北京市2018年中考数学二模试题汇编作图题无答案
- 格式:doc
- 大小:2.85 MB
- 文档页数:8
函数操作题2018 昌平二模25.有这样一个问题:研究函数y 1 x3 2x 的图象与性质.小彤依据学习函数的经验,对函数 y 1 x3 2x6 6的图象与性质进行了研究. 下边是小彤研究的过程,请增补完好:x 4 3.5 3 2 1 0 1 2 3 3.5 4y8 7 3 8 11 11 8m 7 83 48 2 3 6 6 3 48 3( 1)求m的值为;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,依据描出的点,画出了图象的一部分,请依据节余的点补全此函数的图象;( 3)方程1x3 2x 2 实数根的个数为;6( 4)察看图象,写出该函数的一条性质;( 5)在第( 2)问的平面直角坐标系中画出直线y 1x ,依据图象写出方程1x3 2x1x 的一个正数根约2 6 2为(精准到0.1).y-4 -3 -2 -1 O 1 234x2018 旭日二模25.在数学活动课上,老师提出了一个问题:把一副三角尺如图 1 摆放,直角三角尺的两条直角边分别垂直或平行, 60°角的极点在另一个三角尺的斜边上挪动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了此中一对变量,依据学习函数的经验,对它们之间的关系进行了研究.下边是小林的研究过程,请增补完好:( 1)画出几何图形,明确条件和研究对象;如图 2,在 Rt △ 中,∠ =90°, = =6cm , D 是线段上一动点,射线 ⊥ 于点 ,∠=°,ABC C AC BCABDE BCEEDF射线 DF 与射线 AC 交于点 F .设 B ,E 两点间的距离为 x cm , E ,F 两点间的距离为 y cm .图 1图 2( 2)经过取点、绘图、丈量,获得了 x 与 y 的几组值,以下表:x /cm0 1 2 3 4 5 6 y /cm6.95.34.03.34.56(说明:补全表格时有关数据保存一位小数)( 3)成立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;( 4)联合画出的函数图象,解决问题:当△DEF 为等边三角形时, BE 的长度约为cm.2018 东城二模25. 小强的妈妈想在自家的院子里用篱笆笆围一个面积为 4 平方米的矩形小花 园,妈妈问九年级的小强起码需要几米长的篱笆笆(不考虑接缝) .小强依据他学习函数的经验做了以下的研究 . 下边是小强的探究过程,请增补完整:成立函数模型:设矩形小花园的一边长为 x 米,篱笆长为 y 米 . 则 y 对于 x的函数表达式为;。
2018年北京各区初三二模数学分类汇编——三角形1.(西城)一副直角三角板如图放置,其中∠C =∠DFE = 90︒,∠A= 45︒, ∠E = 60︒,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于 DA .35︒B .30︒C .25︒D .15︒2.(西城)中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB 的示意图中,记照板“内芯”的高度为 EF .观测者的眼睛(图中用点C 表示)与BF 在同一水平线上,则下列结论中,正确的是 BA .EF CF AB FB = B .EF CF AB CB =C .CE CF CA FB =D .CE CF EA CB= 3. 3.(东城)如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒.∴AED C ∠=∠.∵A A ∠=∠,∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =,∴10AB =.∵DE 平分AB ,∴5AE =.∵ADE ABC △∽△,∴DE AE BC AC= . ∴568DE = .∴154DE =. ---------------------------------------------------------------------5分 4. (海淀)如图,直线DE 经过点A ,DE BC ∥,=45B ∠°,1=65∠°,则2∠等于 BA .60°B .65°C .70°D .75°5. (朝阳)如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想 AE 与 CD 的数量关系,并证明.(1)如图:………………………………………………………………………………………………2分(2)AE 与 CD 的数量关系为AE=CD .……………………………………………………………3分证明: ∵∠C =90°,AC =BC ,∴∠A =45°.∵DE ⊥AB ,∴∠ADE =∠A =45°.∴AE=DE . ……………………………………………………………………………………4分∵BD 平分∠ABC ,∴CD=DE . ……………………………………………………………………………………5分∴AE=CD .6. (丰台)如图是小明利用等腰直角三角板测量旗杆高度的示意图. 等腰直角三角板的斜边BD 与地面AF 平行,当小明的视线恰好沿BC 经过旗杆顶部点E 时,测量出此时他所在的位置点A 与旗杆底部点F 的距离为10米. 如果小明的眼睛距离地面1.7米,那么旗杆EF 的高度为 B(A )10米 (B )11.7米(C )102(D )(52 1.7)米E D C BA 21F AB C D E7.(丰台)如图,E ,C 是线段BF 上的两点,BE = FC ,AB ∥DE ,∠A=∠D ,AC=6,求DF 的长.证明:∵AB ∥DE ,∴∠ABC =∠DEF . ………………………1分∵BE = FC ,∴BE +EC =FC+EC ,∴BC =EF . ………………………2分又∵∠A=∠D ,∴△ABC ≌△DEF , ………………………3分∴AC=DF . ………………………4分又∵AC=6,∴DF=6. ………………………5分 8. (昌平)将一副直角三角板如图放置,那么∠AOB 的大小为( )BA .150°B .135°C .120°D .90°9. (昌平)如图,a ∥b ,以直线b 上两点A 和B 为顶点的Rt △ABC (其中∠C =90°)与直线a 相交,若∠1=30°,则∠ABC 的度数为( )BA .30°B .60°C .120°D .150°10.为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,(第8题)DBA CB Ab a 1H F E D C B APQ CA B 若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角). 6.411. (石景山)如图,在ABC △中,BC 边上的高是 A (A )AF (B )BH (C )CD (D )EC第10题图12. (石景山)如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒.求证:△ADC ∽△DEB .证明:∵△ABC 是等边三角形,∴60B C ∠=∠=︒, ………… 1分∴1160ADB C ∠=∠+∠=∠+︒,………… 2分∵60ADE ∠=︒,∴260ADB ∠=∠+︒, ………… 3分∴12∠=∠, ………… 4分∴△ADC ∽△DEB . ………… 5分13. (房山)如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是 CA .线段PB B .线段BC C .线段CQD .线段AQ(第10题)14.(房山)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为 DA.48°B.40°C.30°D.24°。
丰台区2018年初三统一练习(二)数 学 试 卷2018. 05考生须知 1. 本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.南水北调工程在保障城市供水安全、增加首都水资源战略储备、改善居民生活用水条件、促进水资源涵养和恢复等方面,取得了重大的社会、经济、生态等综合效益. 自2008年9月至2018年5月,北京已累计收水超过5 000 000 000立方米.将5 000 000 000用科学记数法表示为 (A )100.510⨯(B )10510⨯(C )9510⨯(D )85010⨯2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不.是.轴对称图形的是(A ) (B ) (C ) (D )3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字一面的相对面上的字是 (A )厉 (B )害 (C )了(D )国4.实数a ,b ,c 在数轴上的对应点的位置如图所示,如果a + b = 0,那么下列结论正确的是 (A )>a c(B )0a c +<(C )0abc <(D )0ab=5.如图是小明利用等腰直角三角板测量旗杆高度的示意图. 等腰直角三角板的斜边BD 与地面AF 平行,当小明的视线恰好沿BC 经过旗杆顶部点E 时,测量出此时他所在的位置点A 与旗杆底部点F 的距离为10米. 如果小明的眼睛距离地面1.7米,那么旗杆EF 的高度为 (A )10米 (B )11.7米 (C )102米(D )(52 1.7)+米6.已知111m n-=,则代数式222m mn n m mn n --+-的值为(A )3(B )1(C )-1 (D )-37.为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩. 甲、乙两位同学的练习成绩统计结果如图所示:甲同学的练习成绩统计图 乙同学的练习成绩统计图下列说法正确的是(A )甲同学的练习成绩的中位数是38分 (B )乙同学的练习成绩的众数是15分(C )甲同学的练习成绩比乙同学的练习成绩更稳定 (D )甲同学的练习总成绩比乙同学的练习总成绩低8.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y (元)与主叫时间x (分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是① 方式一每月主叫时间为300分钟时,月使用费为88元 ② 每月主叫时间为350分钟和600分钟时,两种方式收费相同 ③ 每月主叫时间超过600分钟,我厉 害 了 的国abcFABCDEy /元方式二方式一60088O200138400x /分58O。
北京市各区2018 年初三下学期数学二模试题分类汇编2018 昌平二模28.在平面直角坐标系xOy 中,对于任意三点A、B、 C我们给出如下定义:“横长” a:三点中横坐标的最大值与最小值的差,“纵长”b:三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点 .例如:点 A ( 2 ,0),点 B (1,1),点 C( 1, 2 ),则A、B、C 三点的“横长”a=|1 (2)|= 3 ,A、B、C三点的“纵长”b = |1 ( 2) |=3. 因为a = b ,所以A、B、C三点为正方点 .(1)在点R (3,5), S (3,2),T (4, 3 )中,与点A、B为正方点的是;(2)点 P (0,t) 为y轴上一动点,若A,B,P三点为正方点,t 的值为y432B1Ax –4–3–2–1O1 2 3 4–1C–2–3–4;(3)已知点D (1 ,0) .①平面直角坐标系中的点 E 满足以下条件:点 A ,D, E 三点为正方点,在图中画出所有符合条件的点 E 组成的图形;1m 上存在点N,使得 A ,D,N三点为正方点,直接写出m 的取②若直线 l :yx2值范围.y y55443322A 1A1DxDx–5–4–3–2–1 O 1 2 3 4 5–5–4–3–2–1 O 1 2 3 4 5–1–1–2–2–3–3–4–4–5–52018 朝阳二模28. 对于平面直角坐标系xOy 中的点 P 和直线 m,给出如下定义:若存在一点P,使得点 P 到直线 m 的距离等于,则称P为直线m的平行点.(1)当直线m 的表达式为y=x 时,①在点 P1(1, 1), P2( 0, 2 ),P3(2,2)中,直线m的平行点是;22②⊙ O 的半径为10 ,点Q在⊙O上,若点Q为直线m的平行点,求点Q 的坐标 .(2)点 A 的坐标为( n, 0),⊙ A 半径等于1,若⊙ A 上存在直线y3x 的平行点,直接写出 n 的取值范围.2018 东城二模28. 研究发现,抛物线 y1x 2 上的点到点 F(0,1)的距离与到直线 l : y1的距离相等 .4如图 1 所示,若点 P 是抛物线 y1 x2 上任意一点, PH ⊥ l 于点 H ,则 PFPH .4基于上述发现, 对于平面直角坐标系 x O y 中的点 M ,记点 M 到点 P 的距离与点 P 到点 F的距离之和的最小值为d 称 d 为点 M 关于抛物线y1 2 ,x 的关联距离; 当 2≤ d ≤4 时,4称点 M 为抛物线 y1x 2 的关联点 .4( 1 )在点 M 1 (2,0) , M 2 (12), , M 3 (4,5) , M 4 (0, 4) 中,抛物线 y1x 2 的关联点是4______ ;(2)如图 2,在矩形 ABCD 中,点 A(t ,1) ,点 C (t 13),①若 t=4,点 M 在矩形 ABCD 上,求点 M 关于抛物线 y1 x2 的关联距离 d 的取值范4围;②若矩形 ABCD 上的所有点都是抛物线y1 x2 的关联点,则 t 的取值范围是4__________.2018 房山二模28. 已知点 P,Q 为平面直角坐标系xOy 中不重合的两点,以点 P 为圆心且经过点Q 作⊙ P,则称点 Q 为⊙ P 的“关联点” ,⊙ P 为点 Q 的“关联圆” .(1)已知⊙O的半径为1,在点E F13( 1, 1),(-2,2),M( 0,- 1)中,⊙ O 的“关联点”为;(2)若点P2, 0),点Q n Q为点P的“关联圆” ,且⊙Q的半径为 5 ,求n (( 3,),⊙的值;3)已知点D0 2H m2),⊙D是点H的“关联圆” ,直线 y4((,),点(,x 4与 x3轴, y 轴分别交于点A, B. 若线段 AB 上存在⊙ D 的“关联点” ,求 m 的取值范围 .2018 丰台二模28.在平面直角坐标系 xOy 中,将任意两点 P x 1 , y 1 与 Q x 2, y 2 之间的“直距” 定义为:D PQ x 1 x 2y 1 y 2 .MN1 32 ( 5) 5例如:点 M ( 1,), 点 N ( 3,5),则2D.已知点 A(1, 0)、点 B(- 1,4).(1)则 D AO_______ , D BO _______;( 2)如果直线 AB 上存在点 C ,使得 D CO 为 2,请你求出点 C 的坐标;( 3)如果⊙ B 的半径为 3,点 E 为⊙ B 上一点,请你直接写出 D EO 的取值范围 .yy6 6 5 5 4 4 3 3 2 2 117 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O 1 2 3 4 5 6 x1 12 23 34 45 56 67 7 882018 海淀二模28.对某一个函数给出如下定义:若存在实数 k ,对于函数图象上横坐标之差为 1 的任意两点 (a,b1) , (a 1,b2 ) ,b2 b1k 都成立,则称这个函数是限减函数,在所有满足条件的 k 中,其最大值称为这个函数的限减系数.例如,函数y x 2 ,当x取值a和 a1时,函数值分别为 b1a 2 , b2a1,故 b2 b11k ,因此函数 y x 2 是限减函数,它的限减系数为 1 .(1)写出函数y2x1的限减系数;(2)m 0,已知y 1x m, x0 )是限减函数,且限减系数k 4 ,求m的取( 1x值范围.(3)已知函数y x2的图象上一点P ,过点 P 作直线l垂直于 y 轴,将函数y x2的图象在点 P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数k 1 ,直接写出P点横坐标n的取值范围.y y665544332211 7 6 5 4 3 2 1 O1 2 3 4 5 6 x 7 6 5 4 3 2 1O1 2 3 4 5 6 x11 22 33 44 55 66 77 882018 平谷二模28.对于平面直角坐标系xOy 中的点 P 和⊙M,给出如下定义:若⊙M 上存在两个点A,B,使 AB=2PM,则称点 P 为⊙M的“美好点”.(1)当⊙M半径为 2,点 M 和点 O 重合时,○P 2,0P 11,P 2,2中,⊙ O 的“美好点”是;1点1,2,3○2点 P 为直线 y=x+b 上一动点,点P 为⊙O的“美好点”,求 b 的取值范围;(2)点 M 为直线 y=x 上一动点,以 2 为半径作⊙M,点 P 为直线 y=4 上一动点,点P 为⊙ M 的“美好点”,求点M 的横坐标 m 的取值范围.2018 石景山二模28.在平面直角坐标系 xOy 中,对于任意点 P ,给出如下定义:若⊙ P 的半径为 1,则称⊙ P 为点 P 的“伴随圆” .(1)已知,点 P 1,0 ,①点 A1,3 22在点 P 的“伴随圆” (填“上”或“内”或“外”);②点 B 1,0 在点 P 的“伴随圆”(填“上”或“内”或“外” );(2)若点 P 在 x 轴上,且点 P 的“伴随圆”与直线 y3x 相切,求点 P 的坐标;(3)已知直线 y x 2 与 x 、 y 轴分别交于点3x 2 与 x 、 y 轴分别交于点 A ,B ,直线 yC ,D ,点 P 在四边形 ABCD 的边上并沿 AB BCCDDA 的方向移动,直接写出点 P 的“伴随圆”经过的平面区域的面积.2018 西城二模28. 对于平面直角坐标系xOy 中的点Q( x, y)( x≠0),将它的纵坐标 y 与横坐标 x 的比y称x为点 Q 的“理想值” ,记作L Q .如Q(21,2) 的“理想值” L Q 2 .1(1)①若点Q(1,a)在直线y x 4上,则点 Q 的“理想值”L Q等于_________;②如图, C( 3,1) ,⊙C的半径为 1.若点Q在⊙C上,则点Q的“理想值”L Q的取值范围是.(2)点 D 在直线y 3x+3 上,⊙D的半径为1,点Q在⊙D上运动时都有0≤ LQ≤ 3 ,3求点 D 的横坐标x D的取值范围;(3)M (2, m)( m> 0),Q 是以 r 为半径的⊙ M 上任意一点,当0≤ L Q≤2 2 时,画出满足条件的最大圆,并直接写出相应的半径r 的值 .(要求画图位置准确,但不必尺规作图)2018 怀柔二模1AP28. A 为⊙ C 上一点,过点 A 作弦 AB,取弦 AB 上一点 P,若满足1,则称P3AB为点 A 关于⊙ C 的黄金点.已知⊙ C 的半径为 3,点 A 的坐标为( 1, 0).(1)当点 C 的坐标为( 4,0)时,①在点 D( 3, 0), E(4, 1), F( 7, 0)中,点 A 关于⊙ C 的黄金点是;②直线 y33x上存在点 A 关于⊙ C 的黄金点 P,求点 P 的横坐标的取值范围;33(2) 若 y 轴上存在点 A 关于⊙ C 的黄金点,直接写出点 C 横坐标的取值范围...。
反比例综合题2018昌平二模22.如图,在平面直角坐标系中,一次函数与反比例函数的图xOy +(0)y ax b a =≠ky k x=≠(0)象交于点A (4,1)和B (,). 1-n (1)求n 的值和直线的表达式;+y ax b =(2)根据这两个函数的图象,直接写出不等式的解集.0kax b x+-<2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线与函数的图象的两个交点分别61+=x k y )0(2>=x xk y 为A (1,5),B .(1)求的值;21,k k (2)过点P (n ,0)作x 轴的垂线,与直线和函数的图象的交点分别为点61+=x k y )0(2>=x xk y M ,N ,当点M 在点N 下方时,写出n 的取值范围.x2018东城二模22. 已知函数的图象与函数的图象交于点.1y x=()0y kx k =≠(),P m n (1)若,求的值和点P 的坐标;2m n =k (2)当时,结合函数图象,直接写出实数的取值范围.m n ≤k 2018房山二模22. 如图,在平面直角坐标系xOy 中,直线与双曲线相交于y kx m =+2y x=-点A (m ,2).(1)求直线的表达式;y kx m =+(2)直线与双曲线的另一个交点为B ,点P 为x 轴上一点,若,直接y kx m =+2y x=-AB BP =写出P 点坐标.2018丰台二模22.在平面直角坐标系xOy 中,直线l :. 21(0)y mx m m =-+≠(1)判断直线l 是否经过点M (2,1),并说明理由;(2)直线l 与反比例函数的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标. ky x=2018海淀二模22.已知直线过点,且与函数l (2,2)P 的图象相交于两点,与轴、(0)ky x x =>,A B x 轴分别交于点,如图所示,四边形y ,C D 均为矩形,且矩形的面,ONAE OFBM OFBM 积为.3(1)求的值;k (2)当点的横坐标为时,求直线的解析式及线B 3l 段的长;BC (3)如图是小芳同学对线段的长度关系的思考示意图.,AD BC 记点的横坐标为,已知当时,线段的长随的增大而减小,请你参考小芳的示B s 23s <<BC s 意图判断:当时,线段的长随的增大而 . (填“增大”、“减小”或3s ≥BC s 1“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数的图象与直线y =x -2交于()0ky k x=≠点A (a ,1).(1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数的图象于点N (x 1,y 2),结合函数的图象,直接写出的取值范围.()0ky k x=≠12y y -2018石景山二模22.在平面直角坐标系中,直线与轴,轴分别交于点,B ,与反比例xOy 1:2l y x b =-+x y 1(,0)2A 函数图象的一个交点为.(),3M a (1)求反比例函数的表达式;(2)设直线与轴,轴分别交于点C ,D ,且,直接写出的值 .2:2l y x m =-+x y 3OCD OAB S S ∆∆=m2018西城二模23. 如图,在平面直角坐标系xOy 中,函数()的图象经过点,AB ⊥x 轴于点my x=0x <(4,)A n -B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当时,求y kx b =+2CF CE =点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线相交于A ,B 两点,A 点)0(≠=m xmy 坐标为(-3,2),B 点坐标为(n ,-3).(1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数与反比例函数(k ≠0)的图象相交于点y x =kyx= .(2,2)M (1)求k 的值;(2)点是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数、反比例函数(0,)P a y x =的图象相交于点、,当时,画出示意图并直接写出a 的取值范ky x=1(,)A x b 2(,)B x b 12x x <围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数(x >0)的图象与直线交于点A (1,m ).ky x=21y x =+(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线于点B ,交函数21y x =+(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点.ky x=①当时,求线段AB 上的整点个数;3n =②若(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个ky x=整点,直接写出n 的取值范围.。
2018年北京市西城区中考数学二模试卷2018年北京市西城区中考数学二模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度2.(2.00分)将某不等式组的解集﹣1≤x<3表示在数轴上,下列表示正确的是()A.B.C.D.3.(2.00分)下列运算中,正确的是()A.x2+5x2=6x4B.x3?x2=x6C.(x2)3=x6D.(xy)3=xy3 4.(2.00分)下列实数中,在2和3之间的是()A.πB.π﹣2 C.D.5.(2.00分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()A.35°B.30°C.25°D.15°6.(2.00分)中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF.观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A.B.C.D.7.(2.00分)在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:由此所得的以下推断不正确的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好8.(2.00分)如图1所示,甲、乙两车沿直路同向行驶,车速分别为20m/s和v (m/s),起初甲车在乙车前a(m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y(m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35m/s;③图1中线段EF应表示为500+5x;④图2中函数图象与x轴交点的横坐标为100.其中所有的正确结论是()A.①④B.②③C.①②④D.①③④二、填空题(本题共16分,每小题2分)9.(2.00分)如果有意义,那么x的取值范围是.10.(2.00分)不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.11.(2.00分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于.12.(2.00分)某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同.求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为.13.(2.00分)如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于.14.(2.00分)在平面直角坐标系xOy中,将抛物线y=3(x+2)2﹣1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答:.15.(2.00分)如图,AB为⊙O的直径,AC与⊙O相切于点A,弦BD∥OC.若∠C=36°,则∠DOC=°16.(2.00分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD的边AB在x轴上,A(﹣3,0),B(4,0),边AD长为5.现固定边AB,“推”矩形使点D落在y 轴的正半轴上(落点记为D′),相应地,点C的对应点C′的坐标为.三、解答题(本题共68分,第17~21题每小题5分,第22、23题每小题5分,第24题5分,第25、26题每小题5分,第27、28题每小题5分)17.(5.00分)计算:6cos60°﹣+(π﹣2)0﹣|﹣2|.18.(5.00分)解方程:+=3.19.(5.00分)如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.20.(5.00分)先化简,再求值:(1﹣)÷,其中x=﹣5.21.(5.00分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=2,tan∠ACD=,求DE的长.22.(6.00分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013﹣2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观.国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.”尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.23.(6.00分)如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣4,n),AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8.(1)求m,n的值;(2)若直线y=kx+b(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当CF=2CE时,求点F的坐标.24.(5.00分)如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.(1)求证:FG与⊙O相切;(2)连接EF,求tan∠EFC的值.25.(6.00分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:①;②;③;④;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ (不要求尺规作图).26.(6.00分)抛物线M:y=ax2﹣4ax+a﹣1(a≠0)与x轴交于A,B两点(点A 在点B左侧),抛物线的顶点为D.(1)抛物线M的对称轴是直线;(2)当AB=2时,求抛物线M的函数表达式;(3)在(2)的条件下,直线l:y=kx+b(k≠0)经过抛物线的顶点D,直线y=n 与抛物线M有两个公共点,它们的横坐标分别记为x1,x2,直线y=n与直线l 的交点的横坐标记为x3(x3>0),若当﹣2≤n≤﹣1时,总有x1﹣x3>x3﹣x2>0,请结合函数的图象,直接写出k的取值范围.27.(7.00分)如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC上,连接BQ,设∠DAQ=α(0°<α<60°且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);②探究线段CE,AC,CQ之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.28.(7.00分)对于平面直角坐标系xOy中的点Q(x,y)(x≠0),将它的纵坐标y与横坐标x的比称为点Q的“理想值”,记作L Q.如Q(﹣1,2)的“理想值”L Q==﹣2.(1)①若点Q(1,a)在直线y=x﹣4上,则点Q的“理想值”L Q等于;②如图,,⊙C的半径为1.若点Q在⊙C上,则点Q的“理想值”L Q 的取值范围是.(2)点D在直线y=﹣x+3上,⊙D的半径为1,点Q在⊙D上运动时都有0≤L Q≤,求点D的横坐标x D的取值范围;(3)M(2,m)(m>0),Q是以r为半径的⊙M上任意一点,当0≤L Q≤2时,画出满足条件的最大圆,并直接写出相应的半径r的值.(要求画图位置准确,但不必尺规作图)。
昌平区2018年初三年级第二次统一练习2014.6铅笔作答,其他试题一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.5-的相反数是A.5B.15C.15-D.5-2.植树造林可以净化空气、美化环境. 据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为A.319610⨯ B.419.610⨯ C.51.9610⨯D.60.19610⨯3.若右图是某几何体的三视图,则这个几何体是A.三菱锥 B.圆柱 C.球D.圆锥俯视图 主视图 左视图4.六边形的内角和为A .360︒B .540︒C .720︒D .1080︒5.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,随机转盘停止后,指针指向蓝色区域的概率是A .16 B .13 C .12 D .236.如图,把一块直角三角板的直角顶点放在直尺的一边上,1=35°,那么∠2的度数为 A .35°B .45°C .55°D .65°7.10名同学分成A 、B 两队进行篮球比赛,他们的身高(单位:cm )如下表所示:AO DC 183设A 、B 两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则下列关系中完全正确的是A .AB x x =,22A B S S>B .A B x x =,22A B S S<C .A B x x >,22A B S S > D .A B x x <,22A B S S<8.如图1,已知点E 、F 、G 、H 是矩形ABCD 各边的中点,AB=6,AD=8.动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x ,点M 到矩形的某一个顶点的距离为y , 如果y 关于x 的函数图象如图2所示,则矩形的这个顶点是H GFED A图1 图2A .点A B. 点B C. 点C D. 点D二、填空题(共4道小题,每小题4分,共16分)9.函数y x 的取值范围是 .10.如图,⊙O 的直径CD ⊥弦AB ,∠AOC =50°,则∠CDB 的大小为 .11.如图,李大爷要借助院墙围成一个矩形菜园ABCD ,用篱笆围成的另外三边总长为24m ,设BC 的长为x m ,矩形的面积为y m 2,则y 与x 之间的函数表达式为 .12.如图,在平面直角坐标系中,已知点()()3,00,4A B -,,对△AOB 连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是 ;第 个三角形的直角顶点的坐标是 .三、解答题(共6道小题,每小题5分,共30分) 13.计算:013sin60(-1)2π-︒+-.14. 解不等式组:34,554 2.x x x x +>⎧⎨-<-⎩菜园DC BA墙1715. 如图,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,且BF =AC .求证:DF =DC .A BCFE16.已知3=y x ,求22222()x y x y xy xy y --÷-的值.17.已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.18.如图,已知□ABCD ,E ,F 是对角线BD 上的两点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)当AE 垂直平分BC 且四边形AECF 为菱形时,直接写出AE ∶AB 的值.E BA四、解答题(共4道小题,每小题5分,共20分)19.如图,定义:若双曲线(0)k y k x=>与直线y =x 相交于A 、B 两点,则线段AB 的长度为双曲线(0)k y k x=>的对径.(1)求双曲线1y x =的对径;(2)若双曲线(0)ky k x=>的对径是,求k 的值.20.在某中学开展的“书香伴我行”读书活动中,为了解九年级300名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:(1)这50个样本数据的众数是 ,中位数是 ;(2)根据样本数据,估计该校九年级300名学生在本次活动中读书多于2册的人数;(3)学校广播站的小记者对被调查的50名学生中读书册数最少和最多的人进行随即采访,请利用树状图或列表,求被采访的两人恰好都是读书册数最多的学生的概率.21.如图,已知BC为⊙O的直径, EC是⊙O的切线,C是切点,EP 交⊙O于点A,D,交CB延长线于点P. 连接CD,CA,AB.(1)求证:∠ECD=∠EAC;(2)若PB=OB=2,CD=3,求PA的长.22.如右图,把边长为a=2的正方形剪成四个全等的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形(要求全部用上,互不重叠,互不留隙).(1)矩形(非正方形);(2)菱形(非正方形);(3)四边形(非平行四边形).(2)(1)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8分,共22分)23.已知抛物线2(31)2(1)(0)y ax a x a a=-+++≠.(1)求证:无论a为任何非零实数,该抛物线与x轴都有交点;(2)若抛物线2(31)2(1)=-+++与x轴交于A(m,0)、B(n,0)y ax a x a两点,m、n、a均为整数,一次函数y=kx+b(k≠0)的图象经过点P(n -l,n+l)、Q(0,a),求一次函数的表达式.24.【探究】如图1,在△ABC中, D是AB边的中点,AE⊥BC于点E,BF⊥AC于点F,AE,BF相交于点M,连接DE,DF. 则DE,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADBECMFAD BCMF MABCDF图3图2图125.如图,已知点A (1,0),B (0,3),C (-3,0),动点P (x ,y )在线段AB 上,CP 交y 轴于点D ,设BD 的长为t . (1)求t 关于动点P 的横坐标x 的函数表达式;(2)若S △BCD :S △AOB =2:1,求点P 的坐标,并判断线段CD 与线段AB 的数量及位置关系,说明理由;(3)在(2)的条件下,若M 为x 轴上的点,且∠BMD 最大,请直接写出点M 的坐标.昌平区2013—2014学年初三第二次统一练习数学试卷参考答案及评分标准2014.6一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=1312- …………………………………………………………………… 4分12+. ……………………………………………………………………………… 5分14.解:34,554 2.x x x x +>⎧⎨-<-⎩①②由①得,2x >-. ………………………………………………………………………… 2分由②得,3x <. …………………………………………………………………………… 4分∴原不等式组的解集为:23x -<<. (5)分15.证明:∵AD ⊥BC 于D ,BE ⊥AC 于E , ∴90.BDF ADC BEC ∠=∠=∠=︒ 在Rt BEC ∆和Rt ADC ∆中,∠C =∠C ,∴.B A ∠=∠ (1)分在△BDF 和△ADC 中,,,.BDF ADC B A BF AC ∠=∠∠=∠=⎧⎪⎨⎪⎩………………………… 3分 ∴△BDF≌△ADC . ……………………………………………………………………4分∴DF =DC . ……………………………………………………………………………… 5分A BCFE16.解:原式=()()2()()2y x y x y x y xy x y -+-⋅- …………………………………………………………………2分=2x y x+. …………………………………………………………………………………3分 ∵ 3xy =,∴3x y =. …………………………………………………………………………………4分 ∴原式=32233y y y +=⨯. …………………………………………………………… 5分17.解:∵关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, ∴164(1)0m ∆=--=. ……………………………………………………………1分 ∴5m =. …………………………………………………………………………………2分 ∴方程可化为2440x x -+=. ……………………………………………………………3分∴2(2)0x -=.∴122x x ==. (5)分注:正确求出一个根,扣1分.18. (1)证明:连接对角线AC 交对角线BD 于点O . ∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD . …………………………… 2分 ∵点E ,F 是对角线BD 上的两点,且BE =DF ,∴.OB BE OD DF -=-即OE =OF . …………………………… 3分 ∴四边形AECF 是平行四边形. ………………………………………………… 4分 (2)…………………………………………………………………………………………… 5分四、解答题(共4道小题,每小题5分,共20分) 19. 解:(1) ∵1y x=与 y =x 相交于A 、B 两点,∴A (1,1),B (-1,-1). ……………………………………………………OABCDEF……………… 2分∴AB =……………………………………………………………………………3分(2) ∵双曲线(0)k y k x=>的对径是∴AB =.则OA = (4)分设(,)A m m ,OA == ∴m =5. ∴k =25. ……………………………………………………………………………5分20.解:(1)众数为3,中位数为2. …………………………………………………………………2分(2)在50名学生中,读书多于2本的学生有20名,所以,300×=120.………………………………………………………………………3分答:该校八年级300名学生在本次活动中读书多于2册的约有120名.(3)设读书最少的人为A ,读书最多的人为B 1,B 2,B 3.B 2 ……………………………………………………………………………4分被采访的两人恰好都是读书册数最多的学生的情况如下:(B 1,B 2)、(B 1,B 3)、(B 2,B 1)、(B 2,B 3)、(B 3,B 1)、(B 3,B 2),共6种,所以,被采访的两人恰好都是读书册数最多的学生的概率为P==.…………………5分 21. (1)证明:连接BD .∵BC 为⊙O 的直径, ∴90.CDB ∠=︒…………………………………………1分∵EC 与⊙O 相切, ∴90.ECP ∠=︒∵90,90,ECD DCB ECB DBC DCB ∠+∠=∠=︒∠+∠=︒ ∴.ECD CBD ∠=∠ ………………………………2分∵,EAC CBD ∠=∠ ∴∠ECD =∠EAC . ………………………………………………………………………3分(2)作DF ⊥BC 于点F . 在Rt△CDB 中,BD =37CD BD DF BC ==在Rt △CDF 中,9.4CF ==∴15.4PF PC CF =-=在Rt △DFP中,DP ==∵,,PAB PCD P P ∠=∠∠=∠∴PAB ∆∽.PCD ∆.PBPD==. ∴PA = ……………………………………………………………………………5分 22.解:如图,(1) …………………………………………………………………………………… 1分(2)………………………………………………………………………………………… 3分(3)……………………………………………………………………………………… 5分(1)(2)(3)五、解答题(共3道小题,第23题7分,第24题7分,第25题8,共22分)23.解:(1)证明:∵△=[]2a a a-+-⨯+……………………………………………………(31)42(1)1分=221a a-+=2a-≥(1)0∴无论a为任何非零实数,该抛物线与x轴都有交点.……………………………… 2分(2)解:∵抛物线2(31)2(1)=-+++与x轴交于A(m,0)、y ax a x aB(n,0)两点,(3)∴1a≠.令2(31)2(1)(0)y ax a x a a =-+++≠中y =0, 有:2(31)2(1)0ax a x a -+++=.解得:x =2,11.x a=+…………………………………………………………………3分∵m 、n 、a 均为整数, ∴a =-1,m =0,n =2或m =2,n =0. ……………………………………………………… 5分∵一次函数y =kx +b (k ≠0) 的图象经过点P (n -l ,n +l )、Q (0,a ),∴当a =-1,n =2时,有P (1,3)、Q (0,-1),解得:4 1.y x =- ……………………………………………………………6分当a =-1,n =0时,有P (-1,1)、Q (0,-1),解得:2 1.y x =-- ……………………………………………………… 7分24.【探究】DE =DF . …………………………………………………………………………………1分【拓展】如图2,连接CD .∵在△ A B C 中 ,C B = C A ,F MD A∴∠CAB =∠CBA . ∵∠MBC =∠MAC ,∴∠MAB =∠MBA . …………………………… 2分 ∴AM =BM .∵点 D 是 边 AB 的 中点 ,∴点M 在CD上. ……………………………………………………………………… 3分∴CM 平分∠FCE . ∴∠FCD =∠ECD .∵ME ⊥BC 于E ,MF ⊥AC 于F , ∴MF =ME . 又∵CM =CM , ∴△CMF ≌△CME . ∴CF =CE . ∵CD =CD ,∴△CFD ≌△CED . ∴DE =DF . ……………………………………………………………………………… 4分【推广】 DE =DF .如图3,作AM 的中点G ,BM 的中点H .GFDA∵点 D 是 边 AB 的 中点 , ∴1//,.2DG BM DG BM =同理可得:1//,.2DH AM DH AM =∵ME ⊥BC 于E ,H 是BM 的中点, ∴在Rt △BEM 中, 1.2HE BM BH ==∴DG =HE . ………………………………………………………………………………… 5分同理可得:.DH FG = ∵DG //BM ,DH //GM ,∴四边形DHMG 是平行四边形. ∴∠DGM =∠DH M .∵∠MGF =2∠MAC , ∠MHE =2∠MBC , 又∵∠MBC =∠MAC , ∴∠MGF =∠MHE .∴∠DGM +∠MGF =∠DHM +∠MHE . ∴∠DGF =∠DHE . ………………………………………………………………………6分∴△DHE ≌△FGD . ∴DE =DF . ………………………………………………………………………………… 7分25.解:(1)如图,∵点A (1,0),B (0,3),∴直线AB 的解析式为:3 3.y x =-+ ∵OB =3,BD =t , ∴OD =3-t .设P (x ,-3x +3), 作PE ⊥AC 于E ,则OE =x ,PE =-3x +3.∵PE //y 轴, ∴△COD ∽△CEP . ∴OD OC PE CE=∴33.333t x x -=-++∴12(01).3xt x x =≤≤+ …………………………………………………………………… 3分(2)如图,CD =AB ,CD ⊥AB .∵1313,22AOB S ∆=⨯⨯= S △BCD :S △AOB =2:1,∴ 3.BCD S ∆= ∴BD =2. ∴12 2.3xx =+解得:35x =. ∴36,.55P ⎛⎫ ⎪⎝⎭………………………………………………… 4分∵OD =OA =1,OC =OB =3,∠COD =∠BOA =90°, ∴△COD ≌△BOA .∴CD=AB. …………………………………………………………………………… 5分∵△COD≌△BOA,∴∠OCD=∠ABO.又∵∠CDO=∠BDP,∴∠BPD=∠COD=90°.∴CD⊥AB. …………………………………………………………………………………… 6分,(3)MM(. …………………………………………………………………… 8分。
北京市东城区 2018届中考数学二模试题学校______________班级______________姓名_____________考号____________一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的1. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为 A. 205万 B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限3. 在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是 A. 圆锥 B. 圆柱 C. 球 D. 正方体4. 七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组 158 159 160 160 160 161 169 乙组158159160161161163165以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 5. 在平面直角坐标系xOy 中,若点()3,4P 在O 内,则O 的半径r 的取值范围是A. 0r <<3B. r >4C. 0r <<5D. r >56. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 67. 在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是A. 图2B. 图1与图2C. 图1与图3D. 图2与图38. 有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD . 入口K 位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是图2A. A →O →DB. C→A→O→ BC. D →O →CD. O→D→B→C 二、填空题(本题共16分,每小题2分) 9.若分式22xx +的值为正,则实数x 的取值范围是__________________. 10.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.11. 如图,在△ABC 中,AB =AC ,BC =8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.第11题图 第15题图 12. 抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.13.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5 时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米. 已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量. 设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_________ .14. 每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽、豆沙粽、小枣粽、蛋黄粽的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为 ;若该社区有10 000人,估计爱吃鲜肉粽的人数约为 .15. 如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、 y 轴上,30APO ∠=︒ .先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到 线段PC ,连接BC . 若点A 的坐标为()1,0- ,则线段BC 的长为 . 16. 阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)17.计算:()332sin 60+2+12--︒-18. 解不等式()()41223x x --->,并把它的解集表示在数轴上.19. 如图,在Rt ABC △中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E .(1)求证:ADE ABC △≌△;(2)当8AC =,6BC =时,求DE 的长.20. 已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.21.如图,在菱形ABCD 中,BAD α∠=,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF . (1)求证:BE =DF ;(2)连接AC , 若EB =EC ,求证:AC CF ⊥.22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围. 23. 如图,AB 为O 的直径,直线BM AB ⊥于点B .点C 在O 上,分别连接BC ,AC ,且AC的延长线交BM 于点D .CF 为O 的切线交BM 于点F .(1)求证:CF DF =;(2)连接OF . 若10AB =,6BC =,求线段OF 的长.24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键 .截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整: 建立函数模型:设矩形小花园的一边长为x 米,篱笆长为y 米.则y 关于x 的函数表达式为 ; 列表(相关数据保留一位小数):根据函数的表达式,得到了x 与y 的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.27. 如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C ( t .①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________. 东城区2017-2018学年度第二学期初三年级统一测试(二)数学试题卷参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题 2分)9. x >0 10. ()()()()21212121--,,,-,,,,-(写出一个即可) 11. 2 12. ()1,1m -- 13. ()2 1.8250x x ++= 14. 120 ;3 000 15. 22 16. 三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.三、解答题(本题共68分,17-24题,每题5分,第25题6分,26-27题,每小题7分,第28题8分)3=3-232⨯17.解:原式--------------------------------------------------------------------4分-------------------------------------------------------------------------------------------------- 5分 18. 解:移项,得()1213x -<, 去分母,得 23x -<, 移项,得x <5.∴不等式组的解集为x <5.--------------------------------------------------------------------3分--------------------------------5分 19. 证明:(1) ∵DE 垂直平分AB ,∴ 90AED ∠=︒. ∴AED C ∠=∠. ∵A A ∠=∠, ∴ADE ABC △∽△.--------------------------------------------------------------------2分(2) ABC Rt △中,8AC =,6BC =, ∴10AB =.∵DE 平分AB , ∴5AE =.∵ADE ABC △∽△,∴DE AEBC AC =. ∴568DE = .∴154DE = . ---------------------------------------------------------------------5分20. 解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>,解得k k ≠<9且0.----------------------------------------------------------------------2分(2) ∵k 是小于9的最大整数,∴=8k .此时的方程为28610x x -+=. 解得11=2x ,21=4x . ---------------------------------------------------------------------5分21 . (1) 证明:∵四边形ABCD 是菱形,∴=BC DC ,BAD BCD α==∠∠. ∵ECF α=∠,∴ BCD ECF ∠=∠. ∴=BCE DCF ∠∠.∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴=CE CF .在BEC △和DFC △中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC △≌()SAS DFC △.∴=.BE DF ----------------------------------------------------------------------2分 (2) 解:∵四边形ABCD 是菱形, ∴ACB ACD ∠=∠,AC BD ⊥. ∴+90ACB EBC ∠=︒∠. ∵=EB EC ,∴=EBC BCE ∠∠.由(1)可知,∵=EBC DCF ∠∠,∴+90DCF ACD EBC ACB ∠=∠+∠=︒∠.∴90ACF =︒∠.∴AC CF ⊥. ---------------------------------------------------------------------5分22. 解:(1)12k =,222P ,,或22P ⎛- ⎝⎭,;---------------------------3分 (2) 1k ≥.---------------------------------------------------------------------5分23. (1)证明:∵AB 是O 的直径,∴90ACB ∠=︒.∴90DCB ∠=︒.∴90CDB FBC ∠+∠=︒.∵ AB 是O 的直径,MB AB ⊥, ∴MB 是O 的切线. ∵CF 是O 的切线,∴FC FB =.∴=FCB FBC ∠∠.∵90FCB DCF ∠+∠=︒ ,∴=CDB DCF ∠∠.∴=CF DF . ---------------------------------------------------------------------3分(2)由(1)可知,ABC △是直角三角形,在Rt ABC △中,=10AB ,=6BC ,根据勾股定理求得=8AC .在Rt ABC △和Rt ADB △中,A A ACB ABD ∠=∠⎧⎨∠=∠⎩,, ∴Rt ABC △∽Rt ADB △. ∴AB AC AD AB=.∴10810AD = . ∴252AD =. 由(1)知,∵=CF DF ,=CF BF ,∴=DF BF .∵=AO BO ,∴ OF 是ADB △的中位线. ∴125.24OF AD ==---------------------------------------------------------------------5分 24. 解:(1)四; ---------------------------------------------------------------------1分(2)如图: ---------------------------------------------------------------------3分(3)5432000a b.------------------------------------------------------5分 25. 解:42y x x ⎛⎫=+ ⎪⎝⎭;----------------------------------------------1分 810,; --------------------------------------------------------3分如图; ----------------------------------------------------------4分28,. -----------------------------------------------------------5分26. 解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠, 得 0--35164-3a b a b =⎧⎨=+⎩,,解得12a b ==-,. ∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+,把点(10)-,和(45)-,分别代入y mx n =+,得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--.--------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ',则 'PN PN =.∵PM PN <,∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--, 可求得点C 的横坐标为2.又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分27. 解:(1)120°.---------------------------------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒,∴60.ACP BCP ∠+∠=︒∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒∴()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴18060.CPD BPC ∠=︒-∠=︒∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,,∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=︒,∴=60.ADB CDB ∠∠=︒∴=60.ADB CDB ∠∠=︒ ∴3= 3.BM BN == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+)32AD CD =+ 32= 3.=----------------------------------------------------------7分28. (1) 12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF =∴.AF d CF ≤≤∵=4=29AFCF ,∴d 4≤ ---------------------------------------------------------------------------------- 5分t≤② 1. ------------------------------------------------------------------------8分。
作图题
2016昌平二模
15.“直角”在初中几何学习中无处不在.
课堂上李老师提出一个问题:如图,已知∠AOB.判断∠AOB是否为直角(仅限用直尺和圆规).
请你写出她作图的依据:
16.如图,在圆O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C
为弧BD的中点,则AC的长是.
2018朝阳二模
16.下面是“作三角形一边上的高”的尺规作图过程.
C
请回答:该尺规作图的依据是 .
15.下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随
机
摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的 频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85 其中合理的有 (只填写序号).
2018东城二模
已知:△ABC .
求作:△ABC 的边BC 上的高AD .
作法:如图, (1)分别以点B 和点C 为圆心,BA,CA 为半径 作弧,两弧相交于点E ;
(2)作直线AE 交BC 边于点D.
所以线段AD 就是所求作的高.
16. 阅读下列材料:
数学课上老师布置一道作图题:
小东的作法如下:
老师说:“小东的作法是正确的.”
请回答:小东的作图依据是 .
2018房山二模
16.阅读下面材料:
在数学课上,老师提出如下问题:
老师说:“小亮的作法正确”
请回答:小亮的作图依据是_________________________________________________.2018丰台二模
16.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线. 晓龙同学的画图步骤如下: (1)延长OD 交»BC
于点M ; (2)连接AM 交BC 于点N.
所以线段AN 为所求△ABC 中∠BAC 的平分线.
请回答:晓龙同学画图的依据是 .
2018海淀二模
O
Q
B
请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 .
16.在平面直角坐标系xOy 中,点(2,)A m -绕坐标原点O 顺时针旋转90︒后,恰好落在右
图中阴影区域(包括边界)内,则m的取值范围是 .
2018平谷二模
17.在数学课上,老师提出一个问题“用直尺和圆规作以AB为底的等腰直角三角形ABC”.小美的作法如下:
○1分别以点A,B为圆心,大于1
2
AB作弧,交于点M,N;
○2作直线MN,交AB于点O;
○3以点O为圆心,OA为半径,作半圆,交直线MN于点C;
○4连结AC,BC.
所以,△ABC即为所求作的等腰直角三角形.
请根据小美的作法,用直尺和圆规作以AB为底的等腰直角三角形ABC,并保留作图痕迹.这种作法的依据是.
A B
2018石景山二模
16.已知:在四边形ABCD中,∠ABC=∠ADC=90º,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.
作法:如图,
(1)延长AD ,在AD 的延长线上截取DA ´=DA ; (2)延长AB ,在AB 的延长线上截取B A ″=BA ; (3)连接A′A″,分别交CD 、BC 于点M 、N . 则点M 、N 即为所求作的点.
请回答:这种作法的依据是_____________.
2018西城二模
16. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,(3,0)A -,(4,0)B ,边AD 长为5. 现固定边AB ,“推”矩形使点D 落在y 轴的正半轴上(落点记为D '),相应地,点C 的对应点C '的坐标为 .
2018怀柔二模
16. 下面是“已知线段AB ,求作在线段AB 上方作等腰Rt △ABC .”的尺规作图的过程.
A ''
A '
N M
D C
B
A
A B
C
D
已知:线段AB .
求作:在线段AB 上方作等腰Rt△ABC . 作法:如图
(1)分别以点A 和点B 为圆心,大于1
2AB 的长为半径作弧,
两弧相交于E ,F 两点; (2)作直线EF ,交AB 于点O ;
(3)以O 为圆心,OA 为半径作⊙O ,在AB 上方交EF 于点C ; (4)连接线段AC ,BC . △ABC 为所求的等腰Rt△ABC .
请回答:该尺规作图的依据是____________________________.
2018顺义二模
16.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.
根据实验,你认为这一型号的瓶盖盖面朝上的概率为 ,理由是: .
2018门头沟二模
16. 以下是通过折叠正方形纸片得到等边三角形的步骤
A
B
取一张正方形的纸片进行折叠,具体操作过程如下:
第二步:点E在线段MD上,将△ECD沿EC翻折,
点D恰好落在MN上,记为点P,连接BP
可得△BCP是等边三角形
问题:在折叠过程中,可以得到PB=PC;依据是________________________.。