弹性力学—第五章—差分法
- 格式:ppt
- 大小:990.00 KB
- 文档页数:22
差分法名词解释
差分法(Difference Methods)是一种通过有限差分近似导数,进而求解
微分方程的数值方法。
这种方法的基本思想是将微分用有限差分代替,将导数用有限差商代替,从而将原微分方程近似地改写为差分方程,然后求解这个差分方程以得到原微分方程的近似解。
在数学中,差分法可以用于求解微分方程的近似解,特别是在无法得到精确解的情况下。
例如,在弹性力学中,差分法和变分法常被用于解决平面问题。
此外,差分法还可以用于比较两个分数大小时,当使用“直除法”或“化同法”等其他速算方式难以解决时,差分法可以作为一种有效的速算方式。
以上信息仅供参考,建议查阅数学专业书籍或者咨询专业人士了解更多关于差分法的知识。
微分提法解法(1)平衡微分方程,=+j i ij X σ(2)几何方程)(21,,i j j i ij u u +=ε(3)物理方程[]ij kk ij ij Eδμσσμε−+=)1(1(4)边界条件ji ij X n =σii u u =定解问题求解方法(1)按位移求解(平衡微分方程(2)按应力求解(((((求解联立的微分方程组求解特点:(解析解微小单元平衡变形材料性质§5-4 弹性体的形变势能和外力势能变分提法解法基本思想:所有可能的解求解线性方程组整个弹性系统能量关系变分方程在给定约束条件下求泛函极(驻)值的变分问题能量法(a )以位移为基本未知量,得到最小势(位)能原理等。
(b )以应力为基本未知量,得到最小余能原理等。
(c )同时以位移、应力、应变为未知量,得到广义(约束)变分原理。
——位移法——力法有限单元法边界元法离散元法数值解法求解方法数值解法基本思想:导数差分求解线性方程组实质:变量离散变分方程区域离散单元可能解求解大型的线性方程组有限单元法边界单元法离散单元法1. 形变势能的一般表达式Px单向拉伸:1形变势能()U 11l l A P Δ11比能三向应力状态:σσyσzyzτzy τyxτxyτxz τzx τ三向应力状态:σσyσzyzτzy τyxτxyτxz τzx τ次序无关形变比能y y x x εσεσ111++yz yz zx zx τγτγ++1形变势能:2. 形变势能的应变分量表示)(12x y y E μεεμσ+−=)(12y x x E μεεμσ+−=xy xyE γμτ)1(2+=22212122(1)2xy x y xy E U μεεμεεγμ−⎡⎤=+++⎢⎥−⎣⎦2x y x y εεμεε+++⎢111表明:3. 形变势能的位移分量表示222121()()2()2(1)2E u v u v u v U x y x y x y μμμ⎡⎤∂∂∂∂−∂∂=++++⎢⎥−∂∂∂∂∂∂⎣⎦()()2(μ++++⎢外力的虚功:;,,Z Y X ZY X ,,Xu Yv +Xu Yv +由于外力做的功消耗了外力势能,因此,在发生实际位移时,弹性体的外力势能为:§11-2 位移变分方程1. 泛函与变分的概念(1)泛函的概念xF泛函P1)(xMEIB l x泛函形变势能泛函(2)变分与变分法自变量的增量函数增量微分问题P1)(xMEIBlx)(xy)(xy yδP1)(xMEIB lx ) (xy)(xy yδ自变函数的增量泛函的增量变分问题变分的运算变分与微分运算:)(x f =⎟)(x f =⎟)(x f =⎟⎟变分运算与微分运算互相交换变分与积分运算:变分运算与积分运算互相交换复合函数的变分:y δ+复合函数的变分:y δ+⎢++⎥⎢′+y y y y δδδδ极大值极小值2. 位移变分方程形变势能位移变分qP应力边界S σ满足:平衡方程、几何真实解(1)任给弹性体一微小的位移变化:wv u δδδ,,满足两个条件:((wv u δδδ,,满足两个条件:((qP应力边界S σw位移的变分虚位移由于位移的变分,引起的外力功的变分和外力势能的变分为:X u Y δδ+X u Y δδ+微小的为约束所允许(2)考察弹性体的能量变化从而引起形变势能的变分为:()()()y xy u v u δδεδδγδ==+,,由于位移的变分,引起的应变的变分为:设:位移变分方程Lagrange 变分方程WU δδ=X u Y δδ+它表明:在实际平衡状态发生位移的变分时,物体形变势能的变分,等于外力在虚位移上所做的虚功。
弹性力学第五章第五章弹性力学的求解方法和一般性原理弹性力学是研究物质在外力作用下发生弹性变形的力学学科,其求解方法和一般性原理是该学科的重要内容。
首先,弹性力学的求解方法主要包括材料本构方程和边界条件的建立,以及解方程的方法。
材料本构方程是描述材料的力学性质和变形规律的方程。
根据材料的不同性质和变形特点,可以选用不同的本构方程。
常用的本构方程包括胡克定律、庞加莱-克莱葛尔方程等。
通过假设材料是各向同性、线弹性等,可以建立相应的本构方程。
边界条件是指在弹性力学问题中,给定的物体表面上的约束条件。
边界条件的建立是弹性力学问题求解的基础。
一般情况下,边界条件包括位移边界条件和力边界条件。
位移边界条件是指物体表面上的位移限制,力边界条件是指物体表面上的力的作用情况。
通过建立合理的边界条件,可以求解出问题的解。
解方程的方法包括解析方法和数值方法。
解析方法是指通过分析和计算得到方程的解析解,解析解有精确度高、可视化好的优点。
数值方法是指通过数值计算得到方程的数值解,数值解可以通过计算机程序进行求解,适用范围广。
其次,弹性力学的一般性原理是指弹性力学问题的基本原理和公式。
弹性力学的一般性原理包括平衡原理、相容性原理和构造方程。
平衡原理是指物体在外力作用下的平衡条件。
根据平衡原理,可以通过力的平衡方程建立弹性力学问题的公式。
平衡方程可以通过平衡力的矢量和等于零来表示。
相容性原理是指物体在变形过程中的相容性条件。
根据相容性原理,物体在变形过程中,任意两个小变形都相容。
相容性原理可以用于控制弹性力学问题的求解范围。
构造方程是用来描述物体在外力作用下的变形状态的方程。
通过对变形量的定义和方程的建立,可以得到物体的变形状态和应变状况。
综上所述,弹性力学的求解方法和一般性原理是该学科的重要内容。
求解方法包括材料本构方程和边界条件的建立,以及解方程的方法。
一般性原理包括平衡原理、相容性原理和构造方程。
弹性力学的求解方法和一般性原理的运用,能够帮助研究者解决复杂的弹性力学问题,进一步推动该学科的发展。
弹性力学总结BY 傅国强弹性力学:是研究弹性体由于受外力作用、边界约束或温度变化等原因而发生的应力、形变和位移。
弹性力学的研究方法是:在弹性体区域内必须严格地考虑静力学(微分体平衡条件)、几何学(形变和位移之间的几何关系)和物理学(应力和形变之间的关系)三方面的条件,在边界上必须严格地考虑受力条件和约束条件,由此建立微分方程和边界条件进行求解。
(不同于材料力学采用了平截面假定简化了几何条件,只适用于杆状构件)外力:是指其他物体对研究对象的作用力,分为体积力和表面力,也分别成为体力(分布在物体体积内的力,N/M3)和面力(分布在物体表面的力,N/M2)。
内力:是物体收到外力作用以后物体内部不同部分之间相互作用的力,内力的平均集度即平均应力,正面和负面:凡外法线沿坐标轴正方向的,称为正面,凡外法线沿坐标轴负方向的,称为负面。
切应力互等性:作用在两个相互垂直的面上并且垂直于该两面交线的切应力是互等的(大小相等,正负号一致)。
形变:即形状的改变,可以用其各部分的长度和角度表示。
线应变:单位伸缩或相对伸缩,伸长为正。
切应变:各线段之间的直角改变量,直角变小为正。
位移:即位置的移动,沿坐标轴正方向为正。
弹性力学的基本假定:1)连续性,假定物体介质所填满,不留下任何空隙,是连续的,这表示应力、形变、位移等是连续的,可用坐标的连续函数表示其变化规律;2)完全弹性,假定物体在引起形变的外力去除之后能够完全恢复原形而没有任何残余变形,这表示形变和应力是呈线性关系的;3)均匀性,假定整个物体由同一材料组成的,这表示物体的弹性不随坐标改变而变化;4)各向同性,假定物体的弹性在所有各个方向都相同,这表示物体的弹性常数不随方向而改变;满足以上四个条件的就是理想弹性体5)位移和形变是微小的,假定物体受力后各点的位移都远远小于物体原来的尺寸,且应变和转角远小于1,主要是为了:1.可以用物体变形前的尺寸来代替变形后的尺寸、2.转角和应变的二阶量可以忽略不计,仅保留一次项、3.几何方程和平衡微分方程可以简化为线性方程,应用叠加原理。
弹性⼒学第五章第五章弹性⼒学的求解⽅法和⼀般性原理第五章弹性⼒学的求解⽅法和⼀般性原理知识点弹性⼒学基本⽅程边界条件位移表⽰的平衡微分⽅程应⼒解法体⼒为常量时的变形协调⽅程物理量的性质逆解法和半逆解法解的迭加原理,弹性⼒学基本求解⽅法位移解法位移边界条件变形协调⽅程混合解法应变能定理解的唯⼀性原理圣维南原理⼀、内容介绍通过弹性⼒学课程学习,我们已经推导和确定了弹性⼒学的基本⽅程和常⽤公式。
本章的任务是对弹性⼒学所涉及的基本⽅程作⼀总结,并且讨论具体地求解弹性⼒学问题的⽅法。
弹性⼒学问题的未知量有位移、应⼒和应变分量,共计15个,基本⽅程有平衡微分⽅程、⼏何⽅程和本构⽅程,也是15个。
⾯对这样⼀个庞⼤的⽅程组,直接求解显然是困难的,必须讨论问题的求解⽅法。
根据这⼀要求,本章的主要任务有三个:⼀是综合弹性⼒学的基本⽅程,并按边界条件的性质将问题分类;⼆是根据问题性质,确定基本未知量,建⽴通过基本未知量描述的基本⽅程,得到基本解法。
弹性⼒学问题的基本解法主要是位移解法、应⼒解法和混合解法等。
应该注意的是对于应⼒解法,基本⽅程包括变形协调⽅程。
三是介绍涉及弹性⼒学求解⽅法的⼀些基本原理。
主要包括解的唯⼀性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性⼒学问题解建⽴基础。
如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。
⼆、重点1、弹性⼒学的基本⽅程与边界条件分类;2、位移解法与位移表⽰的平衡微分⽅程;3、应⼒解法与应⼒表⽰的变形协调⽅程;4、混合解法;5、逆解法和半逆解法;6、解的唯⼀性原理、叠加原理和圣维南原理§5.1 弹性⼒学的基本⽅程及其边值问题学习思路:通过应⼒状态、应变状态和本构关系的讨论,已经建⽴了⼀系列的弹性⼒学基本⽅程和边界条件。
本节的主要任务是将基本⽅程和边界条件作综合总结,并且对求解⽅法作初步介绍。
弹性⼒学问题具有15个基本未知量,基本⽅程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分⽅程。