七年级数学上册1.2 有理数第一课时 教案
- 格式:pdf
- 大小:226.70 KB
- 文档页数:3
1.2.1 有理数教学任务分析教学过程设计一、 创设问题情景复习所学知识,同时引出新的问题――有理数的分类.问题1: 有了负数以后,我们学过的数有哪些?学生活动设计:学生根据所学内容,回忆所学过的数,同时举出相应的例子,一可以让学生复习旧的知识,二可以在所提问题中发现新的知识学生举例:1,2,-1,-3,21-,0等 问题2: 在上述列举的数中,我们可以怎样进行分类?学生活动设计:学生根据数的特征进行分类,显然可以把小学学过的数(正数)分成一类――正数,把正数前面加负号(负数)的数分成一类――负数,0既不是正数也不是负数;也可以分成整数和分数,于是有下列分类:正整数,如:1、2、3... 零:0 负整数:-1,-2,-3... 正分数:,.......5.4,722,31 负分数:12,2,0.3,...27--- 教师活动设计:引导学生理解有理数以及有理数的分类:正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数,这里的分数特指是分母不为1的分数,整数有时可以认为是分母是1的分数.二、 解决问题引导学生进行对有理数进行分类,从而体会分类讨论的数学思想.问题3: 如何对有理数进行分类?学生活动设计:根据以上知识学生进行分类.⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数 或 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,所有整数组成的数集叫做整数集.问题4: 你能解决下列问题吗?谈谈你的看法?(1) 0是整数吗?是正数吗?是有理数吗?(2) -5是整数吗?是负数吗?是有理数吗?(3) 自然数是整数吗?是正数吗?是有理数吗?(4) 下列有理数中,哪些是整数?哪些是分数?哪些是正数?哪些是负数?-7、10.1、89、0、-0.67、61-、431 〔解答〕(1)0是整数、不是正数但是有理数(2)-5是整数、负数、有理数(3)自然数是整数,不是所有的自然数是正数(比如0),所有的自然数都是有理数(4)整数:-7、89、0 分数:10.1、-0.67、61-、431 正数:10.1、89、431 负数:-7、-0.67、61- 学生活动设计:学生独立思考上述问题,必要时进行适当的讨论,然后学生进行适当的交流,个别同学在交流中逐步完善自己对问题的看法.三、知识应用,拓展创新我们已经能够对有理数进行合理的分类,共有两种分类方法,下面我们就利用这两种分类方法解决下列问题.问题5:把下列各数填在表示相应集合的大括号中:+6、-8、25,-0.4,0,-32,9.15,541 整数集合{ }...;分数集合 { }...; 非负数集合{ }... ;正数集合{ }...;负数集合{ }... .解:整数集合{}6,8,25,0+-... 分数集合240.49,15,,135⎧⎫-⎨⎬⎩⎭-... 非负数集合4625,0,9.15,15⎧⎫+⎨⎬⎩⎭、... 正数集合46,25,9.15,15⎧⎫+⎨⎬⎩⎭...负数集合 28,0.4,3⎧⎫--⎨⎬⎩⎭-...学生活动设计:(1)把一些数看作一个整体,那么这个整体就叫这些数的集合.其中的每一个数叫做这个集合的一个元素.(2)特别要注意“零”是整数集合、非负数集合、有理数集合中的一个元素;“零”不仅表示“没有”而且具有非常确定的内容,如零时、零度;“零”是正负数的界限;“零”是偶数;“零”能被任何非零数整除;“零”也是一个不可缺少的数码;在数的表示中起着十分重要的作用.(3)非负有理数包括正有理数和零,在数学里,“正”和“整”不能通用,是有区别的;正相对于负来说;整数是相对于分数而言的.问题6:如图,大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围.小圆和中圆把大圆覆盖的区域分割为无公共部分的A 、B 、C 三个部分,那么(1)A 、B 、C 分别表示什么区域?(2)请将下列各数填入相应的区域内:-7.3、-4、315-、0、+2.4、+3、+5、71+ 的细节,分析出A 区域表示的数是有理数但不是整数,从而得到A 区域表示的数应该是分数,B区域表示的数是整数但不是正整数,从而得到B区域应该是非正整数(0和负整数),C 区域显然是正整数,问题(1)解决.有了以上分析问题(2)容易解决.题行适当的提示等.四、小结和作业小结:1. 本节内容:有理数以及分类.2. 重点内容:有理数的两种分类方法、能够对所给的数进行分类. 作业:P10 练习 P17 习题1.2 1。
1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。
借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。
七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。
两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。
以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。
例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。
1.2有理数人教版数学七年级上第一章第一课时教案1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。
并会判断一个给定的数是整数或分数或有理数。
②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。
③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。
④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。
1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。
②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。
②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。
②数轴的三要素和有理数在数轴上的表示方法教学。
2.2 教学难点①给一个数能正确说出它属于的集合。
②有理数与数轴上点的对应关系。
3 专家建议“数学教学是数学活动的教学”。
我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。
也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。
这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。
4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。
在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。
【七年级数学上册】1.2.1《有理数》教学设计1一. 教材分析《有理数》是七年级数学上册的第一章第二节的内容,主要介绍了有理数的定义、分类、运算和性质。
这一节内容是学生学习数学的基础,对于培养学生的逻辑思维和数学素养具有重要意义。
本节课的内容包括有理数的分类、大小比较、加减乘除运算和相反数、绝对值等概念。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。
但是,对于有理数的定义、分类和运算规则,学生可能还比较陌生。
因此,在教学过程中,需要通过具体实例和生活中的情境,引导学生理解和掌握有理数的概念和运算规则。
三. 教学目标1.理解有理数的定义和分类;2.掌握有理数的加减乘除运算规则;3.理解相反数和绝对值的概念;4.能够运用有理数解决实际问题。
四. 教学重难点1.有理数的分类和大小比较;2.有理数的加减乘除运算规则;3.相反数和绝对值的概念及应用。
五. 教学方法采用问题驱动法、情境教学法和合作学习法。
通过设置问题和情境,引导学生主动探究和合作交流,从而理解和掌握有理数的概念和运算规则。
六. 教学准备1.PPT课件;2.练习题;3.教学用具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)通过生活中的实例,如温度、海拔等,引出有理数的概念。
引导学生思考:这些实例有什么共同特点?从而引出有理数的定义。
2.呈现(10分钟)利用PPT课件,呈现有理数的分类、大小比较、加减乘除运算规则等知识点。
通过讲解和举例,让学生理解和掌握这些知识点。
3.操练(10分钟)让学生进行有理数的加减乘除运算练习,巩固所学知识。
教师及时批改和讲解,帮助学生纠正错误。
4.巩固(5分钟)通过PPT课件,总结有理数的运算规则。
让学生回答问题,检查学生对知识的掌握程度。
5.拓展(5分钟)介绍相反数和绝对值的概念,让学生理解这两个概念的含义和应用。
6.小结(5分钟)对本节课的内容进行总结,让学生复述有理数的定义、分类、运算规则等。
人教版七年级数学上册1.2.1《有理数》教学设计一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,主要介绍了有理数的定义、分类和运算法则。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握有理数的概念和运算法则,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。
但是,对于有理数的定义和分类,以及有理数的运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过大量的练习,让学生熟练掌握有理数的运算法则。
三. 教学目标1.了解有理数的定义、分类和运算法则。
2.能够运用有理数的运算法则进行简单的计算。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算法则。
五. 教学方法1.情境教学法:通过实际问题引入有理数的概念,让学生从实际问题中抽象出有理数的概念。
2.讲解法:对于有理数的定义、分类和运算法则,采用讲解法进行详细讲解。
3.练习法:通过大量的练习,让学生熟练掌握有理数的运算法则。
六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,用于辅助教学。
2.练习题:准备与本节课内容相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如温度、海拔等,引导学生从实际问题中抽象出有理数的概念。
2.呈现(10分钟)通过PPT课件,详细讲解有理数的定义、分类和运算法则。
讲解过程中,注意结合实例进行说明,让学生更好地理解和掌握。
3.操练(10分钟)让学生进行一些有关有理数的运算练习,巩固所学知识。
教师可适时给予提示和指导,确保学生能够熟练掌握有理数的运算法则。
4.巩固(5分钟)通过PPT课件,总结本节课所学的主要内容和知识点,帮助学生巩固记忆。
新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
1.2有理数
第一课时
三维目标
一、知识与能力
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零.
二、过程与方法
经历对有理数进行分类的探索过程,初步感受分类讨论的思想.
三、情感态度与价值观
通过对有理数的学习,体会到数学与现实世界的紧密联系.
教学重难点及突破
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开.
教学准备
用电脑制作动画体现有理数的分类过程.
教学过程
四、课堂引入
1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?
2.举例说明现实中具有相反意义的量.
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别.
5.数0表示的意义是什么?
二、自主探究
在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下几类:
正整数,如1,2,3,…;
零:0;
负整数,如-1,-2,-3,…;
正分数,如1
3,
22
7,4.5(即4
1
2);
负分数,如-1
2,-2
2
7,-0.3(即-
3
10),-
3
5……
正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数.回答下列各题:
(1)0是不是整数?0是不是有理数?
(2)-5是不是整数?-5是不是有理数?
(3)-0.3是不是负分数?-0.3是不是有理数?
2.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?
让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准, 但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合, 简称数集.所有的有理数组成的数集叫做有理数集.类似的, 所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.
五、题例精解
例把下列各数填入表示它所在的数集的圈子里:-18,22
7,3.1416,0, 2001, -
3
5,
0.142857,95%
六、随堂练习
一、判断
1.自然数是整数.()2.有理数包括正数和负数.()3.有理数只有正数和负数.()4.零是自然数.()
5.正整数包括零和自然数.()6.正整数是自然数.()7.任何分数都是有理数.()8.没有最大的有理数.()9.有最小的有理数.()
七、课堂小结:(提问式)
1.有理数按正、负数,应怎样分类?
2.有理数按整数、分数,应怎样分类?
3.分类的原则是什么?
八、课后作业:
1.课本第14页习题1.2第1题.
九、板书设计:
1.2有理数
第一课时
1、复习巩固,例题讲解。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思。