机械设计基础-凸轮
- 格式:ppt
- 大小:1.70 MB
- 文档页数:22
机械设计基础凸轮机构凸轮机构是机械设计中常见的一种机构,用于实现转动运动和直线运动的转换。
它由凸轮和连杆机构组成,具有简单、可靠、紧凑的优点。
本文将介绍机械设计基础凸轮机构的工作原理、应用领域以及设计要点。
一、凸轮机构的工作原理凸轮机构是通过凹凸轮运动对连杆机构施加力,使其发生直线运动。
凸轮的外轮廓形状决定了连杆机构的运动规律。
凸轮可以分为四种基本形状:圆形、椭圆形、心形和指字形。
不同形状的凸轮在工作过程中会给连杆机构带来不同的速度和加速度。
凸轮机构的工作过程可以分为四个阶段:进给段、暂停段、退出段和暂停段。
在进给段,凸轮逐渐使连杆机构向前运动,实现直线运动。
在暂停段,凸轮暂停与连杆机构接触,使连杆机构停止运动。
在退出段,凸轮逐渐使连杆机构向后运动,实现回程。
最后,在暂停段凸轮继续暂停与连杆机构接触,使连杆机构再次停止。
二、凸轮机构的应用领域凸轮机构广泛应用于机械设计中的各个领域。
以下是几个常见的应用领域:1. 发动机:凸轮机构用于气门控制,通过凸轮来控制气门的开闭,实现燃烧室内的气体进出,从而实现发动机的工作。
2. 压力机:凸轮机构用于控制压力机的上下运动,实现工件的压制或切割。
3. 包装机械:凸轮机构用于控制包装机械的送料、密封和分切等工作,实现自动化包装的功能。
4. 自动化流水线:凸轮机构用于控制流水线上的传送带、工作台等部件的运动,实现产品的加工和组装。
5. 机床:凸轮机构用于控制机床上的工作台、进给机构等部件的运动,实现加工工件的精确定位和运动控制。
三、凸轮机构的设计要点在设计凸轮机构时,需要注意以下几个要点:1. 凸轮的轮廓形状:根据实际需求选择合适的凸轮轮廓形状,确保连杆机构的运动规律符合设计要求。
2. 凸轮与连杆机构的配合方式:凸轮与连杆机构之间应具有良好的配合性能,避免偏差和间隙过大导致机构失效或运动不稳定。
3. 连杆机构的设计:根据实际应用需求设计连杆机构,包括长度、角度和材料等参数的选择,确保机构的工作性能满足要求。
机械设计基础凸轮机构1. 引言凸轮机构是机械设计中常用的一种机构,通过凸轮的旋转运动,使其上的凸轮副与其他零部件发生相对运动,从而实现特定的机械功能。
本文将介绍凸轮机构的基本概念、设计原则以及常见的凸轮机构类型。
2. 凸轮机构的基本概念凸轮机构由凸轮和从动件组成,其中凸轮是凸轮机构的核心部件,决定了从动件的运动规律。
凸轮可以是圆形、椭圆形、心形等不同形状,根据不同的设计需求选择不同的形状。
从动件是凸轮上的接触件,通过凸轮的旋转运动,从动件与其他零部件发生相对运动,实现机械功能。
常见的从动件有凸轮挤压件、滑块和摇杆等。
3. 凸轮机构的设计原则设计凸轮机构时应遵循以下原则:•机构运动规律:根据机械功能需求确定凸轮的运动规律,将其转化为凸轮的轮廓曲线,从而确定凸轮的形状。
•受力分析:在凸轮机构运动过程中,对从动件受力进行合理的分析和计算,确保从动件不会发生过大的应力和变形,保证机构的可靠性和稳定性。
•声、振动和能量损失的控制:凸轮机构在运动过程中会产生一定的声音、振动和能量损失,需要通过合理的设计控制其产生的程度,降低噪声、振动和能量损失。
•结构的紧凑性和制造的可行性:凸轮机构的结构需尽可能紧凑,减少零部件数量,简化制造工艺,降低制造成本。
4. 常见的凸轮机构类型4.1 凸轮挤压件机构凸轮挤压件机构是最常见的凸轮机构类型之一。
它由凸轮和挤压件组成,通常用于压铸、冷挤压、热压实等加工过程中。
通过凸轮的旋转运动,挤压件对工件进行加工,使工件形成特定的形状。
凸轮挤压件机构凸轮挤压件机构4.2 滑块机构滑块机构是另一种常见的凸轮机构类型。
它由凸轮和滑块组成,通过凸轮的旋转运动,滑块在滑道上做直线运动。
滑块机构常用于液压系统、工艺装备等领域。
滑块机构滑块机构4.3 摇杆机构摇杆机构由凸轮和摇杆组成,通过凸轮的旋转运动,驱动摇杆做往复运动。
摇杆机构常用于发动机、输送带等机械设备中。
摇杆机构摇杆机构5. 结论凸轮机构在机械设计中扮演着重要的角色,通过不同凸轮形状和从动件的组合,可以实现多种不同的机械功能。
机械设计基础凸轮机构在机械设计中,凸轮机构是一种常见且重要的机械传动机构,它利用凸轮的凸缘与从动件(如滚子或柱塞)的凹槽相互作用,将旋转运动转换为直线运动或者其他特定的运动形式,广泛应用于各种机器和设备中。
下面将介绍凸轮机构的基本原理和常见类型,并探讨其在机械设计中的应用。
凸轮机构是一种基于凸轮运动的机械传动机构,其工作原理是通过凸轮的不规则形状使凹槽中的从动件产生预期的运动。
凸轮可以是一个圆柱体的一部分,也可以是一个分离的轴螺栓,并且可以具有各种形状的凸缘。
凹槽中的从动件可以是滚子、柱塞、针杆等。
凸轮机构常见的基本动作包括推动、提升、转动、倾斜、抛射等。
凸轮机构的工作过程中,凸轮的凸缘和从动件的凹槽在运动过程中不断接触和分离,从而实现所需的运动形式。
凸轮的凹槽形状和凸度的大小直接影响从动件的运动形态和速度。
在凸轮机构的设计中,需要考虑凸轮的基本形状、凹槽的形状和尺寸以及凸轮和从动件之间的相对位置等因素。
同时,还需要对从动件的负载、速度和运动惯量等进行估算和计算,以确保凸轮机构可以正常工作并满足设计要求。
凸轮机构在机械设计中有广泛的应用。
最常见的应用是在内燃机中,凸轮机构用于驱动气门的开启和关闭,控制燃气的进出,实现正常的运转。
此外,凸轮机构还可以用于机床上的工件夹持、印刷机上的纸张送纸、纺织机上的细纱传动等。
另外,凸轮机构还可以用于高精度和高速度的机械系统中。
例如,在印刷机上,凸轮机构被用来实现纸张进给、定位和印刷等动作,凸轮的凹槽形状和凸度的大小非常关键,以确保纸张的正确进给和精确的印刷位置。
此外,凸轮机构还可以通过改变凸轮的形状和凹槽的设计,实现多种复杂的运动形式。
例如,通过使用多个凸轮和从动件,可以实现复杂的步进运动、循环运动和连续运动。
这种应用在自动化生产线、工业机器人和动画制作等领域非常常见。
总而言之,凸轮机构作为一种常见的机械传动机构,通过凸轮的运动将旋转运动转换为直线运动或其他特定的运动形式。