正弦定理s
- 格式:doc
- 大小:27.50 KB
- 文档页数:1
正弦定理的四种证明方法1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abAB =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b解:过C 作CD ⊥AB 交AB 于D ,则cos AD c A =sin sin cos sin tan sin cos BD c A c A CDC C C C C ===sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c Bb AC AD DCc A C C C+==+=+==ab DABCAB CDba推论:sin sin b cB C= 同理可证:sin sin sin a b cA B C==2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D.则Rt △ADB中,ABAD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j |ACCo s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j∴asinC=csinA.∴CcA a sin sin =. A另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得Bb Cc sin sin =.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.DC BA C(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由AB CB AC=+,得j ·AC+j ·CB =j ·AB , j 即a·Cos(90°-C)=c·Cos(A-90°),∴asinC=csinA.∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=.∴R Cc2sin =.同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===.这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin ==.ACBA。
正弦定理含义
摘要:
1.正弦定理的定义和公式
2.正弦定理的应用场景
3.如何使用正弦定理解决问题
4.实际案例分析
正文:
正弦定理是三角形中一个重要的定理,它可以帮助我们解决三角形的相关问题。
正弦定理的含义是:在一个三角形中,任意两角的正弦值之比等于它们所对的边长之比。
用数学公式表示就是:
sinA/sinB = a/b
其中,A、B是三角形的两个角,a和b是与这两个角对应的边长。
正弦定理的应用场景非常广泛,例如在解决三角形的角度、边长问题时,可以使用正弦定理来求解。
此外,正弦定理还可以应用于物理、工程等领域,帮助我们解决实际问题。
要使用正弦定理解决问题,我们需要按照以下步骤进行:
1.确定三角形的两个角和对应的边长。
2.根据正弦定理公式,计算第三个角或边长。
3.利用计算结果,解决问题。
下面我们通过一个实际案例来分析如何使用正弦定理解决问题:
假设一个三角形的两个角分别为30度和45度,其中一个角对应的边长为
3。
我们可以使用正弦定理来求解另一个角对应的边长。
首先,根据正弦定理公式,我们有:
sinA/sinB = a/b
已知sin30°/sin45° = a/3
接下来,我们可以求解sin45°:
sin45° = √2/2
将已知条件代入公式,得到:
sin30°/√2/2 = a/3
解方程,得到:
a = 3√2/2
所以,另一个角对应的边长为3√2/2。
通过这个案例,我们可以看到,正弦定理可以帮助我们轻松地解决三角形相关问题。
正弦定理三角学中的一个定理,它指出了三角形三边、三个内角以及外接圆半径之间的关系。
∙中文名称:正弦定理∙外文名称:sine theorem∙应用学科:数学∙适用领域范围:几何内容:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。
则有即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。
证明:在锐角△ABC中,设BC=a, AC=b, AB=c。
作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。
应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做解三角形。
扩展一.三角形面积公式:1.海伦公式:设P=1/2(a+b+c)S△=根号下P(P-a)(P-b)(P-c)解释:假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/22.S△ABC=ab·sinC/2=bc·sinA/2=ac·sinB/2=abc/(4R)[R为外接圆半径]3.S△ABC=ah/2二. 正弦定理的变形公式(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c;(条件同上)在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解似的唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题(3)相关结论:a/sinA=b/sinB=c/sinC=a+b/sinA+sinB=a+b+c/sinA+sinB+sinC。
正弦定理的概念与余弦定理的概念正弦定理和余弦定理是在三角形中用于计算边长和角度的重要定理。
1. 正弦定理(Sine Rule):正弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,正弦定理可以表述为:
a/sinA = b/sinB = c/sinC
其中a、b、c分别表示三角形的边长,A、B、C分别表示对应边的角度。
2. 余弦定理(Cosine Rule):余弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,余弦定理可以表述为:
c^2 = a^2 + b^2 - 2abcosC
其中a、b、c分别表示三角形的边长,C表示对应边的角度。
正弦定理和余弦定理都可以在解决三角形问题时使用,它们提供了计算边长和角度的方法,可以帮助我们求解各种三角形相关的问题。
正弦弦公式
正弦定理
正弦定理,又称为正弦弦公式,是一个几何理论中的基本定理,它表明了两边不同长度直角三角形的三个直角边之间的关系,其中有一条直角边的长度称为直角边,而另外两条直角边分别称为对角线和弦。
正弦定理的数学表达式为:
a2 = b2 + c2 – 2bc X cos A
其中a、b和c分别代表三角形的直角边、对角线和弦的长度,A 代表直角边和弦之间的夹角。
正弦定理也可以用来求解三角形的一些其它信息,例如:
如果已知a、b和A,则可以求出 c = a2 + b2 – 2ab X cos A 如果已知a、c和A,则可以求出 b = a2 + c2 – 2ac X cos A 如果已知b、c和A,则可以求出 a = b2 + c2 – 2bc X cos A 正弦定理的应用非常广泛,被用在地理、测量、建筑、机械、化学、物理等多个领域中,并且在实际工程中也有着重要的作用。
- 1 -。
正弦定理内容及证明正弦定理是指在一个任意三角形ABC中,三个边的长度a、b、c与对应的角A、B、C之间存在以下关系:a/sin(A) = b/sin(B) = c/sin(C)证明正弦定理一般有两种方法:几何证明和代数证明。
几何证明:1. 过点B作AC的垂线BD,使得BD与AC交于点D。
则三角形ABD与BCD为直角三角形。
2. 由于三角形ABD、BCD为直角三角形,可得:sin(A) = BD / AB,sin(C) = BD / CD。
3. 对于三角形ABD和BCD,因为角B为共对角,所以可得:BD / AB = CD / BC。
4. 根据上面三个等式可以得到:sin(A) = BD / AB = CD / BC = sin(C)。
5. 再利用BD / AB = CD / BC,可以得到BD / CD = AB / BC = sin(B)。
6. 整理可得出正弦定理:a / sin(A) = b / sin(B) = c / sin(C)。
代数证明:1. 通过三角形ABC的两边b和c之间的夹角A,可构造一个高为h的直角三角形ADE(D在BC上)。
2. 根据正弦的定义可得:sin(A) = h / c,sin(90°-A) = h / b。
3. 注意到sin(90°-A) = sin(B)(余角公式),那么可以得到:sin(A) = h / c = sin(B) * b。
4. 类似地,可以通过三角形ABC的两边a和c之间的夹角B,构造一个高为h的直角三角形BEF(E在AC上)。
5. 根据正弦的定义可得:sin(B) = h / a,sin(90°-B) = h / c。
6. 注意到sin(90°-B) = sin(A)(余角公式),那么可以得到:sin(B) = h / a = sin(A) * c。
7. 把第3步的公式和第6步的公式相比较,可以得到:h / a =h / c,即a = c * sin(A)。
正弦定理定理公式正弦定理(Sine Law)是三角形中常用的一个定理,它揭示了三角形的边与角之间的关系。
正弦定理可以用来求解未知边长或角度的问题,在实际生活中有着广泛的应用。
正弦定理的表述如下:在任意三角形ABC中,设三边分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC通过正弦定理我们可以得出以下三个推论:推论1:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sinA/a = sinB/b = sinC/c推论2:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC = 2R(其中R为三角形ABC外接圆的半径)推论3:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sin(A-B) = sinC正弦定理的应用非常广泛,下面我们来看几个实际问题的例子。
例题1:已知三角形ABC中,角A=60°,角B=45°,边AC=8cm,求边BC的长度。
解:根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin45° = 8cm/sin60°BC/(√2/2) = 8cm/(√3/2)BC = 8cm * (√2/2) * 2/√3BC = 8√2/√3 cm所以边BC的长度约为9.24cm。
例题2:已知三角形ABC中,角A=30°,角B=60°,边AC=10cm,求边BC的长度。
解:同样根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin60° = 10cm/sin30°BC/(√3/2) = 10cm/(1/2)BC = 10cm * (√3/2) * 2BC = 10√3 cm所以边BC的长度约为17.32cm。
正弦定理的
正弦定理(Sine Theorem)是一个极其重要的几何定理,它可以用来解决一些具有特殊形状的三角形中的角度和边长之间关系的问题。
正弦定理指出:在∆ABC中,∠A的正弦值等于两个对边的比值。
即,sinA=a/c;sinB=b/c;sinC=c/a。
它的形式可以写成:a/sinA=b/sinB=c/sinC=2R,其中R 代表三角形的外接圆半径。
因为正弦值是以角度和相应三角型两边之间的比值刻画的,所以正弦定理同时也告诉我们如何可以通过一个三角形的边长来推断它的内角。
正弦定理可以用来解答一些非三角形的平面几何问题,在几何求解中也可以很有用。
例如,当想要求一个勾股定理的三边的角度时,可以使用正弦定理等式来求解这个问题。
正弦定理也可以用来计算三角形的轨迹和正多边形的各种几何特性。
使用正弦定理,可以将三角形的顶点的坐标作为变量,然后可以得出这三个点应该形成的几何轨迹。
正弦定理也可以用于计算一个正多边形内所有角度的大小,以及求正多边形的重心和重心距离。
正弦定理是求解有关三角形及正多边形的众多问题时不可缺少的重要定理。
总之,正弦定理具有众多强大的功能,它可以帮助我们更好地解决一些具有特殊形状的几何三角形问题,并可以用于计算正多边形的construction。
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。