苏教版数学七年级(上册)教案(全册)
- 格式:pdf
- 大小:2.95 MB
- 文档页数:155
1.1 生活数学一、教学目标及教材重难点分析(一)教学目标1.通过对生活中常见的图形、数字的观察和思考,感受生活中处处有数学。
2.乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具。
(二)教学重难点1.重点:学生通过观察、操作、实验、交流等活动,感受生活中处处有数学;2.难点:通过“做数学”的过程与方式进行,初步了解数学是研究数量和形状的科学。
.二、教学过程1.创设情境引入(出示投影)展示四幅富有美感的图片:天安门、金字塔、南京长江二桥、上海东方明珠电视塔等建筑,从中寻找熟悉的图形(立体的或平面的),感受丰富的图形世界,以上一组画面与我们今天的数学课有什么关系呢?请问你看到的内容哪些与数学有关?(同桌讨论后回答)2.探索新知识1). 结合以上画面以及教室、学习用品,让学生举例生活中常见的物体可以看成什么样的几何图形,加强对几何图形的感性认识2). 展示一些其他的与数字有关的生活情境,如股市信息、邮政编码、电话号码、手机号码、汽车牌照号码、条形码等(这里可让学生自己举例)3). 从观察P5 “车票中提供的信息”再到“身份证号码“,感受数字与生活的联系及其发挥的作用4). 让学生自己设计学号,并解释它的意义3.课堂练习:P7页试一试4.归纳小结与知识的链接与拓展1、归纳小结2、知识的链接与拓展(1).某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A、0.8kgB、0.6kgC、0.5kgD、0.4kg(2).小华每天起床后要做的事情有穿衣(4分钟)、整理床(3分钟)、洗脸梳头(5分钟)、上厕所(5分钟)、烧饭(20分钟)、吃早饭(12分钟),完成这些工作共需49分钟,你认为最合理的安排应是多少分钟?(3).趣味数学猜谜语:(1)数字虽小却在百万之上(打一数字)(一)(2)2、4、6、8、10(打一成语)(无独有偶)(3)从严判刑(打一数学名词)(加法)三.自我检测1、某中学举行校园歌手大赛,7位评委给某选手的评分如下表。
苏科版数学七年级上册3.2 代数式教教学设计一. 教材分析苏科版数学七年级上册3.2代数式是学生在掌握了有理数、方程等基础知识后的进一步学习。
本节内容主要是让学生了解代数式的概念,学会用代数式表示数和几何量,并掌握代数式的基本运算。
教材通过丰富的实例,引导学生逐步理解和掌握代数式,从而为后续的方程、不等式等知识的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念、运算有一定的了解。
但代数式作为一种抽象的表达方式,对学生来说还是一个新的概念。
因此,在教学过程中,教师需要从学生的实际出发,通过生动、直观的实例,让学生感受代数式的实际意义,从而激发学生的学习兴趣,提高学生的学习积极性。
三. 教学目标1.了解代数式的概念,能正确地书写代数式。
2.掌握代数式的基本运算。
3.能运用代数式表示数和几何量,解决实际问题。
4.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.代数式的概念及其表示方法。
2.代数式的基本运算。
五. 教学方法1.情境教学法:通过生活实例,让学生感受代数式的实际意义,提高学生的学习兴趣。
2.合作学习法:引导学生分组讨论,共同探究代数式的问题,培养学生的团队协作能力。
3.练习法:通过大量的练习,让学生巩固代数式的知识和运算技能。
六. 教学准备1.教学课件:制作生动、直观的课件,帮助学生理解和掌握代数式。
2.实例素材:准备一些生活、几何等方面的实例,用于引导学生学习代数式。
3.练习题:准备一些代数式的练习题,用于巩固学生的知识和技能。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如“某商店举行打折活动,原价为100元,打8折后的价格是多少?”让学生感受代数式的实际意义,引出本节内容。
2.呈现(10分钟)讲解代数式的概念,让学生了解代数式的定义、表示方法以及基本性质。
通过PPT展示代数式的各种形式,如整式、分式等,让学生对代数式有更直观的认识。
3.操练(10分钟)让学生分组讨论,共同探究代数式的基本运算。
课题:正数和负数(1)授课时间:____________教学目标1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点,两种相反意义的量教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗下面的例子仅供参考.?师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…问题1:老师刚才的介绍中出现了几个数分别是什么你能将这些数按以前学过的数的分类方法进行分类吗学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
$(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
苏教版七年级数学上册全册教案第一章我们与数学同行1·1 生活数学教学目标1. 通过生活中常见的图形、数字的观察、思考感受生活中处处有数学。
2. 乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具。
此外,在交流过程中,让学生学会尊重和理解他人的见解,敢于发表自己的观点。
3.尝试列举生活中的数学的例子,并能应用个案(编学号)体会数学在人们生活中的独特作用——表达的工具。
教学过程:同学们,在广阔的田野,繁华的都市,到处都有我们常见的图形和数字,生活中许多奥秘等待我们去探索和发现,生活更为我们数学增添了无限的素材。
著名数学家华罗庚先生说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在。
(简单介绍华罗庚生平,章头图中有关基因图、宇宙速度的知识。
)(5分钟)生活中我们不仅可以感受到数字的无穷魅力,还可以看到丰富多彩的图形。
活动三:生活与数学思考感悟通过今天这节数学课,你有什么感受?使学生能觉得:生活与数学密不可分,数学离不开生活。
生活中处处有数学,学好数学能更好地服务生活等。
作业:学校打算把16米长的篱笆围成长方形形状的生物园来饲养小兔,怎样围可使小兔的活动范围较大?(可以引导学生利用细软的铜丝或16根火柴棒围出一个长方形。
计算该长方形的面积看谁围成的长方形面积较大。
)教学反思1、本节课的设计分为三个层次:先从生活中常用的数字,再观察生活中的图形,最后用数学来解决生活中的问题。
这符合学生的认识规律,更为重要的是:突出图形和数字已成为人们交流的基本工具。
2、通过列举生活中的数据(如人的体温、血压、身高、体重、电话号码、车牌号码)等,学生踊跃发表自己的观点,师生在教学活动中共同学习、共同提高,学生丰富的知识面和信息量也给教师留下了深刻的影响。
学生各抒己见,通过自身的探索,体验到成功的愉悦,进一步认识到数据的作用。
3、由于本节课教学活动较多,学生发言比较积极,但同时还要注意活动的秩序。
苏教版初一数学教案让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
一起看看苏教版初一数学教案!欢迎查阅!苏教版初一数学教案1教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程一、复习提问一本笔记本1.2元。
小红有6元钱,那么她最多能买到几本这样的笔记本呢解:设小红能买到工本笔记本,那么根据题意,得1.2x=6因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆 (让学生思考后,回答,教师再作讲评) 算术法:(328-64)÷44=264÷44=6(辆)列方程:设需要租用x辆客车,可得。
44x+64=328 (1)解这个方程,就能得到所求的结果。
问:你会解这个方程吗试试看问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一”通过分析,列出方程:13+x=(45+x)问:你会解这个方程吗你能否从小敏同学的解法中得到启发把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。
也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少动手试一试,大家发现了什么问题同样,用检验的方法也很难得到方程的解,因为这里x的值很大。
另外,有的方程的解不一定是整数,该从何试起如何试验根本无法人手,又该怎么办三、巩固练习教科书第3页练习1、2。
有理数与无理数苏教版数学初一上册教案教材名称:苏教版数学初一上册教案标题:有理数与无理数教学目标:1. 理解有理数和无理数的概念。
2. 能够辨别并将数分类为有理数或无理数。
3. 能够进行有理数和无理数之间的大小比较。
4. 能够运用有理数和无理数进行简单计算。
教学准备:1. 教材和课件。
2. 教学实例和练习题。
3. 笔和纸。
教学过程:步骤一:引入新知识(5分钟)1. 老师引导学生回顾整数的概念,并以此引入有理数。
2. 老师解释有理数的定义:能够表示为两个整数的比的数,包括整数、分数。
3. 老师解释无理数的定义:不能表示为两个整数的比的数,如根号2、π等。
步骤二:分类讨论(10分钟)1. 老师给出几个数字,要求学生将其分类为有理数或无理数,并解释理由。
2. 学生根据定义和自己的理解进行分类,并将自己的答案和理由与同学分享。
步骤三:对比大小(15分钟)1. 老师给出一些有理数和无理数,要求学生根据大小比较符号将其从小到大排列。
2. 学生根据大小关系,进行比较和排列,并将自己的答案和思路与同学分享。
步骤四:运算练习(20分钟)1. 老师给出一些有理数或无理数的运算题,要求学生进行计算,并写出计算过程和结果。
2. 学生根据给出的计算题目进行计算,并将自己的计算过程和结果与同学分享。
步骤五:巩固练习(10分钟)1. 老师给出一些综合运算练习题,要求学生运用所学知识进行计算和判断。
2. 学生根据给出的练习题进行计算和判断,并将自己的答案和思路与同学分享。
步骤六:总结归纳(5分钟)1. 老师带领学生对本节课的内容进行总结和归纳。
2. 学生参与讨论,一起对本节课的重点和难点进行总结和归纳。
教学评价:1. 观察学生在课堂上的表现,包括对有理数和无理数的理解和辨别能力、对大小比较和运算的掌握程度。
2. 布置课后作业,检查学生对本节课内容的掌握情况。
苏教版七年级数学教案【篇一:苏教版初一数学一元一次方程教案】苏教版初一数学一元一次方程教案教师:xxx 学生:xxx日期: 2011年 12月24日星期: 六12345【篇二:苏科版七年级数学上册教学案全册集体备课】 1.1生活数学主要内容:1. 通过生活中常见的数字、图形的观察,思考感受生活中处处有数学。
2. 乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具。
教学过程:1.引入(1)结合课本p4—p6图片,感受我们生活在在丰富多彩的数学世界中;(2)同学们谈谈小学学习数学的体会,并举例说说数学和生活的联系。
2.例题分析:例1、数字与生活(1)展示车票,分析车票中的数字及其作用(2)身份证号码提供给我们很多信息,如320106************ (3)商品的条形码你还能举出这样的例子吗?例2、图形与生活(1)自行车车轮(2)奥林匹克五环旗,2008北京申奥标志,2008北京奥运会会徽(3)上海世博会会标你还能举出这样的例子吗?课本p7试一试3小结:课堂练习:1.猜猜看:数字虽小却在百万之上(打一数字)2,4,6,8,10(打一成语)从严判刑(打一数学名词)2.2008年9月1日是星期一,那么2009年元旦是星期.3.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25?0.1)kg、(25?0.2)kg、(25?0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差.4.小华每天起床后要做的事情有穿衣(4分钟)、整理床(3分钟)、洗脸梳头(5分钟)、上厕所(5分钟)、烧饭(20分钟)、吃早饭(12分钟),完成这些工作共需 49分钟,你认为最合理安排应是多少分钟?5.光明中学初一有6个班,采用淘汰制进行篮球比赛,问共需进行多少场比赛?若采用单循环制呢?若采用主客场制单循环赛制呢?1.2活动思考主要内容:1.经历观察、实验、操作、猜想和归纳等数学活动,引发学生的思考2.能收集、选择、处理数字信息,作出合理的推断或大胆的猜想教学过程:1、创设情境,开展活动:活动一:用一张长方形纸片按P8的方法折叠、裁剪、展开,你会得到什么图形?试说明理由.活动二:按下图方式,用火柴棒搭三角形??搭1个三角形需要火柴棒根;搭2个三角形需要火柴棒根;搭3个三角形需要火柴棒根;搭10个三角形需要火柴棒根;搭100个三角形需要火柴棒根;活动三:观察月历(1)月历中右上角2?2方框中的四个数之间有什么关系?任意一个这样的方框都存在这样的规律吗?(2)月历中中间3?3方框中的9个数之间有什么关系?(3)小明一家外出旅游5天,这5天的日期之和是20.你能说出小明几号回家?2、例题分析:例1.观察下列已有式子的特点,在内填入恰当的数:?1+2+3+?+2006+2007+2008+2007+2006+?+3+2+1=例2、将一些数排列成下表:试探索:(1)第10行第2列的数是多少?(2)81所在的行和列分别是多少?(3)100所在的行和列分别是多少?3、小结课堂练习:1、在上填上适当的数:(1)2,4,6,,10,?(2)1,12,123,1234,,123456,? (3)1,3,6,,15,21,? (4)1,1,2,3,5,,13,21,?2、将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次折痕保持平行,连续对折三次后,可以得到7条折痕;那么连续对折四次后,可以得到条折痕;连续对折五次后,可以得到条折痕.第1次对折第2次对折第3次对折第2题图第3题图 3、把一个长为9、宽为4的长方形分成两块,然后拼成一个正方形.4、按下图方式摆放餐桌和椅子:???(1)1张餐桌可坐6人,2张餐桌可坐人;(22.1 比0小的数(1)主要内容:正负数的概念,区分正负数,用正负数表示具有相反意义的量. 教学过程: 1.引入:①我们知道珠穆朗玛峰海拔8844米,那么吐鲁番盆地的最低处海拔高度比海平面低155米该如何表示呢?②结合课本p12四幅图片,说出图中所给数字所代表的含义. 2.新授:正负数概念:____________________________________________________,正负数表示方法:________________________________________________;0既不是__________________________,也不是________________________.3.生活中常会遇到一些具有相反意义的量:如增加与收入与对于这些具有相反意义的量,若规定其中一个量为正,则另一个就为负.4.例题讲解:例1:指出下列各数中,哪些是正数?哪些是负数? ?7,?9,1,3?4.5,998,?9,10练一练:请把下列各数填入相应的集合中: ?9,?6,2,58.7,2002,1?,3?4.2正数集合负数集合例2:填空(1)如果向北行走8km记作+8km,那么向南行走5km记作;(2)如果运进粮食3t记作+3t,则-4t表示;(3)如果节约了-20千瓦,实际上是;(4)如果负一场得-1分,实际上是.【篇三:苏教版初中数学七年级上册教案全集】1.1生活数学一、教学目标及教材重难点分析(一)教学目标1.通过对生活中常见的图形、数字的观察和思考,感受生活中处处有数学。
《生活 数学》教案教学目标1.通过生活中常见的数字、图形的观察,思考感受生活中处处有数学.2.乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具.教学过程:引入:(1)结合课本P6—P7图片,感受我们生活在在丰富多彩的数学世界中; (2)同学们谈谈小学学习数学的体会,并举例说说数学和生活的联系. 例题分析: 例1数字与生活(1)展示车票,分析车票中的数字及其作用(2)身份证号码提供给我们很多信息,如320106************ (3)商品的条形码你还能举出这样的例子吗? 例2、图形与生活 (1)自行车车轮(2)奥林匹克五环旗,2008北京申奥标志,2008北京奥运会会徽 (3)上海世博会会标 你还能举出这样的例子吗?3小结: 课堂练习:1.猜猜看:数字虽小却在百万之上(打一数字) 2,4,6,8,10(打一成语) 从严判刑(打一数学名词)2.2012年9月1日是星期六,那么2013年元旦是星期 .3.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25)1.0±kg 、)2.025(±kg 、)3.025(±kg 的字样,从中任意拿出两袋,它们的质量最多相差 kg .4.小华每天起床后要做的事情有穿衣(4分钟)、整理床(3分钟)、洗脸梳头(5分钟)、上厕所(5分钟)、烧饭(20分钟)、吃早饭(12分钟),完成这些工作共需 49分钟,你认为最合理安排应是多少分钟?5.光明中学初一有6个班,采用淘汰制进行篮球比赛,问共需进行多少场比赛?若采用单循环制呢?若采用主客场制单循环赛制呢?《活动思考》教案学习目标经历观察、实验、操作、猜想和归纳等数学活动,引发思考,并尝试从不同角度寻找解决问题的方法,进而有效地解决问题,通过收集、选择、处理数据信息,做出合理的推断或大胆的猜测.学习重点在活动中感受“做”数学的乐趣,提高学习数学的好奇心和求知欲.学习难点合理地表述自己的观点.学习过程活动一:把一张长方形纸片按下图折叠、裁剪、展开.问题1:你得到的是什么图形?说说你的理由.问题2:你得到的正方形是最大的吗?你有其它方法剪成正方形吗?分组动手试一试.问题3:就这一张纸片,你还能剪出其它的图形吗?活动二:按图示的方式,用火柴棒搭成三角形.搭1个三角形需要火柴棒根搭2个三角形需要火柴棒根搭3个三角形需要火柴棒根搭10个三角形需要火柴棒根搭100个三角形需要火柴棒根活动三:观察月历:你是否还能找出满足这一条件的方框?能找多少个?(2)图中的.(3)小明一家外出旅游5天,这5天的日期之和是20,小明几号回家?活动四:中学与小学的不同,不仅体现在环境的变化,学科设计也与小学不同.1.同学们,你比较喜欢哪些学科?你知道班上其他同学比较喜欢哪些学科吗?你怎样去了解?2.你会设计调查表吗?分组试一试.3.怎样调查呢?4.由调查的数据,你能获得什么信息?《正数和负数》教案教学目标1、在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量.2、使学生经历数学化,符号化的过程,体会负数产生的必要性.3、感受正、负数和生活的密切联系,享受创造性学习的乐趣,并结合史料对学生进行爱国主义思想教育.教学重点体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量.教学难点体会负数的意义,通过描述性定义认识正数、负数和“0”.教学过程感受相反方向的数量,经历负数产生的过程.课前谈话:“上下”是表示什么的词?再如“胜负”,你能举出哪些意思相反的一组词呢?词汇真丰富,说明你们的语文学得好.今天,是数学课,离不开“数”.1、出示信息在下列横线上填上适当的词,使前后构成意义相反的量:(1)妈妈在银行存入1300元,1300元;(2)电梯30米,下降30米;(3)小红向北走30米,向走30米;2、指名读信息,你发现了什么?3、师:刚才同学们用了不同的方法去记录,大家说得也都有道理.可是如果每个人都按照自己的想法去表示,结果会怎么样呢?那你觉得应该怎么办?要想让大家都明白,数学家们制定出了一个统一的标准.那你认为数学家们会怎样表达呢?4、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”.-1300、-80等都叫负数;+13 00、+80等都叫正数.你会读吗?请你读给大家听.注意“-”叫负号,“+”叫正号.(2)读给你的同伴听.(3)把你新认识的负数再写两个读一读.下面让我们走进正数和负数的世界,进一步了解它们.(板书课题)借助实际生活情境的直观,丰富对正负数的认识.1、用正数或负数表示下列数量.(1)赢利10000元,用+10000元表示;那么亏损10000元用( )元表示.(2)如果向东走10.5米,用+10.5米表示;那么向西走10.5米用( )米表示.(3)球队胜利4场,用+4场表示;那么失败3场用( )场表示.(4)零上15度用+15度表示;那么零下15度用( )度表示.2、像这样的例子有很多,你能说出一组这样的情况来吗?谁愿意和老师合作?上车15人和下车8人.公元前221年和公元后2006年.地面以上6层和地面以下2层.种了100棵树,死了5棵树.我在银行存入了500元(取出了500元).知识竞赛中,四(1)班得了20分(扣了20分).10月份,学校小卖部赚了500元.(亏了500元).零上10摄氏度(零下10摄氏度).树上飞来了5只鸟.3、同桌同学一人说信息,一人说正负数.4、出示北京地区天气情况,你发现负数了吗?有正数吗?它怎么没有“+”呢?那么,负数可以把“-”去掉吗?科学家把水结冰的温度定为0℃.读作:0摄氏度.观察温度计上的刻度是怎样排列的?你觉得它像哪种测量工具?温度计零上有刻度10,零下也有刻度10,这两个刻度一样吗?为什么?比0℃低的温度用带“-”号的数表示,如:-10℃;比0℃高的温度用带“+”号的数表示,如:+1℃(“+”号可以省略不写).0的新意义理解.(利用数轴,了解负数、0和正数的大小关系.)《有理数与无理数》教案教学目标1.理解有理数的意义和会对有理数进行分类;2.了解无理数的意义.教学重、难点重点:1.有理数的意义和分类;2.无理数的意义.难点:有理数的分类,区分有理数和无理数.教学过程1.有理数我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如55=,144=,1--0=.1我们把能写成分数形式mn(m、n是整数,n≠0)的数叫做有理数.想一想:小学里学过的有限小数和无限循环小数是有理数吗?根据有理数的定义,有理数可以进行如下的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数,或⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 引入有理数的定义,并按照定义说明整数、分数是有理数.通过将有限小数和无限循环小数转化为分数,说明有限小数和无限循环小数也是有理数,为有理数的分类做好铺垫.2.无理数议一议:是不是所有的数都是有理数呢?将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2. 如果大正方形的边长为a ,那么a 2=2.a 是有理数吗?事实上,a 不能写成分数形式mn(m 、n 是整数,n ≠0),a 是无限不循环小数,它的值是1.414 213 562 373….无限不循环小数叫做无理数.小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数. 此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.例题、练习.例1: 将下列各数分别填入相应的集合中: -5,7.3,-9,+22,32,0,-0.5,38+,-30%,25,100 自然数集合:{ ……}; 正整数集合:{ ……}; 负整数集合:{ ……}; 正分数集合:{ ……}; 负分数集合:{ ……}例1:将下列各数填入相应括号内:169.36--,,,42,0,-0.33,0.333,1.414 213 56,-2π,3.303 003 000 3,-3.141 592 6.正数集合:{ …}; 负数集合:{ …}; 正有理数集合:{ …}; 负有理数集合:{ …}.例2:对下列语句的描述,错误的有①0是自然数. ② 0是整数. ③0是偶数④海拔0米就是没有海拔. ⑤ 0是非负数. ⑥一个数,不是正数就必定是负数. 课堂练习:1. 下列说法正确的是 ( )A .正整数和负整数构成整数;B .零是整数,但不是正数,也不是负数;C .分数包括正分数、负分数和零;D .有理数不是正数就是负数. 2.把下列各数填入表示它所在的数集的圈里:0,,,,8343532-+--15,0.618,-3.14,-0.002, 34%四、小结初学有理数分类,多数学生会产生混淆,今后要加强训练,使其逐渐提高对数的判断能力.《数轴》教案教学目标掌握数抽三要素,能正确画出数轴. 理解和会找出有理数与数轴上点的对应关系.教学重点数轴的画法和用数轴上的点表示有理数.分数集整数集…… ……有理数集…… 负数集……教学难点有理数与数轴上点的对应关系.思想与方法理解数形结合的数学方法.教学过程一.复习:1.有理数包括哪些数?有何意义?是怎样分类的? 2.小学时是如何利用直线上的点来表示自然数的? 二.新授课:刚才我们回顾了小学时用直线上的点来表示自然数,上节课我们又学习了负数,大家明白负数与正数的联系,那么能否用直线上的点来表示有理数呢?首先,我们先来研究一下生活中最常接触的应用正、负数的例子——温度.在零以上的数字表示零上多少度,零以下表示零下多少度,用一条直线表示即为(如右图):不仅在温度上,在其它很多方面都要用到有理数,这样简单地在一条直线上标上零、正数、负数为我们带来了很多方便.习惯上,我们将此直线画成水平位置,并规定向右为正方向,具体做法如下;画一条直线(通常画成水平位置),在这条直线上任取一点我们称之为原点,用它表示0,规定直线上从原点向右为正方向,画上箭头,而相反方向为负方向,再选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次标上1、2、3……,从原点向左,每隔一个单位长度取一点,依次标上-1、-2、-3……,如图所示:像这样,规定了原点,正方向和单位长度的直线叫做数轴.问题:在一条东西向的马路上,有一个汽车站牌,汽车站牌东3m 和7.5m 处分别有一棵柳树和一棵杨树,汽车站牌西3m 和4.8m 处分别有一棵槐树和一根电线杆,情境图表示如下:051015-5-10-15画一条直线表示马路,从左到右表示从东到西的方向,在直线上取任一点O表示汽车站牌的位置,规定1个单位长度(线段OA的长)代表1米长.于是,在点O的右边,与点O距离3个和7.5个单位长度的点B和点C,分别表示柳树和杨树的位置;点O左边,与点O距离3个和4. 8个单位长度的点D和点E,分别表示槐树和电线杆的位置.如下图:说明:1、数轴有三要素——原点,正方向和单位长度.三者缺一不可;2、三要素是规定的,可灵活选取原点位置与单位长度,一般正方向的指向是自左向右;3、对同一数轴的单位长度不能变.例:画出数轴,并在数轴上画出表示下列各数的点.6,-4,-2,-4.5,1.5,-7,0解:如图所示:《绝对值与相反数》教案教学目标绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础.借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小.借助数轴,使学生了解相反数的概念.会求一个有理数的相反数.教学重点与难点重点:理解绝对值的概念;理解相反数的意义.难点:求一个数的绝对值;比较两个负数的大小;理解相反数的意义.教学设计绝对值:一.情境引入.问题:两辆汽车从同一处O出发,西方向行驶10km.到达A、B两处如图,它们的行驶路线相同吗?它们形式的路程的远近(线段OA、OB的长度)相同吗?学生讨论回答.教师总结:两辆车的行驶路线相反,它们行驶的路程相等都是10km.我们把上面这个过程看成一个数轴,那么就有数轴上表示-10喝10的两个点到原点的距离都是10.数轴上,一个点到原点的距离,是“形”的描述,那么对于“数”是表示一个数的绝对值.下面我们一起来学习今天的新知识—绝对值.二.互动新授.问题1如图数轴上有A、B、C、D四个点.点A表示的数是( ),点A到原点的距离是( )个长度单位.点B表示的数是( ),点B到原点的距离是( )个长度单位.点C表示的数是( ),点C到原点的距离是( )个长度单位.点D表示的数是( ),点D到原点的距离是( )个长度单位.学生活动:小组合作探究.教师总结:点A-22;点B22;点C-0.50.5;点D0.50.5;数学上定义:一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值.如上面的-2的绝对值是2;2的绝对值也是2.还有-0.5喝0.5的绝对值都是0.5.用绝对值符号表示为:|-2|=2,|2|=2,|-0.5|=0.5,|0.5|=0.5.显然|0|=0.问题2 a 的绝对值等于什么?学生活动:总结任意正、附属a 的绝对值怎么表示.师生合作探究:a 在这里可能是整数、0、负数,那么我们应该分类来讨论a 的绝对值,结果去掉绝对值符号并用含a 的狮子来表示.我们可以利用绝对值定义写成下面的式子:(1)当a 是正数时,|a |= ;(2)当a 是负数时,|a |= ;(3)当a 是0时,|a |= ;教师总结:一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;0的绝对值是0.(1)当a 是正数时,|a |=a ; (2)当a 是负数时,|a |=-a ; (3)当a 是0时,|a |=0;完成习题:1.比较下列每组数的大小: (1)-1和-5 (2)65和-2.7 2.一个数的绝对值是它本身,那么这个数一定是 . 3.绝对值小于3的整数有 个,分别是 . 4.如果一个数的绝对值等于4,那么这个数等于 . 5.用“>”、“<”和“=”号填空. │-5│ 0 │+3│ 0 │+8│ │-8│ │-5│ │-8│ 相反数: 提问:1.数轴的三要素是什么?2.填空:数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 .相反数的概念:只有符号不同的两个数,我们称它们互为相反数,零的相反数是零. 概念的理解:(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等. (2)一般地,数a 的相反数是a -,a -不一定是负数.(3)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个正数.-(-3)是(-3)的相反数,所以-(-3)=3,于是互为相反数的两个数之和是0 .即如果x 与y 互为相反数,那么x +y =0;反之,若x +y =0, 则x 与y 互为相反数.(4)相反数是指两个数之间的一种特殊的关系,而不是指一个种类.如:“-3是一个相反数”这句话是不对的.例1 .求下列各数的相反数: (1)-5 (2)21(3)0 (4)3a(5)-2b (6)a -b (7) a +2 例2 .判断: (1)-2是相反数. (2)-3和+3都是相反数. (3)-3是3的相反数. (4)-3与+3互为相反数. (5)+3是-3的相反数.(6)一个数的相反数不可能是它本身. 例3.化简下列各数中的符号: (1))312(-- (2)-(+5) (3)[])7(--- (4)[]{})3(+-+-例4 .填空:(1)a -4的相反数是 ,3-x 的相反数是 . (2)x 32是 的相反数. (3)如果-a =-9,那么-a 的相反数是 . 例5.填空:(1)若-(a -5)是负数,则a -5 0.(2) 若[])(y x +--是负数,则x +y 0. 例6.已知a 、b 在数轴上的位置如图所示. (1)在数轴上作出它们的相反数;(2)用“<”按从小到大的顺序将这四个数连接起来.例7.如果a -5与a 互为相反数,求a .《有理数的加法与减法》教案教学目标比较,归纳等得出有理数加法法则. 能运用有理数加法法则解决实际问题.使学生理解有理数的加减法法可以互相转化,并了解代数的概念. 使学生熟练地进行有理数的加减混合运算. 学会用计算器进行比较复杂的数的计算.教学重点会用有理数的加法法则进行运算. 会用有理数的减法法则进行运算.教学难点异号两数相加的法则.减法直接转化为加法运算的准确性.教学过程有理数的加法: 【活动一】教师提出问题,让学生思考:有理数如何进行加法运算,有理数加法有几种情况? 问题:足球循环赛中,通常把进球数记为正数,失球数记为负数,他们饿得和叫做净胜球数,假设某次比赛中红队进4球,失2球;蓝队进1球失1球,于是红队的净进球数为4+(-2)蓝队净进球数为1+(-1)这里用到的是正数与负数的加法.教师总结:有理数加法的情况归结为同号两数相加,异号两数相加,一个数与0相加三种情况.【活动二】教师请同学按照自己的指令表演,并结合数轴说明两正数的加法.问题:1.一个物体做左右方向的运动,我们规定向左方向为负,向右运动5m记作5m,向左运动5m记作-5m.如果物体先向右运动5m再向右运动3m,那么两次运动后的总结果是什么?学生:两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8教师继续请同学参与表演,并类比两正数的加法说明两负数的加法.问题:2.如果物体先向左运动5m,再向左运动3m,那么两次运动后的总结果是什么?两次运动从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8这个算式也可以用数轴表示,其中假设原点为运动起点.【活动三】1.如果物体先向左运动3m再向右运动5m,那么两次运动后物体从起点向右运动了2m,写成算式是:5+(-3)=22.探究:利用数轴,求以下情况时物体两次运动的结果:先向右运动3m再向左运动5m.先向左运动5m再向右运动5m.教师总结:有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加等于0.3、一个数同0相加仍得这个数.【活动四】探究:计算30+(-20) (-20)+30.师生探讨发现两式和相等.总结:两个数相加,交换加数的位置,和不变.即:加法交换律:a+b=b+a.计算[8+(-5)]+(-4),8+[(-5)+(-4)].结果仍相同.总结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即:加法结合律:(a+b)+c=a+(b+c).1.例1计算:(-3)+(-9)=-(3+9)=-122.计算:16+(-25)+24+(-35)=16+24+[(-25)+(-35)]=40+(-60)=-20【活动五】应用举例,变式练习.1.答下列算式的结果(1)(+4)+(+3)(2)(-4)+(-3)(3)(+4)+(-3)(4)(+3)+(-4)(5)(+4)+(-4)(6)(-3)+02.教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数(1)(-0.9)+(+1.5)(2)(+2.7)+(-3)(3)(-1.1)+(-2.9)有理数的减法:一.创设情景,引入新课.问题1:(出示本书引言中的图片)这是北京某一天的天气情况:白天的最高气温是3℃,夜晚的最低温度是-3℃.请问这一天的温差怎么计算呢?这就是我们今天要研究的问题——有理数的减法.二.主体探究,归纳法则.为了解决上述问题我们可以首先考虑式子3-(-3)的结果,即要求一个数x,使得x与-3的和为3,因为6与-3相加为3于是(改为从数轴上容易看出,表示3的点在表示-3的点的右边,两点相距6个单位长度,于是)3-(-3)=6,另一方面,3+3=6,这表明3-(-3)=6,按照这个思路计算下列各题.问题2:计算下列各题,你能发现什么? (1)(-3)-(-5); (2)0―7. 学生活动设计.学生按照上述思路进行思考,逐个计算结果,然后观察结果发现,减去-5相当于加上5,即加上它的相反数,是否普遍成立呢?学生可以再举出一些例子进行验证,最后归纳出减法法则.一般地,如果a -b =c ,那么c +b =a ,所以c =a +(-b ),即a -b =a +(-b ).有理数的减法法则:减去一个数等于加上这个数的相反数,用数学式子表示为: a -b =a +(-b ).分析法则不难发现,减法法则其实是一个转化法则,转化成了加法法则,然后利用加法法则进行计算,从而体会转化的数学思想.三.应用迁移、巩固提高,培养学生的理解能力、计算能力. 问题3: 解决下列问题.1.计算下列各题,你能发现什么?(1)()()8.42.7--+; (2)415213-⎪⎭⎫ ⎝⎛-; (3)()()()()3.46.34.15.1+------; (4)()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-+4316554.3. 学生活动设计.学生黑板板演,其余学生独立思考,板演结束后,等到其余学生计算完成后,请同学进行分析,若有问题,请同学分析问题所在,进一步巩固新的知识,使同学在相互交流中逐步完善自己的想法.对于(1)()()8.42.7--+=7.2+4.8=12; (2)415213-⎪⎭⎫ ⎝⎛-=438)415(213-=-+⎪⎭⎫ ⎝⎛-;(3)()()()())3.4()6.3()4.1()5.1(3.46.34.15.1-+++++-=+------ =8.03.46.34.15.1-=-++-;(4)()1274316554.3)431()655()4.3(4316554.3-=+-=++-++=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-+. 比较()()8.42.7+++和7.2+4.8、)415(213-+⎪⎭⎫ ⎝⎛-和415213-⎪⎭⎫ ⎝⎛-; )3.4()6.3()4.1()5.1(-+++++-和3.46.34.15.1-++-;)431()655()4.3(++-++和4316554.3+-.不难发现,它们虽然形式不同,但是结果却是相同的,于是,在表示几个数的和时,为了书写简单,可以省略式中的括号和加号,比如:为了表示-1.5、+1.4、+3.6、-4.3的和我们通常写成3.46.34.15.1-++-, 读作“-1.5、+1.4、+3.6、-4.3”的和,或读作“负1.5加1.4加3.6减4.3”. 当然)3.4()6.3()4.1()5.1(-+++++-=3.46.34.15.1-++-. 2.若|a |=4,|b |=2,求a -b . 学生活动设计.由于|a |=4,可以得到a 的值是4或-4,又|b |=2,所以b 的值是2或-2, 于是当a =4、b =2时,a -b =4-2=2; 当a =4、b =-2时,a -b =4-(-2)=6; 当a =-4、b =2时,a -b =-4-2=-6; 当a =-4、b =-2时,a -b =-4-(-2)=-2.教师活动设计:本环节设计的目的主要有两个,一是让学生进一步理解减法法则,二是让学生再一次体会分类思想.3.计算1-2+3-4+5-6+……2005-2006. 学生活动设计.观察上述式子不难发现这是省略了括号和加号的和的形式,于是可以运用加法的结合律,两两分组,分别计算,即1-2+3-4+5-6+……2005-2006=(1-2)+(3-4)+(5-6)+……(2005-2006)=-1003.4.全班学生分成5个组进行游戏,各组得分如下表:(2)第一名超出第五名多少分? 学生活动设计.学生观察表格,分析表格中的数据,发现第一名得分350分,第二名得分150分,运用有理数的减法即可得到结果;同样第五名得分是-400分,于是350-(-400)=750(分).教师活动设计. 本题设计目的主要是:(1)让学生能够从表格中分析数据;(2)能够运用有理数的减法法则;(3)体会数学与生活的联系.5.计算:(-20)+(+3)+(+5)-(+7).学生活动设计.这个算式中有加法也有减法.可以根据有理数减法法则,把它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法.解:(-20)+(+3)+(+5)-(+7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+5)+(+3)]=(-27)+(+8)=-19.教师活动设计.引入相反数后,加减混合运算可以统一为加法运算.a+b-c=a+b+(-c).小结1.本节课你学到了什么?2.本节课你有什么感受?3.有理数的减法法则;4.省略括号和加号和的形式;5.转化思想.《有理数的乘法和除法》教案教学目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算.经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程.掌握有理数除法法则,理解零不能做除数.理解除法转化为乘法,体验矛盾着的对立双方在一定的条件下互相转化的辨证唯物主义思想.会运用除法法则求两个有理数的商,会进行简单的混合运算.教学重点、难点重点:运用有理数乘法法则正确进行计算;除法法则和除法运算.难点:有理数乘法法则的探索过程,符号法则及对法则的理解;根据除法是乘法的逆运算,归纳出除法法则.教学过程有理数的乘法一、导课用数轴来画出(-3)×2=(-6).二、设疑自探两个数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.(+3)×(+4)= (-3)×(+4)=(+3)×(+3)= (-3)×(+3)=(+3)×(+2)= (- 3)×(+2)=我们已经知道两个整数想乘结果是正数,现在我们从符号和绝对值两个方面来研究一下三组,看看他们有什么特点?第一组:(-3)×(+4)=(-12) (-3)×(+3)=(-9)(-3)×(+2)=(-6) (-3)×(+1)=(-3)第二组:(-3)×(-1)=3 (-3)×(-2)=6(-3)×(-3)=9 (-3)×(-4)=12有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘得0.非0两数相乘,关键(步骤)是什么?确定积的符号;求出绝对值之积.三、计算:1.(-4)×52.(-5)×(-7)3.(-7.2)×(-5)有理数的除法一、温故提新1.小学里学过有关倒数的概念是什么?怎么求一个数的倒数?(用1除以这个数)4和+2/ 3的倒数是多少?0有倒数吗?为什么没有?2.小学里学过的除法与乘法有何关系?例如10÷0.5=10×2;0÷5=0×(1/5),你能总结出一句话吗?(除以一个数等于乘以这个数的倒数)3.5÷0=?,0÷0=?呢?(这些式子无意义)也就是说0是没有倒数的.4.我们已知的求倒数的法则在有理数范围中同样适用吗?你能说说以下各数的倒数是多少吗?4,2.5,-9,-37,-1,a,a-1,3a,abc, -xy(各字母式不为0)说明:一个数的倒数与其是正数或负数无关.二、新课讲解1.讲述:我们知道除法是乘法的逆运算,这套法则运用到有理数的范围内同样适用.例如,8÷4=8×(1/4)=2;8÷(-4)=8×(-1/4).那么,你知道(-8)÷(-4)=?,(-7)÷(-3.5)呢?如果用字母表示,怎么表示?a÷b=a×(1/b)(b不为0).2.由(-4)×(-1/4)=1,4×(1/4)=1等等式子,可知:互为倒数的两个数的积为1.用字母表示为:a×(1/a)=1 (a≠0).3.通过上面的练习两个有理数相除,商的符号有什么规律?商的绝对值呢?通过练习我们可得出什么结论?即有:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.注意:零不能作除数.《有理数的乘方》教案教学目标理解有理数乘方的概念,掌握有理数乘方的运算;培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;渗透分类讨论思想.借助学生所熟悉的事物进一步体会大数,并会用科学计数法表示大数.通过收集数据.整理数据.分析数据的活动,培养学生应用数学的意识和能力;培养学生与人合作,并能与人交流思维的意识.教学重点和难点重点:有理数乘方的运算.难点:有理数乘方运算的符号法则.教学过程设计乘方:。
《线段、射线、直线》直线、射线、线段是最简单的几何图形,以后学习的三角形、四边形等都是由它们构成的,所以,直线、射线、线段是今后研究比较复杂图形的必要基础。
直线、射线、线段小学重在直观理解,初中的学习侧重于几何图形的表示法、几何语言的表达方式,本节课是今后系统学习几何知识所必须的基础。
还有直线的基本性质,它在人们的生活中有着广泛的应用。
因此,本节课看似简单,但在教材中却处于重要的地位。
对于学生来说,无论在知识上,还是在解决实际问题的能力上,都起着不容忽视的作用。
【知识与能力目标】1、理解点、线段、射线、直线等简单的平面图形的意义,了解线段、直线的性质,理解线段中点及两点之间的距离等概念。
2、探索并掌握两个基本事实:两点之间线段最短;两点确定一条直线。
【过程与方法目标】1、发展学生有条理的思考和用语言加以表述的能力。
2、培养学生操作、观察、分析、猜测、类比和概括等能力,同时渗透转化、分类讨论的思想。
【情感态度价值观目标】培养学生善于观察,认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神。
【教学重点】1、直线公理和线段中点.2、运用线段中点的性质求线段的长. 【教学难点】引导学生理解并准确使用数学语言.多媒体课件、相关图片一、导入1、观察出示的图片,思考:这些漂亮的图形是由什么图形组成的?线段射线直线2、下面的图形你认识吗?教师出示图片.二、讲解(一)线段最短1、思考:(1)从甲地到乙地有三条路,你估计哪条路相对近一些?(2)从甲地到乙地能否修一条最近的路?如果能,你认为这条路应该怎么修呢?请在图中画出这条路.2、基本事实两点之间的所有连线中,线段(line segment)最短两点之间线段的长度叫做这两点之间的距离3、想一想由火车站到汽车站, 走上面哪条路线更近?为什么?(二)线段的表示方法1、如图,分别怎样表示图中的线?(1)线段AB、线段BA、线段a(2)射线OP(注意:端点字母必须写在前面)(3)直线MN、直线NM、直线l2、练习第1题(三)两点确定一条直线1、思考:如图,过一点A可以画几条直线?无数条那么,过两点A、B可以画几条直线?一条2、基本事实两点确定一条直线.3、练习第2题(四)线段长短比较方法1:度量法(用刻度尺测量)∴AB>CD方法2:叠合法(用平移法比较)具体见课件动画(五)尺规作线段用尺规作图的方法可以将一条线段移到另一条线段上.做一做:已知线段AB,请用圆规、直尺作一条线段等于已知线段.做法:1、用直尺作一条射线A′C′.2、以A′为圆心,在射线A′C′上截取A′B′=AB,∴线段A′B′就是所求做的线段.(用圆规量出已知线段AB的长度,在射线A′C′上,以点A′为圆心,以AB长为半径画弧,交射线A′C′ 于点B′,即截取A′B′=AB.)3、练习第3题.(六)线段中点点B把线段AC分成相等的两条线段AB与BC,点B叫做线段AC的中点.如图:∵点B是线段AC 的中点∴AB = BC = 12AC 或者AC=2AB=2BC.4、练习第4、5、6题.三、练习1、如图,点B、C在线段AD上.(1)以A为端点的线段有哪几条?以B为一个端点的线段有哪几条?(2)图中共有几条线段?是哪几条?2、如图,已知点A、B、C.(1)画线段BC(连接BC),画直线AB、AC;(2)在线段BC上取一点D,画射线AD.3、如图,已知两点A、B.(1)画线段AB;(也可说成连结AB)(2)延长线段AB到点C,使得BC=AB.4、如图,线段AB=8cm,点C是AB的中点,点D在CB上,且DB=1.5cm,求线段CD 的长度.解:∵C是线段AB的中点∴CB=12AB=4cmCD=CB - DB=2.5cm5、如图,已知三点A、B、C(1)画线段AB;(2)画射线AC;(3)画直线BC.6、如图,以点A为端点的线段有多少条?以点B为一个端点的线段有多少条?请分别表示这些线段.线段BA、线段BD、线段BE、线段BC线段AB、线段AD、线段AE、线段AC思考:图中共有多少条线段?四、总结两点之间的所有连线中,线段最短两点确定一条直线线段的两种比较方法:叠合法和度量法.线段的中点的概念及表示方法.∵点B是线段AC 的中点,∴AB = BC =12AC 或者AC=2AB=2BC.略。
苏教版数学七年级
上册
教案
1.1 生活数学
一、教学目标及教材重难点分析
(一)教学目标
1.通过对生活中常见的图形、数字的观察和思考,感受生活中处处有数学。
2.乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具。
(二)教学重难点
1.重点:学生通过观察、操作、实验、交流等活动,感受生活中处处有数学;
2.难点:通过“做数学”的过程与方式进行,初步了解数学是研究数量和形状的科学。
.
二、教学过程
1.创设情境引入
(出示投影)展示四幅富有美感的图片:天安门、金字塔、南京长江二桥、上海东方明
珠电视塔等建筑,从中寻找熟悉的图形(立体的或平面的),感受丰富的图形世界,以上一
组画面与我们今天的数学课有什么关系呢?请问你看到的内容哪些与数学有关?(同桌讨论后回答)
2.探索新知识
1). 结合以上画面以及教室、学习用品,让学生举例生活中常见的物体可以看成什么样的
几何图形,加强对几何图形的感性认识
2). 展示一些其他的与数字有关的生活情境,如股市信息、邮政编码、电话号码、手机号
码、汽车牌照号码、条形码等(这里可让学生自己举例)
3). 从观察P5 “车票中提供的信息”再到“身份证号码“,感受数字与生活的联系及其
发挥的作用
4). 让学生自己设计学号,并解释它的意义
3.课堂练习:
P7页试一试
4.归纳小结与知识的链接与拓展
1、归纳小结
2、知识的链接与拓展
(1).某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A、0.8kg
B、0.6kg
C、0.5kg
D、0.4kg
(2).小华每天起床后要做的事情有穿衣(4分钟)、整理床(3分钟)、洗脸梳头(5分钟)、上厕所(5分钟)、烧饭(20分钟)、吃早饭(12分钟),完成这些工作共需49分钟,你认为最合理的安排应是多少分钟?
(3).趣味数学
猜谜语:(1)数字虽小却在百万之上(打一数字)(一)
(2)2、4、6、8、10(打一成语)(无独有偶)
(3)从严判刑(打一数学名词)(加法)
三.自我检测
1、某中学举行校园歌手大赛,
7位评委给某选手的评分如下表。
计分方法是:去掉一个最
高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,则该选手的最后得分为
()
评委 1 2 3 4 5 6 7 得分9.8
9.5 9.7
9.8
9.4
9.5
9.4
A 、9.59
B 、9.58
C 、9.57
D 、9.56
2、用扑克牌算24点(J 、Q 、K 当作1点)是一种益智游戏:四人进行,每人分得13张(剔除大小王),然后随机各发出一张,谁先算得24点,此四张牌归谁,发完后,以得到扑克牌
张数多者为胜。
算24点时,可用加、减、乘、除四种运算(不一定四种运算都用)。
请根据下列发牌情况,写出
24点的算式(每张牌点数只能用一次,列式时可用括号)
:
(1)1,4,8,K__________(2)2,3,4,6___________ (3)1,5,5,5_______________
3.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有
28人获得奖励,其中只获得两项奖励的有
13人,那么该班获得奖励最多的一
位同学可能获得的最多奖励有多少项?
4、某风景区对
5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。
有关数据如下表所示:
(1)该风景区认为:调整前后这5个景点门票的平均收费不变,因此平均日总收入持平。
问风景区是怎样计算的?
(2)游客认为:调整前后风景区的平均日总收入相对于调价前增加了9.4%,问游客是怎样
计算的?
三好学生
优秀学生干部
优秀团员
市级 3 2 3 校级
18
6
12
景点
A
B
C
D E 原价(元)10 10 15 20 25 现价(元) 5 5 15 25 30 平均日游客(千人)
1
1
2
3
2
1.2 活动思考
一、教学目标及教材重难点分析
(一)教学目标
1、经历观察、实验、操作、猜想和归纳等数学活动,引发学生的思考。
2、尝试从不同角度寻求解决问题的方法,并能有效地解决问题。
3、能收集、选择、处理数字信息,做出合理的推断或大胆的猜测。
(二)教学重难点
应注意通过观察、操作、想象、推理、交流等数学活动,引导学生动手实践、自主探索、合作交流,增进对数学的理解,感受到动手操作、调查研究等也是学习数学的一种重要且有
效的方法与途径。
二、教学过程
(一)课前预习与准备
1.通过预习收集、选择、处理一些数字信息,尝试做出合理的推断或大胆的猜测;经历折叠、裁剪设计一个图形
2.练习:
(1)、观察下列数据找规律,在( )内填数,并简述你所发现的规律
(1) 1,2,3,4,5,6,( ) (2)1,4,9,16,25,( )
(2).把一张纸对折,则厚度加一倍,第二次对折,厚度是原来一张纸的四倍,依次类推,如果
把一张足够大的纸对折30次,将有多厚?(假设一张纸的厚度为1dmm)
(3).小明一家外出旅游5天,这5天的日期之和是20,小明几号回家?
(二)探究活动
1.创设情境引入
(谁听说过高斯(Gass,德国数学家)的速算故事,来跟大家说一说。
高斯十岁时,教师出了一道题:
1+2+3+4+……+100=?
其他同学逐一的进行加法运算,高斯提出:1+100=101,2+99=101,……,则有:1+2+3+4+……+100=101×50=5050
这个故事说明,遇到问题时我们应该开动脑筋,仔细观察,总结规律,会有意想不到的
收获。
2.探索新知识
1).动手操作
把一个长方形纸片,如图折叠,裁剪、展开三个步骤,就能得到一个正方形。
试一试:将一个长方形纸条打一个结,看一看你得到了什么图形?
2)活动二按图示的方式,用火柴棒搭三角形
搭1个三角形需要火柴棒_________根;
搭2个三角形需要火柴棒_________根;
搭3个三角形需要火柴棒_________根;
搭10个三角形需要火柴棒_________根;
搭100个三角形需要火柴棒_________根;
通过观察搭1个、2个、3个三角形所需火柴棒的根数,结合图形,归纳火柴棒根数与三角
形个数之间的关系,从而得出三角形个数更多的情形所需火柴棒的根数,井学会说明理由
3).活动三观察月历:。