos ,cos sin ======面积公式:)(2121为斜边上的高h ch ab S ABC ==∆3、特殊角的三角函数
;a A=c ,b A=c
a
tan=b
注:三角函数值是一个比值.
tan60)tan45
-
17
AB=4,AD=5
C .小于60○
D 大于60○
9.以下各式中,小于0的是()
A .tan42○-tan41○
B .cot41○-cot42○
C .tan42○-cot41○
D .cot41○-tan42○
10 如果sina >sin30°,则锐角α的取值范围是_____
11 比较大小(在空格处填写“<”或“>”或“=”)若α=45○,则sin α________cos α;若α<45○,则
sin α____cos α;若α>45°,则
sin α____cos α.
12 利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小. sin10○、 cos30○、 sin 50○、 cos 70○
考点5:解直角三角形的应用
一、考点讲解:
1.直角三角形边角关系.
(1)三边关系:勾股定理:222
a b c += (2)三角关系:∠A+∠B+∠C=180°,∠A+∠B =
∠C=90°.
⑶边角关系tanA= ,sinA=cosA= ,cotA=
a b a c b c b
a 2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.
3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决
二、经典考题剖析:
【考题5-2】(2004、海口,7分)雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C 处(C 与塔底B 在同一水平线上),用高1.4米的测角仪CD 测得塔项A 的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到0.1米).
(参考数据:tan43°≈0.9325,cot43°≈1.0724)
三、针对性训练:( 45分钟) (答案:266 )
1.如图1-1-13,为测一河两岸相对两电线杆A 、B 间的距离,在距A 点15米处的C 点(AC ⊥BA )测得∠A =50°,则A 、B 间的距离应为( )
A .15sin50°米
B 、15cos50°米
C .15tan50°米
D 、米015tan 50
2.如图1-1-14,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为山则重叠部分的面积为( )
D .1
11. . .sin sin cos A B C a a a 3.如图1-1-15,在山坡上种树,要求株距(相邻两树间的水平距离)是a ,测得斜坡的倾角为α,则斜坡上相邻两树间的坡面距离是( )
A.a sin .cos . .sin cos a a a B a a C D a a
4.如图1-1-16,铁路路基横断面为一个等腰梯形,若腰的坡度为2:3,顶宽为3米,路基高为4米,则路基的下底宽是( )
A .15米
B .12米
C .9米
D .7米
5.我市东坡中学升国旗时,余露同学站在离旗杆底部12米行注目礼,当国旗升到旗杆顶端时,该同学视线的仰角为45°,若他的双眼离地面1.3米,则旗杆高度为_________米。
6.太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时,测得大树在地面上的影长为10米,则大树的高为_______米.
7.如图1-1-17,在某海岛的观察所A 测得船只B 的俯角是30°,若观察所的标高(当水位为0m 时的高度)是53m ,当时的水位是+3m ,则观察所A 和船只B 的水平距离BC=_________.
8.某地夏季中午,当太阳移到屋顶上方偏东时,光线与地面成α角,房屋朝南的窗
子高AB=h 米,要在窗子外面上方安装一个水平挡光板AC ,使午间光线不能直接射人室内如图1-1-18,那么挡光板AC 的宽度为=__________.
9.已知如图1-1-19,某同学站在自家的楼顶A 处估测一底部不能直接到达的宝塔的高度(楼底与宝塔底部在同一水平线上),他在A 处测得宝塔底部的俯角为30°,测得宝塔顶部的仰角为45°,测得点A 到地面的距离为 18米,请你根据所测的数据求出宝塔的高.(精确到0.01米)
10 如图1-1-20,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需多
少米?(精确到0.1米)
11如图1-1-21,一艘军舰以30海里/时的速度由南向北航行,在A处看灯塔S 在军舰的北偏东30○方向,半小时后航行到B处,看见灯塔S在军舰的东北方向,求灯塔S和B的距离.。