2019高考数学二轮复习 选择题“瓶颈”突破练
- 格式:doc
- 大小:153.00 KB
- 文档页数:7
课时跟踪检测(二十三) 不 等 式(小题练)A 级——12+4提速练一、选择题1.(2019届高三·南宁、柳州联考)设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.a b>1 C .a -c >b -cD .a 2>b 2解析:选C a >b ,若c =0,则ac 2=bc 2,故A 错;a >b ,若b <0,则a b<1,故B 错;a >b ,不论c 取何值,都有a -c >b -c ,故C 正确;a >b ,若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.2.已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n,n ∈N *,n >2,则f (n ),g (n ),φ(n )的大小关系是( )A .φ(n )<f (n )<g (n )B .φ(n )≤f (n )<g (n )C .f (n )<φ(n )<g (n )D .f (n )≤φ(n )<g (n )解析:选C f (n )=n 2+1-n =1n 2+1+n <12n ,g (n )=n -n 2-1=1n +n 2-1>12n ,所以f (n )<φ(n )<g (n ).故选C.3.(2018·日照二模)已知第一象限的点(a ,b )在直线2x +3y -1=0上,则2a +3b的最小值为( )A .24B .25C .26D .27解析:选B 因为第一象限的点(a ,b )在直线2x +3y -1=0上,所以2a +3b -1=0,a >0,b >0,即2a +3b =1,所以2a +3b =⎝ ⎛⎭⎪⎫2a +3b (2a +3b )=4+9+6b a +6ab ≥13+26b a ·6ab=25,当且仅当6b a =6a b ,即a =b =15时取等号,所以2a +3b的最小值为25.4.(2018·陕西模拟)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .1B .2C .3D .4解析:选C 作出可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,可知当直线过点A (2,-1)时,z =2x +y 取得最大值,且z max =2×2-1=3.5.不等式x 2+x -6x +1>0的解集为( )A .{x |-2<x <-1,或x >3}B .{x |-3<x <-1,或x >2}C .{x |x <-3,或-1<x <2}D .{x |x <-3,或x >2}解析:选B x 2+x -6x +1>0⇔⎩⎪⎨⎪⎧x 2+x -6>0,x +1>0或⎩⎪⎨⎪⎧x 2+x -6<0,x +1<0,解得-3<x <-1或x >2.选B.6.若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +12,x ≤0,则“0<x <1”是“f (x )<0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当0<x <1时,f (x )=log 2x <0,所以“0<x <1”⇒“f (x )<0”;若f (x )<0,则⎩⎪⎨⎪⎧x >0,log 2x <0或⎩⎪⎨⎪⎧x ≤0,-2x +12<0,解得0<x <1或-1<x ≤0,所以-1<x <1,所以“f (x )<0”⇒/ “0<x <1”.故选A.7.(2018·重庆模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,y -2≤0,则2x +y 的最小值为( )A .3B .4C .5D .7解析:选B 作出不等式组表示的平面区域如图中阴影部分所示,令z =2x +y ,作出直线2x +y =0并平移该直线,易知当直线经过点A (1,2)时,目标函数z =2x +y 取得最小值,且z min =2×1+2=4,故选B.8.(2018·广东模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是( )A .(1,3)B .(-3,1)C .(-2,0)D .(-3,2)解析:选B 如图,画出f (x )的图象,由图象易得f (x )在R 上单调递减,∵f (3-a 2)<f (2a ),∴3-a 2>2a ,解得-3<a <1.9.(2018·山东青岛模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值为( ) A .6 B .7 C .8D .9解析:选C 原不等式可化为x 2a ≥1+x 2-1+x ,令1+x =t ,t ≥1,则x =t 2-1.所以t 2-12a≥1+t 2-12-t =t 2-2t +12=t -122对t ≥1恒成立,所以t +12a≥12对t ≥1恒成立.又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.10.(2018·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为( )A .3B . 3C .2D. 2解析:选A 令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1·1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 11.(2019届高三·湖北八校联考)已知关于x 的不等式ax 2-ax -2a 2>1(a >0,a ≠1)的解集为(-a,2a ),且函数f (x )=⎝ ⎛⎭⎪⎫1a x 2+2mx -m -1的定义域为R ,则实数m 的取值范围为( )A .(-1,0)B .[-1,0]C .(0,1]D .[-1,1]解析:选B 当a >1时,由题意可得x 2-ax -2a 2>0的解集为(-a,2a ),这显然是不可能的.当0<a <1时,由题意可得x 2-ax -2a 2<0的解集为(-a,2a ),且⎝ ⎛⎭⎪⎫1a x 2+2mx -m ≥⎝ ⎛⎭⎪⎫1a 0,即x 2+2mx -m ≥0恒成立,故对于方程x 2+2mx -m =0,有Δ=4m 2+4m ≤0,解得-1≤m ≤0.12.(2018·郑州模拟)若变量x ,y 满足条件⎩⎪⎨⎪⎧x -y -1≤0,x +y -6≤0,x -1≥0,则xy 的取值范围是( )A .[0,5]B .⎣⎢⎡⎦⎥⎤5,354 C.⎣⎢⎡⎦⎥⎤0,354D .[0,9]解析:选D 依题意作出题中的不等式组表示的平面区域如图中阴影部分所示,结合图形可知,xy 的最小值为0(当x =1,y =0时取得);xy ≤x (6-x )≤⎣⎢⎡⎦⎥⎤x +6-x 22=9,即xy ≤9,当x =3,y =3时取等号,即xy 的最大值为9,故选D.二、填空题13.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a+2a ≥2 2x -a ·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.答案:3214.(2018·长春模拟)已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是________.解析:设3α-β=m (α-β)+n (α+β)=(m +n )α+(n -m )β,则⎩⎪⎨⎪⎧m +n =3,n -m =-1,解得⎩⎪⎨⎪⎧m =2,n =1.因为-π2<α-β<π2,0<α+β<π,所以-π<2(α-β)<π,故-π<3α-β<2π.答案:(-π,2π)15.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点A (5,4),∴z max =5+4=9.答案:916.已知函数f (x )=x 2+ax +b (a ,b ∈R)的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c =________.解析:由函数值域为[0,+∞)知,函数f (x )=x 2+ax +b (a ,b ∈R)的图象在x 轴上方,且与x 轴相切,因此有Δ=a 2-4b =0,即b =a 24,∴f (x )=x 2+ax +b =x 2+ax +a 24=⎝ ⎛⎭⎪⎫x +a 22.∴f (x )=⎝ ⎛⎭⎪⎫x +a 22<c ,解得-c <x +a 2<c ,-c -a 2<x <c -a 2.∵不等式f (x )<c 的解集为(m ,m +6),∴⎝ ⎛⎭⎪⎫c -a 2-⎝ ⎛⎭⎪⎫-c -a 2=2c =6,解得c =9.答案:9B 级——难度小题强化练1.(2018·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x-x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.2.(2018·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63 B .233C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a=433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 3.(2018·沈阳一模)设不等式x 2-2ax +a +2≤0的解集为A ,若A ⊆[1,3],则a 的取值范围为( )A.⎝⎛⎦⎥⎤-1,115B .⎝⎛⎭⎪⎫1,115C.⎣⎢⎡⎦⎥⎤2,115D .[-1,3]解析:选A 设f (x )=x 2-2ax +a +2,因为不等式x 2-2ax +a +2≤0的解集为A ,且A ⊆[1,3],所以对于方程x 2-2ax +a +2=0,若A =∅,则Δ=4a 2-4(a +2)<0,即a 2-a -2<0,解得-1<a <2;若A ≠∅,则⎩⎪⎨⎪⎧Δ=4a 2-4a +2≥0,f 1≥0,f 3≥0,1≤a ≤3,即⎩⎪⎨⎪⎧a ≥2或a ≤-1,a ≤3,a ≤115,1≤a ≤3.所以2≤a ≤115.综上,a 的取值范围为⎝⎛⎦⎥⎤-1,115,故选A.4.(2018·武汉调研)某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A 原料2千克,B 原料3千克;生产乙产品1桶需消耗A 原料2千克,B 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在每天消耗A ,B 原料都不超过12千克的条件下,生产这两种产品可获得的最大利润为( )A .1 800元B .2 100元C .2 400元D .2 700元解析:选C 设生产甲产品x 桶,生产乙产品y 桶,每天的利润为z 元.根据题意,有⎩⎪⎨⎪⎧2x +2y ≤12,3x +y ≤12,x ≥0,x ∈N *,y ≥0,y ∈N *,z =300x +400y .作出⎩⎪⎨⎪⎧2x +2y ≤12,3x +y ≤12,x ≥0,y ≥0所表示的可行域,如图中阴影部分所示,作出直线3x +4y =0并平移,当直线经过点A (0,6)时,z 有最大值,z max =400×6=2 400,故选C.5.当x ∈(0,1)时,不等式41-x ≥m -1x恒成立,则m 的最大值为________. 解析:由已知不等式可得m ≤1x +41-x ,∵x ∈(0,1),∴1-x ∈(0,1),∵x +(1-x )=1,∴1x +41-x =⎝ ⎛⎭⎪⎫1x +41-x [x +(1-x )]=5+1-x x +4x 1-x≥5+2 1-x x ·4x1-x=9,当且仅当1-x x =4x 1-x ,即x =13时取等号,∴m ≤9,即实数m 的最大值为9. 答案:96.(2018·洛阳尖子生统考)已知x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,3x +4y ≤12,则x +2y +3x +1的取值范围是________.解析:画出不等式组表示的可行域,如图中阴影部分所示,x +2y +3x +1=1+2×y +1x +1,y +1x +1表示可行域中的点(x ,y )与点P (-1,-1)连线的斜率.由图可知,当x =0,y =3时,x +2y +3x +1取得最大值,且⎝ ⎛⎭⎪⎫x +2y +3x +1max=9.因为点P (-1,-1)在直线y =x 上,所以当点(x ,y )在线段AO 上时,x +2y +3x +1取得最小值,且⎝ ⎛⎭⎪⎫x +2y +3x +1min=3.所以x +2y +3x +1的取值范围是[3,9].答案:[3,9]。
能力升级练(三) 不等式一、选择题1.不等式|x|(1-2x)>0的解集为())A.(-∞,0)∪(0,12)B.(-∞,12C.(1,+∞)2)D.(0,12x≥0时,原不等式即为x(1-2x)>0,所以0<x<1;当x<0时,原不等式即为-x(1-2x)>0,所以2).x<0,综上,原不等式的解集为(-∞,0)∪(0,122.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定=1,故a=2.由f(x)的图象可知f(x) f(1-x)=f(1+x)知f(x)图象的对称轴为直线x=1,则有a2在[-1,1]上为增函数.所以x∈[-1,1]时,f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,令b2-b-2>0,解得b<-1或b>2.3.若a,b∈R,且a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<0a+|b|<0知,a<0,且|a|>|b|,当b≥0时,a+b<0成立,当b<0时,a+b<0成立,所以a+b<0,故选D.4.(2018湖州质检)若实数m,n满足m>n>0,则()A.-1a <-1aB.√a−√a<√a-aC.(12)a>(12)aD.m2<mnm=2,n=1,代入各选择项验证A,C,D不成立.√2-1<√2-1,只有B项成立.5.(2019四川绵阳诊断)已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y有()A.最小值20B.最小值200C.最大值20D.最大值2002×2=lg x+lg y=lg(xy),所以xy=10000,则x+y ≥2√aa =200,当且仅当x=y=100时,等号成立,所以x+y 有最小值200.6.设a>0,若关于x 的不等式x+aa -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A.16B.9C.4D.2(1,+∞)上,x+aa -1=(x-1)+aa -1+1≥2√(a -1)×a(a -1)+1=2√a +1(当且仅当x=1+√a 时取等号).由题意知2√a +1≥5.所以a ≥4.7.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为a8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批产品应生产( ) A.60件B.80件C.100件D.120件x 件,则每件产品的生产准备费用是800a 元,仓储费用是a8元,总的费用是(800a +a 8)元,由基本不等式得800a +a 8≥2√800a ·a 8=20,当且仅当800a =a8,即x=80时取等号.8.(2019湖北孝感调研)“a>b>0”是“ab<a 2+a 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件a>b>0,可知a 2+b 2>2ab ,充分性成立,由ab<a 2+a 22,可知a ≠b ,a ,b ∈R ,故必要性不成立.9.已知0<a<1a,且M=11+a+11+a,N=a 1+a +a1+a,则M ,N 的大小关系是( )A.M>NB.M<NC.M=ND.不能确定0<a<1a ,所以1+a>0,1+b>0,1-ab>0,所以M-N=1-a 1+a +1-a 1+a =2-2aa1+a +a +aa >0,即M>N.故选A .二、填空题10.已知不等式mx 2+nx-1a <0的解集为x x<-12或x>2,则m-n= .m<0且-12,2是方程mx 2+nx-1a =0的两根,∴{-12+2=-aa ,(-12)×2=-1a2,解得{a =-1,a =32或{a =1,a =-32(舍).∴m -n=-1-32=-52. -5211.设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是 .f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a-2b=m (a-b )+n (a+b ), 即4a-2b=(m+n )a+(n-m )b.于是得{a +a =4,a -a =-2,解得{a =3,a =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.12.函数y=a 2+2a -1(x>1)的最小值为 .y=a 2+2a -1=(a 2-2a +1)+2a -2+3a -1=(a -1)2+2(a -1)+3a -1=(x-1)+3a -1+2≥2√3+2.当且仅当x-1=3a -1,即x=√3+1时,等号成立.√3+213.已知x>0,y>0,x+3y+xy=9,则x+3y 的最小值为 .x>0,y>0,所以9-(x+3y )=xy=13x ·(3y )≤13·(a +3a 2)2,当且仅当x=3y ,即x=3,y=1时等号成立.设x+3y=t>0,则t 2+12t-108≥0,所以(t-6)(t+18)≥0,又因为t>0,所以t ≥6.故当x=3,y=1时,(x+3y )min =6.三、解答题14.(2019山东潍坊调研)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0上,且m,n为正数,求1a +1a的最小值.曲线y=a1-x恒过定点A,x=1时,y=1,∴A(1,1).将A点代入直线方程mx+ny-1=0(m>0,n>0), 可得m+n=1,∴1a +1a=(1a+1a)·(m+n)=2+aa+aa≥2+2√aa·aa=4,当且仅当aa =aa且m+n=1(m>0,n>0),即m=n=12时,取得等号.15.(一题多解)设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.f(x)<-m+5在[1,3]上恒成立,故mx2-mx+m-6<0,则m(a-12)2+34m-6<0在x∈[1,3]上恒成立.方法一令g(x)=m(a-12)2+34m-6,x∈[1,3].当m>0时,g(x)在[1,3]上是增函数, 所以g(x)max=g(3)=7m-6<0.所以m<67,则0<m<67.当m<0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m-6<0. 所以m<6,所以m<0.综上所述,m 的取值范围是m 0<m<67或m<0.方法二 因为x 2-x+1=(a -12)2+34>0,又因为m (x 2-x+1)-6<0,所以m<6a 2-a +1. 因为函数y=6a 2-a +1=6(a -12)2+34在[1,3]上的最小值为67,所以只需m<67即可. 因为m ≠0,所以m 的取值范围是m 0<m<67或m<0.。
高考数学二轮复习专题突破—函数的单调性、极值与最值一、单项选择题1.(2021·浙江丽水联考)若函数f(x)=(x-a)3-3x+b的极大值是M,极小值是m,则M-m的值()A.与a有关,且与b有关B.与a有关,且与b无关C.与a无关,且与b无关D.与a无关,且与b有关2.(2021·山东青岛期末)若函数f(x)=x2-ax+ln x在区间(1,e)上单调递增,则实数a的取值范围是() A.[3,+∞) B.(-∞,3]C.[3,e2+1]D.[-e2+1,3],则下列关于函数f(x)的说法正确的是()3.(2021·陕西西安月考)已知函数f(x)=3xe xA.在区间(-∞,+∞)上单调递增B.在区间(-∞,1)上单调递减,无极小值C.有极大值3eD.有极小值3,无极大值e4.(2021·湖南岳阳期中)已知直线y=kx(k>0)和曲线f(x)=x-a ln x(a≠0)相切,则实数a的取值范围是()A.(-∞,0)∪(0,e)B.(0,e)C.(0,1)∪(1,e)D.(-∞,0)∪(1,e)5.(2021·湖北十堰二模)已知函数f(x)=2x3+3mx2+2nx+m2在x=1处有极小值,且极小值为6,则m=() A.5 B.3C.-2D.-2或56.(2021·四川成都二模)已知P是曲线y=-sin x(x∈[0,π])上的动点,点Q在直线x-2y-6=0上运动,则当|PQ|取最小值时,点P的横坐标为()A.π4B.π2C.2π3D.5π67.(2021·湖北荆门期末)已知曲线y=sinxe x+1(x≥0)的一条切线的斜率为1,则该切线的方程为()A.y=x-1B.y=xC.y=x+1D.y=x+2二、多项选择题8.(2021·广东湛江一模)已知函数f(x)=x3-3ln x-1,则()A.f(x)的极大值为0B.曲线y=f(x)在点(1,f(1))处的切线为x轴C.f(x)的最小值为0D.f(x)在定义域内单调9.(2021·山东淄博二模)已知e是自然对数的底数,则下列不等关系中错误的是()A.ln 2>2e B.ln 3<3eC.ln π>πe D.ln3ln π<3π10.(2021·辽宁沈阳二模)已知函数f(x)={2x+2,−2≤x≤1,lnx-1,1<x≤e,若关于x的方程f(x)=m恰有两个不同的根x1,x2(x1<x2),则(x2-x1)f(x2)的取值可能是()A.-3B.-1C.0D.2三、填空题11.(2021·福建三明二模)已知曲线y=ln x+ax与直线y=2x-1相切,则a=.12.(2021·江苏无锡月考)试写出实数a的一个取值范围,使函数f(x)=sinx-ae x有极值.13.(2021·四川成都月考)设函数f(x)=e x-2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是.四、解答题14.(2021·山东潍坊二模)已知函数f(x)=ax 2+bx+ce x的单调递增区间是[0,1],极大值是3e.(1)求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)若存在非零实数x0,使得f(x0)=1,求f(x)在区间(-∞,m](m>0)上的最小值.15.(2021·河北唐山期末)已知函数f(x)=a e x-x-1(a∈R),g(x)=x2.(1)讨论函数f(x)的单调性;(2)当a>0时,若曲线C1:y1=f(x)+x+1与曲线C2:y2=g(x)存在唯一的公切线,求实数a的值.16.(2021·浙江嘉兴月考)已知f(x)=a2ln x-1ax2-(a2-a)x(a≠0).2(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处取得极大值,求实数a的取值范围.答案及解析1.C解析因为f(x)=(x-a)3-3x+b,所以f'(x)=3(x-a)2-3,令f'(x)=3(x-a)2-3=0,得x=a-1或x=a+1,判断可得函数的极大值M=f(a-1)=-1-3(a-1)+b=2-3a+b,极小值m=f(a+1)=1-3(a+1)+b=-2-3a+b,因此M-m=4.故选C.2.B解析依题意f'(x)=2x-a+1x ≥0在区间(1,e)上恒成立,即a≤2x+1x在区间(1,e)上恒成立,令g(x)=2x+1x (1<x<e),则g'(x)=2-1x2=2x2-1x2=(√2x+1)(√2x-1)x2>0,所以g(x)在区间(1,e)上单调递增,而g(1)=3,所以a≤3,即实数a的取值范围是(-∞,3].故选B.3.C解析由题意得函数f(x)的定义域为R,f'(x)=3(1−x)e x.令f'(x)=0,得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,故f(1)是函数f(x)的极大值,也是最大值,且f(1)=3e,函数f(x)无极小值.故选C.4.A解析设直线y=kx(k>0)与曲线f(x)=x-a ln x(a≠0)相切于点P(x0,x0-a ln x0)(x0>0).由题意得,f'(x)=1-ax ,则以P为切点的切线方程为y-x0+a ln x0=1-ax0(x-x0),因为该切线过原点,所以-x0+a ln x0=1-ax0(-x0),因此ln x0=1,即x0=e,所以k=1-ae>0,得a<e,又a≠0,故实数a的取值范围是(-∞,0)∪(0,e).故选A.5.A解析f'(x)=6x2+6mx+2n.因为f(x)在x=1处有极小值,且极小值为6,所以{f'(1)=0, f(1)=6,即{6+6m+2n=0,2+3m+2n+m2=6,解得{m=5,n=−18或{m=−2,n=3.当m=5,n=-18时,f'(x)=6x2+30x-36=6(x+6)(x-1),则f(x)在区间(-∞,-6)上单调递增,在区间(-6,1)上单调递减,在区间(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=6.当m=-2,n=3时,f'(x )=6x 2-12x+6=6(x-1)2≥0, 则f (x )在R 上单调递增,f (x )无极值. 综上可得,m=5,n=-18. 6.C 解析 如图所示,要使|PQ|取得最小值,则曲线y=-sin x (x ∈[0,π])在点P 处的切线与直线x-2y-6=0平行,对函数y=-sin x 求导得y'=-cos x ,令y'=12,可得cos x=-12,由于0≤x ≤π,所以x=2π3.故选C . 7.C 解析 由题得y'=cosx·e x -sinx·e x(e x )2=cosx-sinxe x.设切点为(x 0,y 0)(x 0≥0),则y'|x=x 0=cos x 0-sin x 0e x 0,由y'|x=x 0=1,得e x 0=cos x 0-sin x 0.令f (x )=e x -cos x+sin x (x ≥0),则f'(x )=e x +sin x+cos x=e x +√2sin x+π4,当0≤x<1时,f'(x )>0,当x ≥1时,e x ≥e,√2sin (x +π4)≥-√2,f'(x )>0,所以∀x ≥0,f'(x )>0,所以f (x )在区间[0,+∞)上单调递增,则f (x )≥f (0)=0,所以方程e x 0=cos x 0-sin x 0只有一个实根x 0=0,所以y 0=sin0e 0+1=1,故切点为(0,1),切线斜率为1,所以切线方程为y=x+1.8.BC 解析 函数f (x )=x 3-3ln x-1的定义域为(0,+∞),f'(x )=3x 2-3x =3x (x 3-1).令f'(x )=3x (x 3-1)=0,得x=1,列表得:f (x ) 单调递减单调递增所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调,故C 正确,A,D 错误;对于B,由f (1)=0及f'(1)=0,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-0=0(x-1),即y=0,故B 正确,故选BC .9.ACD 解析 令f (x )=ln x-xe ,x>0,则f'(x )=1x −1e ,令f'(x )=0,得x=e,当0<x<e 时,f'(x )>0,当x>e 时,f'(x )<0,所以f (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,故f (x )max =f (e)=ln e -ee =0,则f (2)=ln 2-2e <0得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0得ln 3<3e ,故B 正确;f (π)=ln π-πe <0得ln π<πe ,故C 错误;对于D 项,令g (x )=lnx x,x>0,则g'(x )=1−lnx x 2,当0<x<e时,g'(x )>0,当x>e 时,g'(x )<0,所以g (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,则g (3)>g (π),得ln33>ln ππ,即ln3ln π>3π,故D 错误.故选ACD .10.BC 解析 画出函数f (x )的图象,如图,因为f (x )=m 的两根为x 1,x 2(x 1<x 2),所以x 1=m-22,x 2=e m+1,m ∈(-1,0],从而(x 2-x 1)·f (x 2)=e m+1-m-22m=m e m+1-m 22+m.令g (x )=x e x+1-12x 2+x ,x ∈(-1,0],则g'(x )=(x+1)e x+1-x+1.因为x ∈(-1,0],所以x+1>0,e x+1>e 0=1,-x+1>0, 所以g'(x )>0,从而g (x )在区间(-1,0]上单调递增.又g (0)=0,g (-1)=-52,所以g (x )∈-52,0,即(x 2-x 1)·f (x 2)的取值范围是-52,0,故选BC . 11.1 解析 由题意得函数y=ln x+ax 的定义域为x>0,y'=1x +a.设曲线y=ln x+ax 与直线y=2x-1相切于点P (x 0,y 0),可得1x 0+a=2,即ax 0=2x 0-1①,y 0=ln x 0+ax 0,y 0=2x 0-1,所以ln x 0+ax 0=2x 0-1②,联立①②,可得x 0=1,a=1. 12.(-√2,√2)(答案不唯一) 解析 f (x )=sinx-a e x的定义域为R ,f'(x )=cosx-sinx+ae x,由于函数f (x )=sinx-a e x有极值,所以f'(x )=cosx-sinx+ae x有变号零点,因此由cos x-sin x+a=0,即a=sin x-cosx=√2sin x-π4,可得a ∈(-√2,√2),答案只要为(-√2,√2)的子集都可以. 13.e 2-4 解析 f'(x )=e x -2.设切点为(t ,f (t )),则f (t )=e t -2t ,f'(t )=e t -2,所以切线方程为y-(e t -2t )=(e t -2)(x-t ),即y=(e t -2)x+e t (1-t ),所以a=e t -2,b=e t (1-t ),则2a+b=-4+3e t -t e t .令g (t )=-4+3e t -t e t ,则g'(t )=(2-t )e t .当t>2时,g'(t )<0,g (t )在区间(2,+∞)上单调递减;当t<2时,g'(t )>0,g (t )在区间(-∞,2)上单调递增,所以当t=2时,g (t )取最大值g (2)=-4+3e 2-2e 2=-4+e 2,即2a+b 的最大值为e 2-4. 14.解 (1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a-b)x+b-ce x.因为e x >0,所以f'(x )≥0的解集与-ax 2+(2a-b )x+b-c ≥0的解集相同,且同为[0,1].所以有{a>0,2a-ba=1,b-c-a=0,解得a=b=c.所以f(x)=a(x 2+x+1)e x(a>0),f'(x)=-ax2+axe x(a>0).因为a>0,所以当x<0或x>1时,f'(x)<0,函数f(x)单调递减,当0≤x≤1时,f'(x)≥0,函数f(x)单调递增,且f'(1)=0,所以f(x)在x=1处取得极大值,又由题知,极大值为3e,所以f(1)=3ae =3e,解得a=1,所以a=b=c=1.所以f(x)=x 2+x+1e x,f'(x)=-x2+xe x.所以f(-1)=1e-1=e,f'(-1)=-2e-1=-2e.所以曲线y=f(x)在点(-1,f(-1))处的切线方程为y-e=-2e(x+1),即y=-2e x-e.(2)由(1)知函数f(x)在区间(-∞,0)上单调递减,在区间(0,1)上单调递增,且f(0)=1e0=1, 所以满足f(x0)=1(x0≠0)的x0∈(1,+∞).所以当0<m≤x0时,由函数f(x)的单调性易知,f(x)在区间(-∞,m]上的最小值为f(0)=1;当m>x0时,f(m)<f(x0)=f(0)=1,f(x)在区间(-∞,m]上的最小值为f(m)=m 2+m+1 e m.综上所述,f(x)在区间(-∞,m]上的最小值为{1,0<m≤x0, m2+m+1e m,m>x0.15.解 (1)f'(x)=a e x-1.当a≤0时,f'(x)<0恒成立,f(x)在区间(-∞,+∞)上单调递减.当a>0时,由f'(x)=0,得x=-ln a.当x<-ln a时,f'(x)<0,f(x)单调递减;当x>-ln a时,f'(x)>0,f(x)单调递增.综上,当a ≤0时,f (x )在区间(-∞,+∞)上单调递减;当a>0时,f (x )在区间(-∞,-ln a )上单调递减,在区间(-ln a ,+∞)上单调递增.(2)因为曲线C 1:y 1=a e x 与曲线C 2:y 2=x 2存在唯一的公切线,设该公切线与曲线C 1,C 2分别切于点(x 1,a e x 1),(x 2,x 22),显然x 1≠x 2.由于y 1'=a e x,y 2'=2x ,所以a e x 1=2x 2=ae x 1-x 22x 1-x 2,因此2x 2x 1-2x 22=a e x 1−x 22=2x 2-x 22,所以2x 1x 2-x 22=2x 2,即x 2=2x 1-2.由于a>0,故x 2>0,从而x 2=2x 1-2>0,因此x 1>1.此时a=2x2e x 1=4(x 1-1)e x 1(x 1>1).设F (x )=4(x-1)e x(x>1),则问题等价于当x>1时,直线y=a 与曲线y=F (x )有且只有一个公共点.又F'(x )=4(2−x)e x,令F'(x )=0,解得x=2,所以F (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减.而F (2)=4e 2,F (1)=0,当x →+∞时,F (x )→0, 所以F (x )的值域为0,4e 2,故a=4e 2. 16.解 (1)由题意得,当a=1时,函数f (x )=ln x-12x 2,其定义域为(0,+∞),因此f'(x )=1x -x=1−x 2x.令f'(x )>0,即1-x 2>0,得0<x<1,所以f (x )在区间(0,1)上单调递增; 令f'(x )<0,即1-x 2<0,得x>1,所以f (x )在区间(1,+∞)上单调递减. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)由题意,函数f (x )=a 2ln x-12ax 2-(a 2-a )x (a ≠0)的定义域为(0,+∞),11且f'(x )=a 2x -ax-(a 2-a )=-a(x+a)(x-1)x .当a<0时,-a>0, ①若-1<a<0,令f'(x )>0,即(x+a )(x-1)>0,得x>1或0<x<-a ;令f'(x )<0,即(x+a )(x-1)<0,得-a<x<1,所以函数f (x )在区间(1,+∞),(0,-a )上单调递增,在区间(-a ,1)上单调递减.所以当x=1时,函数f (x )取得极小值,不符合题意.②若a=-1,可得f'(x )=(x-1)2x ≥0,此时函数f (x )在区间(0,+∞)上单调递增,函数f (x )无极值,不符合题意.③若a<-1,令f'(x )>0,即(x+a )(x-1)>0,得x>-a 或0<x<1,令f'(x )<0,即(x+a )(x-1)<0,得1<x<-a ,所以函数f (x )在区间(1,-a )上单调递减,在区间(0,1),(-a ,+∞)上单调递增,所以当x=1时,函数f (x )取得极大值,符合题意.当a>0时,-a<0.令f'(x )>0,即(x+a )(x-1)<0,得0<x<1;令f'(x )<0,即(x+a )(x-1)>0,得x>1,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,所以当x=1时,函数f (x )取得极大值,符合题意.综上可得,实数a 的取值范围是(-∞,-1)∪(0,+∞).。
考点突破练17 基本初等函数、函数的应用一、选择题1.(2022浙江,7)已知2a=5,log83=b,则4a3b=()A.25B.5C.D.2.(2023山东济南一模)自然数22 023的位数为()(参考数据:lg 2≈0.301 0)A.607B.608C.609D.6103.(2023陕西西安一模)设a>b>0,a+b=1且x=()b,y=lo a,z=lo ab,则x,y,z的大小关系是()A.x<z<yB.z<y<xC.y<z<xD.x<y<z4.(2020全国Ⅲ,理4)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)() A.60 B.63 C.66 D.695.函数f(x)=的大致图象为()6.(2023陕西宝鸡二模)已知函数f(x)=lg x+lg(2x),则()A.f(x)在(0,1)上是减函数,在(1,2)上是增函数B.f(x)在(0,2)上是减函数C.f(x)的图象关于直线x=1对称D.f(x)有最小值,但无最大值7.(2023贵州遵义模拟)“函数f(x)=m(3|x|+2)3|x|存在零点”的一个必要不充分条件为()A.m>B.≤m<1C.m>2D.<m<8.(2023山西运城二模)昆虫信息素是昆虫用来表示聚集、觅食、交配、警戒等信息的化学物质,是昆虫之间起化学通讯作用的化合物,是昆虫交流的化学分子语言,包括利它素、利己素、协同素、集合信息素、追踪信息素、告警信息素、疏散信息素、性信息素等.人工合成的昆虫信息素在生产中有较多的应用,尤其在农业生产中的病虫害的预报和防治中较多使用.研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足ln y=ln t x2+a,其中k,a为非零常数.已知释放信息素1秒后,在距释放处2米的地方测得信息素浓度为m;若释放信息素4秒后,距释放处b米的位置,信息素浓度为,则b=()A.3B.4C.5D.69.已知函数f(x)=ax24ax+2(a<0),则关于x的不等式f(x)>log2x的解集是()A.(∞,4)B.(0,1)C.(0,4)D.(4,+∞)10.(2023广西玉林二模)若函数f(x)=x2e x ln x的最小值为m,则函数g(x)=x2e e x+2ln x的最小值为()A.m1B.e m+1C.m+1D.e m111.(2022山西太原一模)已知实数x,y满足x·2x=7,y(log2y2)=28,则xy=()A.112B.28C.7D.412.(2023宁夏银川一模)已知函数f(x)=若关于x的方程f2(x)+m=(m+)f(x)恰有5个不同的实根,则m的取值范围为()A.(0,1)B.(1,+∞)C.[1,2)D.[2,+∞)13.已知偶函数f(x)的定义域为区间(∞,0)∪(0,+∞),且当x∈(0,+∞)时,f(x)=则方程f(x)+x2=2的根的个数为()A.3B.6C.5D.414.(2023陕西汉中二模)设x1,x2分别是函数f(x)=xa x和g(x)=x log a x1的零点(其中a>1),则x1+4x2的取值范围为()A.(4,+∞)B.[4,+∞)C.(5,+∞)D.[5,+∞)二、填空题15.(2023山东济宁二模)已知a∈R,函数f(x)=f(f())=2,则a=.16.函数f(x)=9x+312x的最小值是.17.(2023山东日照一模)对任意正实数a,记函数f(x)=|lg x|在[a,+∞)上的最小值为m a,函数g(x)=sin在[0,a]上的最大值为M a,若M a m a=,则a的所有可能值为.18.已知函数f(x)=若x1,x2,x3均不相等,且f(x1)=f(x2)=f(x3),则x1x2x3的取值范围是.19.(2023山东泰安一模)已知函数f(x)=(a>0且a≠1)是R上的增函数,且关于x的方程|f(x)|=x+3恰有两个不相等的实数解,则a的取值范围是.20.定义在R上的奇函数f(x)满足f(x)=f(2x),且当x∈[0,1]时,f(x)=x2,则函数g(x)=f(x)的所有零点之和为.考点突破练17基本初等函数、函数的应用1.C解析由log83=b,得8b=3,即23b=3,则2a3b=,所以4a3b=,故选C.2.C解析因为lg22023=2023lg2≈2023×0.3010=608.923,所以22023≈10608.923,即22023的位数为608+1=609.故选C.3.A解析由a>b>0,a+b=1,可得0<b<<a<1,则z=lo ab=lo ab=lo ab=1,∵0<b<1,∴log b a<log b b=1,则y=lo a=log b a>log b b=1,∵x=()b<1,∴x<z<y.故选A.4.C解析由=0.95K,得,两边取以e为底的对数,得0.23(t*53)=ln19≈3,所以t*≈66.5.B解析∵f(x)=,∴f(x)==f(x),∴函数为奇函数,排除C;0<f(2)=,排除A,D.故选B.6.C解析由f(x)=lg x+lg(2x)的定义域为(0,2),则f(x)=lg x+lg(2x)=lg(x2+2x),∵y=x2+2x在(0,1)上是增函数,在(1,2)上是减函数,且y=lg x在(0,+∞)上是增函数,故f(x)在(0,1)上是增函数,在(1,2)上是减函数,A,B错误;由f(2x)=lg(2x)+lg x=f(x),得f(x)的图象关于直线x=1对称,C正确;因为y=x2+2x在x=1时取得最大值,且y=lg x在(0,+∞)上是增函数,故f(x)有最大值,但无最小值,D错误,故选C.7.A解析令f(x)=0,化简可得m=1,令g(x)=1,易得函数g(x)为偶函数,且在(∞,0]上是减函数,在[0,+∞)上是增函数,又g(0)=,且g(x)<1,故m=g(x)有零点,则m<1,所求范围要比此大,选项中仅A符合.故选A.8.B解析由题意ln m=4k+a,ln=ln4b2+a,所以ln m ln=4k+a(ln4b2+a),即4k+b2=0.又k≠0,所以b2=16.因为b>0,所以b=4.故选B.9.C解析由题设,f(x)的图象的对称轴为直线x=2且开口向下,则f(x)在(0,2)上单调递增,在(2,+∞)上单调递减.由f(x)=ax24ax+2=ax(x4)+2,得f(x)的图象恒过(4,2)且f(0)=2,所以在(0,4)上f(x)>2,在(4,+∞)上f(x)<2.y=log2x在(0,+∞)上单调递增,且在(0,4)上y<2,在(4,+∞)上y>2,所以f(x)>log2x的解集为(0,4).故选C.10.C解析由题意x∈(0,+∞),则e x∈(0,+∞),∵f(e x)=(e x)2e e x ln(e x)=x2e e x+2ln x1,∴g(x)=x2e e x+2ln x=f(e x)+1,∵f(x)的最小值为m,∴f(e x)的最小值也为m,∴g(x)min=f(e x)min=m+1.故选C.11.B解析由题可知x,y>0.由y(log2y2)=28,得log2=7.又,则log2=7,显然log2>0.令f(x)=x·2x,x>0,则f'(x)=2x+x·2x ln2=2x(1+x ln2)>0,即f(x)在(0,+∞)上单调递增.∵x·2x=log2=7,即f(x)=f=7,∴x=log2又log2,∴x=,即xy=28.12.D解析∵f2(x)+m=(m+)f(x),f2(x)(m+)f(x)+m=0,(f(x))(f(x)m)=0,∴f(x)=或f(x)=m.作出函数f(x)的图象如图所示,由图知f(x)的图象与y=有两个交点,若方程f2(x)+m=(m+)f(x)恰有5个不同的实根,则f(x)的图象与y=m有三个公共点,所以m的取值范围是[2,+∞).故选D.13.B解析方程f(x)+x2=2根的个数⇔函数y=f(x)与函数y=x2+2的图象的交点个数.当0<x≤2时,f(x)=2|x1|,f(x)的图象是由y=2|x|在(1,1]上的图象向右平移一个单位长度得到,则f(x)的图象关于直线x=1对称.当x∈(2,4]时,f(x)=f(x2)1的图象可看作由f(x)在(0,2]上的图象向右平移2个单位长度,再向下平移1个单位长度得到,同理可得f(x)在(4,+∞)上的图象.又因为f(x)是偶函数,所以f(x)在(∞,0)∪(0,+∞)上的图象如右,由图象可知两函数图象有6个交点.故选B.14.C解析令f(x)=0,得x1=,即,所以x1是y=和y=a x(a>1)的图象的交点,且显然0<x1<1,令g(x)=0,得x2log a x21=0,即log a x2=,所以x2是y=和y=log a x(a>1)的图象的交点,因为y=a x与y=log a x的图象关于直线y=x对称,所以两交点也关于直线y=x对称,所以有x1=log a x2=,所以x1+4x2=x1+,y=x+在(0,1)上是减函数,所以x1+4x2>1+=5.故选C.15.1解析因为>2,所以f()=log2(53)=1≤2,所以f(f())=f(1)=3+a=2,解得a=1.16.2解析f(x)=9x+312x=9x+2=2,当且仅当9x=,即x=时等号成立,所以最小值为217解析f(x)和g(x)的图象如图:当0<a<1时,m a=0,M a=sin,∴M a m a=sin,a=;当a≥1时,m a=|lg a|=lg a,M a=1,M a m a=1lg a=,a=18.(2,3)解析函数f(x)的图象如图所示.不妨设x1<x2<x3,由图得|log2x1|=|log2x2|=x3+3∈(0,1),∴log2x1=log2x2,即x1x2=1.又x3∈(2,3),∴x1x2x3的取值范围是(2,3).19.[]∪{}解析∵f(x)是R上的增函数,∴y=1+log a|x1|在(∞,0]上是增函数,可得0<a<1,且0+4a≥1+0,即a<1,作出y=|f(x)|和y=x+3的图象如图所示.由图象可知|f(x)|=x+3在(0,+∞)上有且只有一解,可得4a≤3,或x2+4a=x+3,即有Δ=14(4a3)=0,即有a或a=由图象可知当x≤0时|f(x)|=x+3有且只有一解,则a的取值范围是[]∪{}.20.18解析由f(x)是R上的奇函数,得f(x)的图象关于原点对称.由f(x)=f(2x),得f(x)的图象关于直线x=1对称,∴f(x)的周期T=4×(10)=4.又f(2+x)=f(2+x4)=f(x2)=f(2x),∴f(x)的图象关于点(2,0)对称.∵函数y=的图象关于原点对称,y=的图象可由y=的图象向右平移2个单位长度得到,∴y=的图象关于点(2,0)对称.画出y=f(x),y=的图象如下图所示.由图可知,y=f(x),y=的图象有9个公共点,∴g(x)所有零点之和为9×2=18.。
高考数学二轮复习专题突破—基本初等函数、函数的应用一、单项选择题1.(2021·陕西西安月考)函数f (x )=xx 2-1−12的零点个数是( ) A.1 B.2C.3D.42.(2021·福建泉州一模)已知a=32,b=√3√2,c=ln3ln2,则( ) A.a>b>c B.c>b>a C.c>a>bD.a>c>b3.(2021·浙江绍兴二模)函数f (x )=log a x+ax (a>1)的图象大致是( )4.(2021·湖北十堰期中)已知关于x 的方程9x -2a ·3x +4=0有一个大于2log 32的实数根,则实数a 的取值范围为( ) A.(0,52)B.(52,4)C.(52,+∞)D.(4,+∞)5.(2021·山东潍坊二模)关于函数f (x )={2x -a,0≤x <2,b-x,x ≥2,其中a ,b ∈R ,给出下列四个结论:甲:6是该函数的零点;乙:4是该函数的零点;丙:该函数的零点之积为0;丁:方程f (x )=52有两个根.若上述四个结论中有且只有一个结论错误,则该错误结论是( ) A.甲B.乙C.丙D.丁6.(2021·湖南师大附中期末)已知函数f(x)={lnx,x≥1,-ln(2-x),x<1,则方程(x-1)f(x)=1的所有实根之和为()A.2B.3C.4D.17.(2021·福建厦门期末)已知函数f(x)={|log3x|,0<x≤√3,1−log3x,x>√3,若关于x的方程f2(x)+mf(x)+112=0有6个解,则实数m的取值范围为()A.(-1,0)B.-1,-√33C.-1,-23D.-23,-√33二、多项选择题8.(2021·江苏扬州期末)17世纪初,约翰·纳皮尔为了简化计算发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡儿的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,两边取常用对数,则有lg N=n+lg a,现给出部分常用对数值(如下表),则下列说法正确的有()A.310在区间(104,105)内B.250是15位数C.若2-50=a×10m(1≤a<10,m∈Z),则m=-16D.若m32(m∈N*)是一个35位正整数,则m=129.(2021·北京延庆模拟)同学们,你们是否注意到?自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为f(x)=a e x+b e-x(其中a,b是非零常数,无理数e=2.718 28…),对于函数f(x),下列说法正确的是()A.如果a=b,那么函数f(x)为奇函数B.如果ab<0,那么f(x)为单调函数C.如果ab>0,那么函数f(x)没有零点D.如果ab=1,那么函数f(x)的最小值为210.(2021·海南第四次模拟)已知k>0,函数f(x)={-ln(k-x),x<0,ln(k+x),x>0,则()A.f(x)是奇函数B.f(x)的值域为RC.存在k,使得f(x)在定义域上单调递增D.当k=12时,方程f(x)=1有两个实数根三、填空题11.(2021·北京通州区一模)已知函数f(x)={x2+2x,x≤t,lnx,x>t(t>0)有两个零点,且其图象过点(e,1),则常数t的一个取值为.12.(2021·山东济宁期末)已知函数f(x)=e x+x2+ln(x+a)与函数g(x)=e x+e-x+x2(x<0)的图象上存在关于y轴对称的点,则实数a的取值范围为.答案及解析1.B 解析 令f (x )=xx 2-1−12=0,即x 2-2x-1=0,解得x=1±√2,经检验x=1±√2是方程f (x )=0的解,故f (x )有两个零点.故选B . 2.C 解析 a=32,b=√3√2=√62,则a>b ,因为a-c=32−ln3ln2=3ln2−2ln32ln2=ln8−ln92ln2<0,所以a<c ,所以b<a<c.故选C .3.A 解析 令g (x )=x+ax ,由于a>1,所以g (x )在区间(0,√a )上单调递减,在区间(√a ,+∞)上单调递增,故f (x )在区间(0,√a )上单调递减,在区间(√a ,+∞)上单调递增,对照题中选项中的图象,知A 选项正确.4.C 解析 令t=3x ,因为方程9x -2a·3x +4=0有一个大于2log 32的实数根,即x>2log 32,则t>32log 32=4,所以函数f (t )=t 2-2at+4有一个大于4的零点,所以f (4)=42-8a+4<0,解得a>52,即实数a 的取值范围是(52,+∞).故选C .5.B 解析 若甲是错误的结论,则由乙正确可得b=4,由丙正确得a=1,此时丁不正确,不符合题意;若乙是错误的结论,则由甲正确可得b=6,由丙正确得a=1,此时丁也正确,符合题意;若丙或丁是错误的结论,则甲和乙不可能同时正确,不符合题意,故选B .6.A 解析 当x>1时,2-x<1,所以f (2-x )=-ln[2-(2-x )]=-ln x=-f (x ),当x<1时,2-x>1,所以f (2-x )=ln(2-x )=-f (x ),当x=1时,f (1)=0,所以函数f (x )的图象关于点(1,0)对称.显然x=1不是方程的根,当x ≠1时,原方程可变为f (x )=1x-1,画出函数y=f (x )和y=1x-1的图象(如图所示).由图知,二者仅有两个公共点,设为点A (x 1,y 1),B (x 2,y 2),因为函数y=f (x )和y=1x-1的图象都关于点(1,0)对称,所以点A ,B 关于点(1,0)对称,所以x 1+x 22=1,即x 1+x 2=2.故选A .7.D 解析 令f (x )=t ,则原方程可化为t 2+mt+112=0,画出函数f (x )的图象(如图).由图象可知,若关于x 的方程f 2(x )+mf (x )+112=0有6个解,则关于t 的方程t 2+mt+112=0必须在区间0,12上有两个不相等的实根,由二次方程根的分布得{ 112>0,Δ=m 2-13>0,14+12m +112>0,-m 2∈(0,12),解得m ∈-23,-√33.故选D . 8.ACD 解析 对A,令x=310,则lg x=lg 310=10lg 3=4.77,所以x=104.77∈(104,105),A 正确;对B,令y=250,则lg y=lg 250=50lg 2=15.05,所以y=1015.05∈(1015,1016),则250是16位数,B 错误;对C,令z=2-50,则lg z=lg 2-50=-50lg 2=-15.05,又因为2-50=a×10m (1≤a<10,m ∈Z ),所以10-15.05=a×10m ,则10-15.05-m =a ∈[100,101),所以m=-16,C 正确;对D,令k=m 32,则lg k=lg m 32=32lg m ,因为m 32(m ∈N *)是一个35位正整数,所以34<32lg m<35,则3432<lg m<3532,即1.063<lg m<1.094,所以m=12,D 正确.故选ACD .9.BC解析对A,当a=b时,f(x)=a e-x+a e x,此时f(-x)=a e x+a e-x=f(x),故f(x)为偶函数.故A 错误.对B,当ab<0时,若a>0,b<0,则函数y=a e x在其定义域上单调递增,函数y=be x在其定义域上也单调递增,故函数f(x)=a e x+be x在其定义域上单调递增;若a<0,b>0,则函数y=a e x在其定义域上单调递减,函数y=be x 在其定义域上也单调递减,故函数f(x)=a e x+be x在其定义域上单调递减.综上,如果ab<0,那么f(x)为单调函数.故B正确.对C,当a>0,b>0时,函数f(x)=a e x+b e-x≥2√ae x·be-x=2√ab>0,当a<0,b<0时,函数f(x)=-(-a e x-b e-x)≤-2√(-ae x)·(-be-x)=-2√ab<0.综上,如果ab>0,那么函数f(x)没有零点.故C正确.对D,由ab=1,得b=1a.当a<0,b<0时,函数f(x)=--a e x-1ae-x≤-2√(-ae x)·(-1ae-x)=-2;当a>0,b>0时,函数f(x)=a e x+1a e-x≥2√ae x·1ae-x=2.故ab=1时,函数f(x)没有最小值.故D错误.10.AC解析当x>0时,f(-x)=-ln(k+x)=-f(x),当x<0时,f(-x)=ln(k-x)=-f(x),所以f(x)是奇函数,故选项A正确;当x>0时,f(x)=ln(k+x)单调递增,且f(x)>ln k,当x<0时,f(x)=-ln(k-x)单调递增,且f(x)<-ln k,f(x)的值域为(-∞,-ln k)∪(ln k,+∞),若k≥1,ln k≥0,此时f(x)的值域不包含0,且f(x)在定义域上单调递增,故选项B错误,选项C正确;对于选项D,若k=12,ln k=-ln 2,而ln 2<1,由前面的分析可知,方程f(x)=1在区间(-∞,0)上没有实数根,在区间(0,+∞)上有一个实数根,故选项D错误.11.2(答案不唯一)解析由x2+2x=0可得x=0或x=-2,由ln x=0可得x=1,因为函数f(x)={x2+2x,x≤t,lnx,x>t(t>0)有两个零点,且其图象过点(e,1),所以e>t≥1.所以t可取2.12.(-∞,e)解析由题意得,g(-x)=f(x)在区间(0,+∞)上有解,即e-x=ln(x+a)在区间(0,+∞)上有解,所以函数y=e-x与函数y=ln(x+a)的图象在区间(0,+∞)上有交点.如图,函数y=ln(x+a)的图象是由函数y=ln x的图象左右平移得到的,当y=ln x的图象向左平移至使y=ln(x+a)的图象经过点(0,1)时,函数y=e-x与函数y=ln(x+a)的图象交于点(0,1),将点(0,1)的坐标代入e-x=ln(x+a),有1=ln(0+a),得a=e,所以,若函数y=ln x的图象往左平移a个单位长度,且a≥e时,则函数y=e-x与函数y=ln(x+a)的图象在区间(0,+∞)上无交点.将函数y=ln x的图象向右平移时,函数y=e-x与y=ln(x+a)的图象在区间(0,+∞)上恒有交点.所以a<e,即a∈(-∞,e).。
专题突破练18 统计与统计案例1.甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.2.(2018全国卷2,文18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①;=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.3.(2018河北唐山一模,文18)某水产品经销商销售某种鲜鱼,售价为每千克20元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每千克损失3元.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了300千克这种鲜鱼,假设当天的需求量为x千克(0≤x≤500),利润为Y元.求Y关于x的函数关系式,并结合频率分布直方图估计利润Y不小于700元的概率.4.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)求正整数a,b,N的值;(2)现要从年龄低于40岁的员工中用分层抽样的方法抽取42人,则年龄在第1,2,3组的员工人数分别抽取多少?(3)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书籍进行了调查,调查结果如下所示:(单位:人)下面是年龄的分布表:根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?附:K2=,其中n=a+b+c+d.5.(2018百校联盟四月联考,文18)每年的寒冷天气都会带热“御寒经济”,以餐饮业为例,当外面太冷时,不少人都会选择叫外卖上门,外卖商家的订单就会增加,下表是某餐饮店从外卖数据中抽取的5天的日平均气温与外卖订单数(1)经过数据分析,一天内平均气温x(℃)与该店外卖订单数y(份)成线性相关关系,试建立y 关于x的回归方程,并预测气温为-12 ℃时该店的外卖订单数(结果四舍五入保留整数); (2)天气预报预测未来一周内(七天),有3天日平均气温不高于-10 ℃,若把这7天的预测数据当成真实数据,则从这7天任意选取2天,求恰有1天外卖订单数不低于160份的概率.附注:回归方程x+中斜率和截距的最小二乘估计公式分别为:.6.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:旧养殖法新养殖法(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:,K2=.7.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.(1)估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;(2)K2=,其中8.(2018全国百强校最后一卷,文19)下表为2014年至2017年某百货零售企业的线下销售额(单位:万元),其中年份代码x=年份-2 013.(1)已知y与x具有线性相关关系,求y关于x的线性回归方程,并预测2018年该百货零售企业的线下销售额;(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调査平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了55位男顾客、50位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有10人、女顾客有20人,能否在犯错误的概率不超过0.025的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?参考公式及数据:,K2=,n=a+b+c+d.参考答案专题突破练18统计与统计案例1.解 (1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.2.解(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,答出其中任意一种或其他合理理由均可得分)3.解(1)=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.0025×100+450×0.001 5×100=265.(2)当日需求量不低于300千克时,利润Y=(20-15)×300=1 500(元);当日需求量不足300千克时,利润Y=(20-15)x-(300-x)×3=8x-900(元);故Y=由Y≥700得,200≤x≤500,所以P(Y≥700)=P(200≤x≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7.4.解(1)总人数N==280,a=28,第3组的频率是1-5×(0.02+0.02+0.06+0.02)=0.4,所以b=280×0.4=112.(2)因为年龄低于40岁的员工在第1,2,3组,共有28+28+112=168(人),利用分层抽样在168人中抽取42人,每组抽取的人数分别为:第1组抽取的人数为28×=7(人),第2组抽取的人数为28×=7(人),第3组抽取的人数为112×=28(人),所以第1,2,3组分别抽7人、7人、28人.(3)假设H0:“是否喜欢阅读国学类书籍和性别无关”,根据表中数据,求得K2的观测值k=≈6.860 5>6.635,查表得P(K2≥6.635)=0.01,从而能有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系.5.解 (1)由题意可知=-6,=110,(x i-)2=42+22+02+(-2)2+(-4)2=40,(x i-)(y i-)=4×(-60)+2×(-25)+0×5+(-2)×30+(-4)×50=-550, 所以=-13.75,=110+13.75×(-6)=27.5,所以y关于x的回归方程为=-13.75x+27.5,当x=-12时,=-13.75x+27.5=-13.75×(-12)+27.5=192.5≈193.所以可预测当平均气温为-12 ℃时,该店的外卖订单数为193份.(2)外卖订单数不低于160份的概率就是日平均气温不高于-10 ℃的概率,由题意,设日平均气温不高于-10 ℃的3天分别记作A,B,C,另外4天记作a,b,c,d, 从这7天中任取2天结果有:(A,B),(A,C),(A,a),(A,b),(A,c),(A,d),(B,C),(B,a),(B,b),(B,c),(B,d),(C,a),(C,b ),(C,c),(C,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共21种,恰有1天平均气温不高于-10 ℃的结果有:(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(C,a),(C,b),(C,c),(C,d)共12种,所以所求概率P=.6.解 (1)旧养殖法的箱产量低于50 kg的频率为=≈15由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值到55 7.解 (1)=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5.=45×0.15+55×0.10+65×0.125+75×0.25+85×0.325+95×0.05=71.5.从男、女生各自的成绩平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知,在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K2=≈1.79.∵1.79<2.706,∴在犯错误的概率不超过0.1的前提下不能认为“数学成绩与性别有关”.8.解(1)由题意得=2.5,=200,=30,x i y i=2 355,所以=71,所以=200-71×2.5=22.5,所以y关于x的线性回归方程为=71x+22.5.由于2 018-2 013=5,所以当x=5时,=71×5+22.5=377.5,所以预测2018年该百货零售企业的线下销售额为377.5万元.故K2的观测值K2=≈6.109,由于6.109>5.024,所以可以在犯错误的概率不超过0.025 的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关.11。
2019-2020年高考数学二轮复习第三篇方法应用篇专题3.4分离常数参数法测理(一)选择题(12*5=60分)1.【xx届海南省高三二模】已知为锐角,,则的取值范围为()A. B. C. D.【答案】C2.当时,不等式恒成立,则实数的取值范围是()A.(-∞,3] B.[3,+∞) C.[,+∞)D.(-∞, ]【答案】D【解析】因为当时,不等式恒成立,所以有,记,设,则在上是增函数,所以得,故选D.3. 已知函数,若当时,恒成立,则实数的取值范围是()A. B. C. D.【答案】D【解析】是奇函数,单调递增,所以,得,所以,所以,故选D。
4.若不等式恒成立,则实数a的取值范围是( )A.(-∞,0) B.(-∞,4]C.(0,+∞) D.[4,+∞)【答案】B.5.若存在正数使成立,则的取值范围是( ) A . B . C . D . 【答案】B【解析】因为,故,,记,则单调递增,所以,若存在正数使成立,则的取值范围是. 6. 已知等比数列的前项和为,且,若对任意的, 恒成立,则实数的取值范围为( ) A. B. C. D. 【答案】A【解析】由题意知21122133221399,27,2ta S a S S a S S a a a +===-==-==,,解得, ,故恒成立,令,则, 当时, 当时, .故当时, 取得最大值为. 故选A.7.【xx 届陕西省榆林市高考模拟第一次测试】已知,若当时, 恒成 立,则实数的取值范围是( ) A. B. C. D. 【答案】B【解析】函数, 是奇函数,且在R 上是增函数; 所以不等式可化为, 即,即对任意恒成立; 时,不等式恒成立; 时,等价于对任意恒成立, 因为时, , ,所以,所以恒成立等价于的最小值,则,故选B.8.【xx 届高三训练题】若不等式对恒成立,则实数的取值范围是( ) A. B.C. D.【答案】B【解析】不等式对恒成立,即不等式对恒成立, 只需在内的图象在图象的下方即可,当时,显然不成立;当时,在同一坐标系中作出函数和函数的图象(如图所示),则,即,所以;故选B. 9.【xx 届高三山西省大同市调研】已知函数是定义在上的奇函数,当时, )3|2||(|21)(222a a x a x x f --+-=,若 ,,则实数的取值范围为( ) A. B. C. D. 【答案】B10. 设函数,对于满足的一切值都有,则实数的取值范围为( ) A. B. C. D. 【答案】D【解析】满足的一切值,都有恒成立,可知()22211110,242x a a x x ⎡⎤-⎛⎫≠∴>=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,满足的一切值恒成立, , 2111120,422x ⎡⎤⎛⎫⎛⎤∴--∈⎢⎥ ⎪ ⎥⎝⎭⎝⎦⎢⎥⎣⎦,实数的取值范围是,实数的取值范围为,故选D.11.定义在上的函数对任意都有,且函数的图象关于(1,0)成中心对称,若满足不等式()()2222f s s f t t -≤--,则当时,的取值范围是( )A .B .C .D . 【答案】D【解析】设,则.由,知,即,所以函数为减函数.因为函数的图象关于成中心对称,所以为奇函数,所以222(2)(2)(2)f s s f t t f t t -≤--=-,所以,即.因为233111t s s t s t s t s-=-=-+++,而在条件下,易求得,所以,所以33[,6]21t s ∈+,所以311[5,]21t s-∈--+,即,故选D . 12.现有两个命题:(1)若,且不等式恒成立,则的取值范围是集合;(2)若函数,的图像与函数的图像没有交点,则的取值范围是集合;则以下集合关系正确的是( ) A . B. C. D. 【答案】C【解析】对(1):由得即.不等式恒成立,等价于恒成立.这只需即可.(1)111222212(1)331111x x x y x x x x x x x x -++=+=+=++=-++≥----(当时,取等号).的取值范围是.(1)填空题(4*5=20分)13. 已知函数,若在区间上是增函数,则实数的取值范围______. 【答案】. 【解析】∵在恒成立,即在恒成立, ∵,∴,即.14.【xx 届福建省仙游金石中学高三上学期期中】 当时,不等式恒成立,则实数的取值范围是__________. 【答案】【解析】当时,不等式恒成立 等价于:当时, 恒成立 又 ∴故答案为:15.设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是 . 【答案】.【解析】∵是定义在上的奇函数,且当 时,, ∴当,有,,∴,即,∴,∴在上是单调递增函数,且满足,∵不等式)2()(2)(x f x f t x f =≥+在恒成立,∴在恒成立, 解得在恒成立,∴,解得:,则实数的取值范围是.16.【xx 届上海市长宁、嘉定区高三第一次质量调研(一模)】若不等式对任意满足的实数, 恒成立,则实数的最大值为__________. 【答案】【解析】∵不等式x 2−2y 2⩽cx(y −x)对任意满足x>y>0的实数x 、y 恒成立,∴2222222x y x y c xy x x x y y ⎛⎫- ⎪-⎝⎭=-⎛⎫- ⎪⎝⎭…,令=t>1, ∴, ()()(()222222242't t t t f t t t t t --+-+==--,当时,f′(t)>0,函数f(t)单调递增; 当时,f′(t)<0,函数f(t)单调递减。
仿真冲刺卷(二)(时间:120分钟满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·长沙一模)设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|sin πx=0},则(∁U A)∩B的子集个数为( )(A)7 (B)3 (C)8 (D)92.(2018·海南二模)已知复数z满足z(3+4i)=3-4i,为z的共轭复数,则||等于( )(A)1 (B)2 (C)3 (D)43.(2018·滁州期末)已知cos(+α)=2cos (π-α),则tan(-α)等于( )(A)-4 (B)4 (C)- (D)4.已知直线2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25相交于A,B两点,当弦AB最短时,m的值为( )(A)-(B)-6 (C)6 (D)5.(2018·江西宜春二模)若(x3+)n的展开式中含有常数项,且n的最小值为a,则dx等于( )(A)0 (B)(C)(D)49π6.一个四棱锥的三视图如图所示,其中正视图是腰长为1的等腰直角三角形,则这个几何体的体积是( )(A)(B)1 (C)(D)27.(2018·广东模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=,2bsin B+2csinC=bc+a,则△ABC的面积的最大值为( )(A)(B)(C)(D)8.函数f(x)=|ln x|-x2的图象大致为( )9.执行如图所示的程序框图,则输出s的值为( )(A)10 (B)17 (C)19 (D)3610.(2018·太原模拟)已知不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,则动点P(a,b)所形成平面区域的面积为( )(A)4 (B)8 (C)16 (D)3211.如图,F1,F2分别是双曲线C:-=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C 的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,交PQ于N.若|MF2|=|F1F2|,则C的离心率是( )(A) (B)(C) (D)12.(2018·菏泽期末)已知f(x)=若方程f(x)=mx+2有一个零点,则实数m的取值范围是( )(A)(-∞,0]∪{-6+4}(B)(-∞,-e]∪{0,-6+4}(C)(-∞,0]∪{6-3}(D)(-∞,-e]∪{0,6-3}第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2018·重庆巴蜀中学高三模拟)重庆巴蜀中学高三的某位学生的10次数学考试成绩的茎叶图如图所示,则该生数学成绩在(135,140)内的概率为.14.某公司对一批产品的质量进行检测,现采用系统抽样的方法从100件产品中抽取5件进行检测,对这100件产品随机编号后分成5组,第一组1~20号,第二组21~40号,…,第五组81~100号,若在第二组中抽取的编号为24,则在第四组中抽取的编号为.15.(2017·天津卷)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为.16.(2018·唐山期末)在三棱锥P ABC中,底面ABC是等边三角形,侧面PAB是直角三角形,且PA=PB=2,PA⊥AC,则该三棱锥外接球的表面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2018·滁州期末)已知数列{a n}是递增的等差数列,a2=3,a1,a3-a1,a8+a1成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,数列{b n}的前n项和为S n,求满足S n>的最小的n的值.18.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.19.(本小题满分12分)在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB都是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(1)求证:DE∥平面ABC;(2)求二面角E BC A的余弦值.20.(本小题满分12分)已知抛物线C:x2=4y的焦点为F,过点F的直线l交抛物线C于A,B(B位于第一象限)两点.(1)若直线AB的斜率为,过点A,B分别作直线y=6的垂线,垂足分别为P,Q,求四边形ABQP的面积;(2)若|BF|=4|AF|,求直线l的方程.21.(本小题满分12分)已知函数f(x)=ln x-(a+1)x,g(x)=-ax+a,其中a∈R.(1)试讨论函数f(x)的单调性及最值;(2)若函数F(x)=f(x)-g(x)不存在零点,求实数a的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(t为参数,m∈R),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2=(0≤θ≤π).(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;(2)已知点P是曲线C2上一点,若点P到曲线C1的最小距离为2,求m的值.23.(本小题满分10分)选修45:不等式选讲已知函数f(x)=|x-a|.(1)若f(x)≤m的解集为[-1,5],求实数a,m的值;(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).1.C 因为f(x)=lg(|x+1|-1),所以|x+1|>1.即x>0或x<-2.所以A={x|x<-2或x>0}.所以∁U A={x|-2≤x≤0}.又因为sin πx=0,所以πx=kπ(k∈Z),所以x=k.所以B={x|x=k,k∈Z}.所以(∁U A)∩B={x|-2≤x≤0}∩{x|x=k,k∈Z}={-2,-1,0}.所以(∁U A)∩B的元素个数为3.所以(∁U A)∩B的子集个数为23=8.故选C.2.A 由题意得z=,所以||=|z|===1.故选A.3.C 因为cos(+α)=2cos(π-α),所以-sin α=-2cos α⇒tan α=2,所以tan(-α)==-,故选C.4.A 因为2mx-y-8m-3=0,所以y+3=2m(x-4),即直线l恒过点M(4,-3);当AB⊥CM时,圆心到直线AB的距离最大,此时线段AB最短,则k CM==3,k AB=2m=-,故m=-.故选A.5.C 由题意知展开式的通项公式为T r+1=(x3)n-r()r=,因为展开式中含有常数项,所以3n-r=0有整数解,所以n的最小值为7.故定积分dx=π.6.A 由三视图知几何体是一个四棱锥,四棱锥的底面是一个直角梯形,梯形上底是1,下底是2,梯形的高是=,四棱锥的高是1×= ,所以四棱锥的体积是××=.故选A.7.C 由A=,2bsin B+2csin C=bc+a,可知bsin B+csin C=bcsin A+ asin A,得b2+c2=abc+a2,所以2bccos A=abc,解得a=2cos A=,又b2+c2=bc+3≥2bc,所以bc≤3.从而S△ABC=bcsin A≤.8.C 由函数的定义域为x>0,可知排除选项A;当x>1时,f′(x)=-x=,当1<x<2时,f′(x)>0,当x>2时,f′(x)<0,即f(x)在(1,2)内单调递增,在(2,+∞)内单调递减,排除选项B,D,故选C.9.C 开始s=0,k=2;第一次循环s=2,k=3;第二次循环s=5,k=5;第三次循环s=10,k=9;第四次循环s=19,k=17,不满足条件,退出循环,输出s=19.故选C.10.A {(x,y)||x|≤1,且|y|≤1}表示的平面区域是原点为中心,边长为2的正方形ABCD,不等式ax-2by≤2恒成立,即四点A(1,1), B(-1,1),C(-1,-1),D(1,-1)都满足不等式.即画出可行域如图所示.P(a,b)形成的图形为菱形MNPQ,所求面积为S=×4×2=4.故选A.11.B 因为线段PQ的垂直平分线为MN,|OB|=b,|OF1|=c.所以k PQ=,k MN=-.直线PQ为y=(x+c),两条渐近线为y=±x.由得Q(,);由得P(,).则PQ中点N(,).所以直线MN为y-=-(x-),令y=0得x M=c(1+).又因为|MF2|=|F1F2|=2c,所以3c=x M=c(1+),所以3a2=2c2.解得e2=,即e=.故选B.12.B 由题意函数f(x)的图象与直线y=mx+2有一个交点.如图是f(x)的图象,x>1时,f(x)=,f′(x)=-,设切点为(x0,y0),则切线为y-=-(x-x0),把(0,2)代入,x0=2+, f′(x0)=4-6;x≤1时,f(x)=2-e x,f′(x)=-e x,设切点为(x′0,y′0),则切线为y-(2-)=-(x-x′0),把(0,2)代入,解得x′0=1,又f(1)=2-e,f′(1)=-e1=-e,所以由图象知当m∈(-∞,-e]∪{0,4-6}时,满足题意,故选B.13.解析:由题意,共有10个数学成绩,其中成绩在(135,140)内时的分数分别为136,136,138共三个.由古典概型得,该生数学成绩在(135,140)内的概率为=0.3.答案:0.314.解析:设在第一组中抽取的号码为a1,则在各组中抽取的号码满足首项为a1,公差为20的等差数列,即a n=a1+(n-1)×20,又第二组抽取的号码为24,即a1+20=24,所以a1=4,所以第四组抽取的号码为4+(4-1)×20=64.答案:6415.解析:由题意知||=3,||=2,·=3×2×cos 60°=3,=+=+=+(-)=+,所以·=(+)·(λ-)=·-+=×3-×32+×22=λ-5=-4,解得λ=.答案:16.解析:由于PA=PB,CA=CB,PA⊥AC,则PB⊥CB,因此取PC中点O,则有OP=OC=OA=OB,即O为三棱锥P ABC外接球球心,又由PA=PB=2,得AC=AB=2,所以PC==2,所以S=4π×()2=12π.答案:12π17.解:(1)设{a n}的公差为d(d>0),由条件得所以所以a n=1+2(n-1)=2n-1.(2)b n===(-),所以S n=(1-+-+…+-)=.由>得n>12.所以满足S n>的最小的n的值为13.18.解:(1)设“当天小王的该银行卡被锁定”为事件A,则P(A)=××=.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=,P(X=2)=×=,P(X=3)=××1=,X 1 2 3P所以E(X)=1×+2×+3×=.19.(1)证明:因为△ABC,△ACD都是边长为2的等边三角形,取AC的中点O,连接BO,DO,则BO⊥AC,DO⊥AC.又因为平面ACD⊥平面ABC,所以DO⊥平面ABC.作EF⊥平面ABC,那么EF∥DO.根据题意,点F落在BO上,所以∠EBF=60°,易求得EF=DO=,所以四边形DEFO是平行四边形,所以DE∥OF,又因为DE⊄平面ABC,OF⊂平面ABC,所以DE∥平面ABC.(2)解:法一作FG⊥BC,垂足为G,连接EG.因为EF⊥平面ABC,所以EF⊥BC.又因为EF∩FG=F,所以BC⊥平面EFG,所以EG⊥BC,所以∠EGF就是二面角E BC A的平面角.Rt△EFG 中,FG=FB·sin 30°=,EF=,EG=.所以cos∠EGF== .即二面角E BC A的余弦值为.法二建立如图所示的空间直角坐标系O xyz,可知平面ABC的法向量为n1=(0,0,1),B(0,,0),C(-1,0,0),E(0,-1,),=(-1,-,0),=(0,-1,),设平面BCE的一个法向量为n2=(x,y,z),则可取n2=(-3,,1).所以cos<n1,n2>==.又由图知,所求二面角的平面角是锐角,所以二面角E BC A的余弦值为.20.解:(1)由题意可得F(0,1),又直线AB的斜率为,所以直线AB的方程为y=x+1.与抛物线方程联立得x2-3x-4=0,解之得x1=-1,x2=4.所以点A,B的坐标分别为(-1,),(4,4).所以|PQ|=|4-(-1)|=5,|AP|=|6-|=,|BQ|=|6-4|=2,所以四边形ABQP的面积为S=(+2)×5=.(2)由题意可知直线l的斜率存在,设直线l的斜率为k,则直线l:y=kx+1. 设A(x1,y1),B(x2,y2),由化简可得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.因为|BF|=4|AF|,所以-=4,所以=++2,即=-4k2=-,所以4k2=,即k2=,解得k=±.因为点B位于第一象限,所以k>0,则k=.所以l的方程为y=x+1.21.解:(1)由f(x)=ln x-(a+1)x(x>0)得:f′(x)=-(a+1)=(x>0);①当a≤-1时,f′(x)>0,f(x)在(0,+∞)上单调递增,f(x)没有最大值,也没有最小值;②若a>-1,当0<x<时,f′(x)>0,f(x)在(0,)上单调递增,当x>时,f′(x)<0,f(x)在(,+∞)上单调递减,所以当x=时,f(x)取到最大值f()=ln -1=-ln(a+1)-1,f(x)没有最小值.(2)F(x)=f(x)-g(x)=ln x-(a+1)x-(-ax+a)=ln x-x--a(x>0),由F′(x)=-1+==(x>0),当0<x<2时,F′(x)>0,F(x)单调递增,当x>2时,F′(x)<0,F(x)单调递减,所以当x=2时,F(x)取到最大值F(2)=ln 2-3-a,又x→0时,有F(x)→-∞,所以要使F(x)=f(x)-g(x)没有零点,只需F(2)=ln 2-3-a<0,所以实数a的取值范围是(ln 2-3,+∞).22.解:(1)由曲线C1的参数方程,消去参数t,可得C1的普通方程为x-y+m=0.由曲线C2的极坐标方程得3ρ2-2ρ2cos2θ=3,θ∈[0,π],所以曲线C2的直角坐标方程为+y2=1(0≤y≤1).(2)设曲线C2上任意一点P为(cos α,sin α),α∈[0,π],则点P到曲线C1的距离为d==.因为α∈[0,π],所以cos(α+)∈[-1,],2cos(α+)∈[-2,],当m+<0时,m+=-4,即m=-4-;当m-2>0时,m-2=4,即m=6.所以m=-4-或m=6.23.解:(1)因为|x-a|≤m,所以a-m≤x≤a+m,所以解得a=2,m=3.(2)a=2时等价于|x-2|+t≥|x|,当x≥2时,x-2+t≥x,因为0≤t<2,所以舍去;当0≤x<2时,2-x+t≥x,所以0≤x≤,成立; 当x<0时,2-x+t≥-x,成立.所以原不等式的解集是(-∞,].。
专题突破练12 专题三三角过关检测一、选择题1.若cos(π2-α)=√23,则cos(π-2α)=()A.29B.59C.-29D.-592.(2019四川成都七中高三模拟,理7)已知sin5x-π3-2sin 3x cos2x-π3=23,则cos2x-π3=()A.19B.-19C.13D.-133.已知函数f(x)=cos(α+π4)sin x,则函数f(x)满足() A.最小正周期为T=2πB.图象关于点(π8,-√24)对称C.在区间(0,π8)上为减函数D.图象关于直线x=π8对称4.(2019四川成都七中高三模拟,文7)若存在唯一的实数t∈0,π2,使得曲线y=cosωx-π3(ω>0)关于点(t,0)对称,则ω的取值范围是()A.53,113B.53,113C.43,103D.43,1035.已知函数f (x )=A cos(ωx+φ)(α>0,|α|<π2)的部分图象如图所示,其中N ,P 的坐标分别为(5π8,-α),(11π8,0),则函数f (x )的单调递减区间不可能为( )A .[π8,5π8]B .[-7π8,-3π8]C .[9π4,21π8]D .[9π8,33π8]6.(2019安徽蚌埠高三质检三,理8)已知函数f (x )=2sin(ωx+φ)ω>0,|φ|<π2图象的相邻两条对称轴之间的距离为π2,将函数f (x )的图象向左平移π3个单位长度后,得到函数g (x )的图象.若函数g (x )为偶函数,则函数f (x )在区间-π6,π6上的值域是( ) A.-1,12B.(-2,1)C.-1,12D.[-2,1]7.(2019湖南株洲高三二模,理7)若函数f (x )=cos2x-π4-ax ∈0,9π8恰有三个不同的零点x 1,x 2,x 3,则x 1+x 2+x 3的取值范围是( )A.5π4,11π8B.9π4,7π2C.5π4,11π8D.9π4,7π28.(2019河南洛阳高三三模,文9)锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b 2-a 2=ac ,函数f (x )=cos2x-π3-2sin π4+x sin π4-x ,则f (B )的取值范围是( )A.12,1 B.12,1C.√32,1D.12,√329.已知函数f (x )=A sin(ωx+φ)(A>0,ω>0)的图象与直线y=a (0<a<A )的三个相邻交点的横坐标分别是2,4,8,则f (x )的单调递减区间是( ) A .[6k π,6k π+3](k ∈Z )B .[6k π-3,6k π](k ∈Z )C .[6k ,6k+3](k ∈Z )D .[6k-3,6k ](k ∈Z ) 二、填空题10.(2019河北衡水二中高三三模,文15)在锐角△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,c=2,A=π3,则a+b 的取值范围是 .11.若不等式k sin 2B+sin A sin C>19sin B sin C 对任意△ABC 都成立,则实数k 的最小值为 .12.(2019黑龙江齐齐哈尔高三二模,文15)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a=2,tan A=cos α+cos αsin α+sin α,则α+αsin α+sin α的取值范围是 .三、解答题13.(2019河南八市重点高中高三二联,文17)已知向量a=(1,cos 2x-√3sin 2x),b=(-1,f(x)),且a ∥b.(1)将f(x)表示成x的函数并求f(x)的单调递增区间;(2)若f(θ)=65,π3<θ<π2,求cos 2θ的值.14.(2019安徽淮南高三一模,理17)如图,在锐角△ABC中,D为边BC的中点,且AC=√3,AD=3√2,O为2.△ABC外接圆的圆心,且cos ∠BOC=-13(1)求sin ∠BAC的值;(2)求△ABC的面积.15.(2019福建三明高三二模,理17)在△ABC中,内角A,B,C所对的边分别为a,b,c,满足ab+a2=c2.(1)求证:C=2A;(2)若△ABC的面积为a2sin2B,求角C的大小.参考答案专题突破练12 专题三三角过关检测1.D 解析由cos (π2-α)=√23,可得sin α=√23.∴cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59.2.B 解析因为sin5x-π3=sin3x+2x-π3=sin3x cos2x-π3+cos3x sin2x-π3,所以sin5x-π3-2sin3x cos2x-π3=-sin3x cos2x-π3+cos3x sin2x-π3=-sin x+π3=23,即sin x+π3=-23,所以cos2x-π3=cos2x+π3-π=-cos2x+π3=2sin 2x+π3-1=-19.故选B.3.D 解析f (x )=√22(cos x-sin x )sin x=√22[12sin2α-1−cos2α2]=√24[√2sin (2α+π4)-1],所以函数最小正周期为π,将x=π8代入得sin2x+π4=sin π2,故直线x=π8为函数的对称轴,选D . 4.B 解析由题意,因为t ∈0,π2,所以ωt -π3∈-π3,απ2−π3.因为存在唯一的实数t ∈0,π2,使得曲线y=cos ωx -π3(ω>0)关于点(t ,0)对称,则π2<απ2−π3≤3π2,解得53<α≤113.故选B.5.D 解析根据题意,设函数f (x )=A cos(ωx+φ)的周期为T ,则34T=11π8−5π8=3π4,解得T=π,又选项D 中,区间长度为33π8−9π8=3π,∴f (x )在区间[9π8,33π8]上不是单调减函数.故选D .6.D 解析因为函数f (x )=2sin(ωx+φ)ω>0,|φ|<π2图象的相邻两条对称轴之间的距离为π2,所以T=π.而ω>0,T=2π|α|⇒α=2.又因为函数f (x )的图象向左平移π3个单位长度后,得到函数g (x )的图象,所以g (x )=2sin2x+2π3+φ,由函数g (x )为偶函数,可得2π3+φ=k π+π2k ∈Z ,而|φ|<π2,所以φ=-π6,因此f (x )=2sin2x-π6.∵x ∈-π6,π6,∴2x-π6∈-π2,π6.∴sin2x-π6∈-1,12,所以函数f (x )在区间-π6,π6上的值域是[-2,1].故选D.7.A 解析由题意得方程cos2x-π4=a ,x ∈0,9π8有三个不同的实数根,令y=cos2x-π4,x ∈0,9π8,画出函数y=cos2x-π4的大致图象,如图所示.由图象得,当√22≤a<1时,方程cos2x-π4=a 恰好有三个根.令2x-π4=k π,k ∈Z ,得x=π8+απ2,k ∈Z .当k=0时,x=π8;当k=1时,x=5π8.不妨设x 1<x 2<x 3,由题意得点(x 1,0),(x 2,0)关于直线x=π8对称,所以x 1+x 2=π4.又结合图象可得π≤x 3<9π8,所以5π4≤x 1+x 2+x 3<11π8,即x 1+x 2+x 3的取值范围为5π4,11π8.故选A.8.A 解析∵b 2-a 2=ac ,∴b 2=a 2+c 2-2ac cos B=a 2+ac.∴c=2a cos B+a.∴sin C=2sin A cos B+sin A.∵sin C=sin(A+B )=sin A cos B+cos A sin B , ∴sin A=cos A sin B-sin A cos B=sin(B-A ). ∵△ABC 为锐角三角形,∴A=B-A.∴B=2A. ∴C=π-3A.∴{0<α2<π2,0<π−3α2<π20<α<π2,,∴B ∈π3,π2,f (x )=cos2x-π3-2sin π4+x sin π4-x =cos2x-π3-2sin π4+x cos π4+x =cos2x-π3-sin π2+2x=sin2x-π6, ∴f (B )=sin2B-π6.∵2π3<2B<π,∴π2<2B-π6<5π6.∴12<f (B )<1.故选A .9.D 解析由函数与直线y=a (0<a<A )的三个相邻交点的横坐标分别是2,4,8,知函数的周期为T=2πα=2(4+82-2+42),得ω=π3,再由五点法作图可得π3·2+42+φ=π2,求得φ=-π2,∴函数f (x )=A sin (π3α-π2).令2k π+π2≤π3x-π2≤2k π+3π2,k ∈Z ,解得6k+3≤x ≤6k+6,k ∈Z ,∴f (x )的单调递减区间为[6k-3,6k ](k ∈Z ).10.(1+√3,4+2√3) 解析由αsin α=αsin α=αsin α,可得a=αsin αsin α=√3sin α,b=αsin αsin α=2sin (2π3-α)sin α,所以a+b=√3sin α+√3cos α+sin αsin α=1+√3(1+cos α)sin α=1+2√3cos 2α22sin α2cos α2=1+√3tanα2. 由△ABC 是锐角三角形,可得{0<α<π2,0<2π3-α<π2,则π6<C<π2,所以π12<α2<π4,2-√3<tan α2<1.所以1+√3<a+b<1+√3=4+2√3. 11.100 解析由正弦定理得kb 2+ac>19bc ,∴k>(19αα-ααα2)max.19αα-ααα2=(19α-α)αα2<(19α-α)(α+α)α2=-(αα-9)2+100≤100.因此k≥100,即k的最小值为100.12.(2√2,4)解析由已知得sin A(sin A+sin C)=cos A(cos A+cos C), ∴cos2A-sin2A=sin A sin C-cos A cos C.∴cos2A=-cos(A+C)=cos B.∵△ABC是锐角三角形,∴B=2A且{0<2α<π2,0<π−3α<π2,∴π6<A<π4.∵a=2,∴αsinα∈(2√2,4).又α+αsinα+sinα=αsinα,∴α+αsinα+sinα∈(2√2,4).故答案为(2√2,4).13.解(1)由题意知,向量a=(1,cos2x-√3sin2x),b=(-1,f(x)),且a∥b, 所以1×f(x)+(cos2x-√3sin2x)=0,即f(x)=-cos2x+√3sin2x=2sin2x-π6.令2kπ-π2≤2x-π6≤2kπ+π2,k∈Z,解得kπ-π6≤x≤kπ+π3,k∈Z,故函数的单调递增区间为kπ-π6,kπ+π3,k∈Z.(2)若f(θ)=65,π3<θ<π2,即f (θ)=2sin2θ-π6=65,∴sin2θ-π6=35.∵2θ∈2π3,π,2θ-π6∈π2,5π6,∴cos2θ-π6=-√1−sin 2(2α-π6)=-45.∴cos2θ=cos2θ-π6+π6=cos2θ-π6cos π6-sin2θ-π6sin π6=-45×√32−35×12=-4√3+310.14.解(1)由题意知,∠BOC=2∠BAC ,∴cos ∠BOC=cos2∠BAC=1-2sin 2∠BAC=-13,∴sin 2∠BAC=23,∴sin ∠BAC=√63.(2)延长AD 至E ,使AE=2AD ,连接BE ,CE ,则四边形ABEC 为平行四边形,∴CE=AB.在△ACE 中,AE=2AD=3√2,AC=√3,∠ACE=π-∠BAC ,cos ∠ACE=-cos ∠BAC=-1−(√63) 2=-√33,由余弦定理得,AE 2=AC 2+CE 2-2AC·CE·cos ∠ACE , 即(3√2)2=(√3)2+CE 2-2×√3×CE×-√33,解得CE=3或-5(舍去负值), ∴AB=CE=3.∴S △ABC =12AB·AC·sin ∠BAC=12×3×√3×√63=3√22.15.解(1)在△ABC 中,根据余弦定理,c 2=a 2+b 2-2ab cos C , 又因为ab+a 2=c 2,所以ab=b 2-2ab cos C.因为b>0,所以b-a=2a cos C.根据正弦定理,sin B-sin A=2sin A cos C.因为A+B+C=π,即A+C=π-B ,则sin B=sin A cos C+cos A sin C ,所以sin A=sin C cos A-sin A cos C.即sin A=sin(C-A ).因为A ,C ∈(0,π),则C-A ∈(-π,π),所以C-A=A ,或C-A=π-A (舍去后者).所以C=2A.(2)因为△ABC 的面积为a 2sin 2B ,所以a 2sin 2B=12ac sin B ,因为a>0,sin B>0,所以c=2a sin B , 则sin C=2sin A sin B.因为C=2A ,所以2sin A cos A=2sin A sin B , 所以sin B=cos A.因为A ∈0,π2,所以cos A=sin π2-A ,即sin B=sin π2-A ,所以B=π2-A 或B=π2+A.当B=π2-A ,即A+B=π2时,C=π2;当B=π2+A 时,由π-3A=π2+A ,解得A=π8,则C=π4. 综上,C=π2或C=π4.。
选择题“瓶颈”突破练1.已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( ) A.3B.2C.1D.0解析 ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0.故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3. 答案 A2.已知圆心为O ,半径为1的圆上有不同的三个点A ,B ,C ,其中OA →·OB →=0,存在实数λ,μ满足OC →+λOA →+μOB →=0,则实数λ,μ的关系为( ) A.λ2+μ2=1 B.1λ+1μ=1 C.λμ=1D.λ+μ=1解析 法一 取特殊点,取C 点为优弧AB 的中点,此时由平面向量基本定理易得λ=μ=22,只有A 符合. 法二 依题意得|OA →|=|OB →|=|OC →|=1,-OC →=λOA →+μOB →,又OA →·OB →=0,两边平方得1=λ2+μ2. 答案 A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线y =x +3只有一个公共点,且椭圆的离心率为55,则椭圆C 的方程为( ) A.x 216+y 29=1B.x 25+y 24=1C.x 29+y 25=1D.x 225+y 220=1 解析 把y =x +3代入椭圆的方程,得(a 2+b 2)x 2+6a 2x +9a 2-a 2b 2=0,由于只有一个公共点,所以Δ=0,得a 2+b 2=9,又c a =55,所以b 2a 2=45,解得a 2=5,b 2=4.答案 B4.已知函数f (x )的定义域为R ,且f ′(x )>1-f (x ),f (0)=2,则不等式f (x )>1+e -x的解集为( ) A.(-1,+∞) B.(0,+∞) C.(1,+∞)D.(e ,+∞)解析 令g (x )=e xf (x )-e x,则g ′(x )=e x·[f (x )+f ′(x )-1]>0,所以函数g (x )在R 上单调递增.又g (0)=e 0f (0)-e 0=1,所以不等式f (x )>1+e -xxf (x )-e x ⟺g (x )>g x >0,故不等式f (x )>1+e -x解集为(0,+∞). 答案 B5.若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫π8,0,则f (x )的最小正周期是( ) A.π4B.π2C.πD.2π解析 由f (x )=a 2+b 2sin(ωx +φ)⎝⎛⎭⎪⎫tan φ=b a 的对称轴方程为x =π4ω可知,π4+φ=π2+k π,k ∈Z ⟹φ=π4+k π,即ba=tan φ=⟹a =b ,又f ′(x )=a ωcos ωx -b ωsinωx 的对称中心为⎝ ⎛⎭⎪⎫π8,0,则f ′⎝ ⎛⎭⎪⎫π8=⟹a ω⎝⎛⎭⎪⎫cos ωπ8-sin ωπ8=⟹ωπ8+π4=k π+π2,k ∈Z ⟹ω=2+8k ,k ∈Z 且0<ω⟹ω=2,即T =2πω=π.答案 C6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( ) A.120种B.156种C.188种D.240种解析 “数”排在第一节有A 44A 22=48种排法; “数”排在第二节有C 13A 33A 22=36种排法; “数”排在第三节有3A 22A 33=36种排法.由分类加法计数原理,共有48+36+36=120种不同排课方法. 答案 A7.已知函数f (x )=1+exx,则( )A.f (x )有1个零点B.f (x )在(0,1)上为减函数C.y =f (x )的图象关于点(1,0)对称D.f (x )有2个极值点 解析 显然f (x )≠0,A 错;由f ′(x )=e x(x -1)-1x2知,当x ∈(0,1)时,f ′(x )<0,则f (x )在(0,1)上是减函数,B 对;又f (3)+f (-1)=1+e 33-(1+e -1)=e 3-3e -1-23≠0,∴y =f (x )不关于(1,0)对称,C错;数形结合,易知f ′(x )=0,方程只有一个实根,故f (x )最多有一个极值点,D 错. 答案 B8.已知x ,y 满足线性约束条件⎩⎪⎨⎪⎧y -x ≤3,x +y ≤5,y ≥λ,若z =x +4y 的最大值与最小值之差为5,则实数λ的值为( ) A.3B.73C.32D.1解析 作出不等式组对应的平面区域,由题设得A (1,4),B (λ-3,λ).由z =x +4y ,得y =-14x +z 4,平移直线y =-14x ,由图象可知当直线经过点A 时,直线y =-14x +z4的截距最大,此时z 最大,且z max =1+4×4=17. 当直线经过点B 时,直线的截距最小,此时z 最小,且z min =λ-3+4λ=5λ-3. ∵z =x +4y 的最大值与最小值的差为5, ∴17-(5λ-3)=20-5λ=5,得λ=3. 答案 A9.已知正三棱锥P -ABC 的正视图和俯视图如图所示,则此三棱锥外接球的表面积为( )A.16π3B.64π3C.100π3D.12π解析 如图,作PG ⊥CB 于点G ,连接AG ,设点P 在底面ABC 内的射影为D ,连接PD ,依题易得AB =23,PG =13,PA =4,AD =2,PD =23,PD ⊥平面ABC .易知.正三棱锥P -ABC 外接球的球心在PD上,不妨设球心为O ,半径为r ,连接OA ,则在Rt△AOD 中,r 2=22+(23-r )2r 2=163,S =4πr 2=64π3. 答案 B10.如果对定义在R 上的函数f (x ),对任意m ≠n ,均有mf (m )+nf (n )-mf (n )-nf (m )>0成立,则称函数f (x )为“H 函数”.给出下列函数: ①f (x )=ln 2x-5; ②f (x )=-x 3+4x +3;③f (x )=22x -2(sin x -cos x );④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.其中是“H 函数”的个数为( )A.1B.2C.3D.4解析 由题设,得(m -n )[f (m )-f (n )]>0(m ≠n ). ∴函数“H 函数”就是函数f (x )为R 上的增函数.对于①,f (x )=ln 2x-5,显然f (x )为R 上的增函数;对于②,当x =0和x =2时函数值相等,因此函数f (x )=-x 3+4x +3不可能是R 上的增函数;对于③,f ′(x )=22-22sin ⎝⎛⎭⎪⎫x +π4≥0在R 上恒成立,则f (x )=22x -2(sin x -cos x )是R 上的增函数;对于④,当x =0和x =1时函数值相等,因此函数f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0不可能为R 上的增函数,因此符合条件的函数个数为2. 答案 B11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,抛物线y 2=2px (p >0)与双曲线y 2a 2-x 2b2=1的渐近线的交点(除原点外)到抛物线的准线的距离为8,则p =( ) A.1B.2C.4D.6解析 因为椭圆x 2a 2+y 2b 2=1的离心率为12,所以a 2-b 2a 2=14,即b 2a 2=34.双曲线y 2a 2-x 2b 2=1的渐近线方程为y =±a b x =±233x ,代入y 2=2px 中,得x =0(舍去)或x =32p .由题意得3p 2+p2=8,解得p =4.答案 C12.在△ABC 中,AB =AC ,D ,E 分别在AB 、AC 上,DE ∥BC ,AD =3BD ,将△ADE 沿DE 折起,连接AB ,AC ,当四棱锥A -BCED 体积最大时,二面角A -BC -D 的大小为( ) A.π6B.π4C.π3D.π2解析 因为AB =AC ,所以△ABC 为等腰三角形,过A 作BC 的垂线AH ,垂足为H ,交DE 于O ,∴当△ADE ⊥平面BCED 时,四棱锥A -BCED 体积最大.由DE ⊥AO ,DE ⊥OH ,AO ∩OH =O ,可得DE ⊥平面AOH ,又BC ∥DE ,则BC ⊥平面AOH ,∴∠AHO 为二面角A -BC -D 的平面角,在Rt△AOH 中,由AO OH =AD DB =3,∴tan∠AHO =AO OH=3,则二面角A -BC -D 的大小为π3. 答案 C13.已知实数x ,y 满足条件⎩⎪⎨⎪⎧y ≤x -1,x ≤3,x +5y ≥4,令z =ln x -ln y ,则z 的最小值为( )A.ln 32B.ln 23C.ln 15D.-ln 15解析 作可行域如图阴影所示.则可行域内点A 与原点O 连线斜率最大,又A (3,2),则k max =k OA =y x =23.∴x y 的最小值为32. ∴z =ln x -ln y =ln x y 的最小值为ln 32.答案 A14.△ABC 三内角A ,B ,C 的对边分别为a ,b ,c ,b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c的值为( ) A.-12B.12C.-32D.32解析 由b 2+c 2+bc -a 2=0,得b 2+c 2-a 2=-bc ,∴cos A =b 2+c 2-a 22bc =-12,又0°<A <180°,知A =120°,因此B +C =60°,B =60°-C ,则a sin (30°-C )b -c =sin A sin (30°-C )sin B -sin C =32sin (30°-C )sin (60°-C )-sin C .又sin(60°-C )-sin C =32cos C -12sin C -sin C =3⎝ ⎛⎭⎪⎫12cos C -32sin C =3sin(30°-C ),所以a sin (30°-C )b -c =32sin (30°-C )3sin (30°-C )=12.答案 B15.已知直线x =3与双曲线C :x 29-y 2=1的渐近线交于A ,B 两点,设P 为双曲线上任一点,若OP →=aOA →+bOB →(a ,b ∈R ,O 为坐标原点),则下列不等式恒成立的是( ) A.a 2+b 2≥1 B.|ab |≥1 C.|a +b |≥1D.|a -b |≥1解析 易知A (3,1),B (3,-1), 则OA →=(3,1),OB →=(3,-1),∴OP →=aOA →+bOB →=a (3,1)+b (3,-1) =(3(a +b ),a -b ).设P (x ,y ),则x =3(a +b ),y =a -b , 代入双曲线C 的方程,得(a +b )2-(a -b )2=1. ∴4ab =1,因此|a +b |2=a 2+b 2+2|ab |≥4|ab |=1, 则|a +b |≥1.容易验证,A ,B ,D 均不正确. 答案 C16.已知函数f (x )=a ln(x +1)-x 2,在区间(0,1)内任取两个实数p ,q ,且p ≠q ,不等式f (p +1)-f (q +1)p -q>1恒成立,则实数a 的取值范围为( )A.[15,+∞)B.(-∞,15]C.(12,30]D.(-12,15]解析 由已知得,f (p +1)-f (q +1)(p +1)-(q +1)>1,且p +1,q +1∈(1,2),等价于函数f (x )=a ln(x +1)-x 2在区间(1,2)上任意两点连线的斜率大于1,等价于函数在区间(1,2)上的切线斜率大于1恒成立.而f ′(x )=a x +1-2x ,即ax +1-2x >1在(1,2)上恒成立,变形为a >2x 2+3x +1,因为2x 2+3x +1<15,故a ≥15.答案 A。