高考数学压轴专题新备战高考《计数原理与概率统计》专项训练及答案
- 格式:doc
- 大小:688.50 KB
- 文档页数:13
【最新】《计数原理与概率统计》专题解析一、选择题1.已知不等式501x x -<+的解集为P ,若0x P ∈,则“01x <”的概率为( ). A .14 B .13C .12D .23【答案】B 【解析】 【分析】 【详解】分析:解分式不等式得集合P ,再根据几何概型概率公式(测度为长度)求结果.详解:(5)(1)050101x x x x x -+<⎧-<⇒⎨+≠+⎩,∴{}|15P x x =-<<,||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.2.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A .2B .3C .10D .15【答案】C 【解析】 【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果. 【详解】设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.3.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( ) A .12B .13C .24D .23【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以211d k =≤+,解得2244k -≤≤ 所以相交的概率22224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4.下列等式不正确的是( )A .111m mnn m C C n ++=+ B .12111m m m n n n A A n A +-+--= C .11m m n n A nA --=D .1(1)k k kn n n nC k C kC +=++【答案】A 【解析】 【分析】根据排列和组合公式求解即可. 【详解】根据组合公式得11!1(1)!1!()!1(1)!()!1mm n n n m n m C C m n m n m n m n +++++==⨯=-++-+,则A 错误;根据排列公式得122111(1)!!!(1)!(11)()!()!()!()!m m m n n n n n n n A A n n n A n m n m n m n m +-+-+--=-=+-=⋅=----,则B 正确;根据排列公式得11!(1)!()!()!mm n n n n A n nA n m n m ---==⋅=--,则C 正确;根据组合公式得()()1!!(1)(1)(1)!1!!1!k n n n k C k k n k k n k ++=+⋅=+-+-+⎡⎤⎡⎤⎣⎦⎣⎦[]!!()!()!!(1)!k kn n n n nC kC n k k n k k n k -⋅=--+-=即1(1)k k k n n n nC k C kC +=++,则D 正确;故选:A 【点睛】本题主要考查了排列和组合公式的应用,属于中档题.5.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .25【答案】D 【解析】 【分析】 【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=102.255= 故答案为D .7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .112B .115C .118D .114【答案】D 【解析】 【分析】先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解. 【详解】由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,随机选取两个不同的数,共有2828C =种,其中随机选取的两个不同的数,其和为20的有31720,71320+=+=,共有2种, 所以概率为212814P ==. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用组合数的公式求得基本事件的总数是解答的关键,着重考查了推理与运算能力.8.已知59290129(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则7a =( )A .9B .36C .84D .243【答案】B 【解析】 【分析】()()59x 1x 2++-等价变形为[()][()()]59x 12x 11-++-+-,然后利用二项式定理将其拆开,求出含有7(1)x -的项,便可得到7a .【详解】解:55(1)[(1)2]x x +=-+展开式中不含7(1)x -;()[()()]99x 2x 11-=-+-展开式中含7(1)x -的系数为()729C 136-=所以,7a 36=,故选B 【点睛】本题考查二项式定理,解题的关键是要将原来因式的形式转化为目标因式的形式,然后再进行解题.9.某城市有3 个演习点同时进行消防演习,现将5 个消防队分配到这3 个演习点,若每个演习点至少安排1 个消防队,则不同的分配方案种数为( ) A .150 B .240 C .360 D .540【答案】A 【解析】试题分析:由题意得,把5个消防队分成三组,可分为1,1,3,1,2,2两类方法,(1)分为1,1,3,共有1135432210C C C A =种不同的分组方法;(2)分为1,2,2,共有1225422215C C C A =种不同的分组方法;所以分配到三个演习点,共有33(1015)150A +⨯=种不同的分配方案,故选A .考点:排列、组合的应用.【方法点晴】本题主要考查了以分配为背景的排列与组合的综合应用,解答的关键是根据“每个演习点至少要安排1个消防队”的要求,明确要将5个消防队分为1,1,3,1,2,2的三组是解得关键,着重考查了分析问题和解答问题的能力,属于中档试题,本题的解答中,先将5个消防队分为三组,则分配到三个演习点,然后根据分步计数原理,即可得到答案.10.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.11.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( ) A .12B .1C .32D .2【答案】B 【解析】由题意2ξ=或4,则221[(23)(43)]12D ξ=-+-=,故选B .12.若实数2a =,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()1019222101010101022222232.a C a C a a -+-+=-==L本题选择A 选项.13.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.14.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1【答案】B 【解析】 【分析】求出二项式()913x -展开式的通项为()193rrr T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦.故选:B. 【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.15.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( ) A .125个 B .60个 C .100个 D .48个【答案】C 【解析】由题意得,0a ≠,a 的选择一共有14C =4,b 的选择一共有155C =,c 的选择共155C =种,根据分步计数原理,不同的二次函数共有N=455⨯⨯=100种。
新《计数原理与概率统计》专题一、选择题1.已知a c ≠,随机变量ξ,η的分布列如表所示.命题p :=E E ξη,命题q :D D ξη=,则( ) A .p 真q 真 B .p 真q 假C .p 假q 真D .p 假q 假【答案】C 【解析】 【分析】首先分别求E ξ和E η,然后比较,利用公式()()22D E E ξξξ=-,利用公式1a b c ++=,计算D D ξη-的值.【详解】12323E a b c a b c ξ=⨯+⨯+⨯=++12332E c b a a b c η=⨯+⨯+⨯=++ ,()2E E c a ξη-=- a c ≠Q ,E E ξη∴≠,所以命题p 是假命题,()249E a b c ξ=++,()()2223E a b c ξ=++,所以()()24923D a b c a b c ξ=++-++()294E a b c η=++,()()2232E a b c η=++,()()()()2229432D E E a b c a b c ηηη=-=++-++ ,()()()()()2283223D D c a a b c a b c ξη-=-+++-++()()()822444c a a c a b c =-+-++ , 1a b c ++=Q ,所以()()()()880D D c a a c ξη-=-+-=, 即()()D D ξη=,所以命题q 是真命题.综上可知p 假q 真. 故选:C 【点睛】本题考查离散型分布列的期望方差,属于重点题型,本题使用的关键公式是()()22D E E ξξξ=-,比较大小的关键是利用1a b c ++=.2.从1,2,3,4,5中任取三个数,则这三个数能构成三角形的概率为( ) A .15B .310C .25D .12【答案】B 【解析】 【分析】 【详解】从1,2,3,4,5中任取三个数,取法总数为:3510C =这三个数能构成三角形的情况有:()()()2,3,42,4,53,4,5,, ∴这三个数能构成三角形的概率为:310故选B3.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( )A .12B .13C .4D .3【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .5.设某中学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数(),i i x y ()1,2,3,,i n =L L ,用最小二乘法建立的线性回归直线方程为ˆ0.8585.71yx =-,给出下列结论,则错误的是( ) A .y 与x 具有正的线性相关关系B .若该中学某女生身高增加1cm ,则其体重约增加0.85kgC .回归直线至少经过样本数据(),i i x y ()1,2,3,,i n =L L 中的一个D .回归直线一定过样本点的中心点(),x y 【答案】C 【解析】 【分析】根据回归直线方程的性质和相关概念,对选项进行逐一分析即可. 【详解】因为0.850k =>,所以y 与x 具有正的线性相关关系,故A 正确; 该中学某女生身高增加1cm ,则其体重约增加0.85kg ,故B 正确; 回归直线一定过样本点的中心点(),x y ,回归直线有可能不经过样本数据, 故D 正确;C 错误. 故选:C . 【点睛】本题考查线性回归直线方程的定义,相关性质,属基础题.6.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,则这两卦的六根线中恰好有4根阴线的概率为( )A .314B .27C .928D .1928【答案】A 【解析】 【分析】列出所有28种情况,满足条件的有6种情况,计算得到概率. 【详解】 根据题意一共有:乾坤、乾巽、乾震、乾坎、乾离、乾艮、乾兑;坤巽、坤震、坤坎、坤离、坤艮、坤兑; 巽震、巽坎、巽离、巽艮、巽兑;震坎、震离、震艮、震兑;坎离、坎艮、坎兑; 离艮、离兑;艮兑,28种情况.满足条件的有:坤巽,坤离,坤兑,震坎,震艮,坎艮,共6种.故632814p ==. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.7.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.某小学要求下午放学后的17:00-18:00接学生回家,该学生家长从下班后到达学校(随机)的时间为17:30-18:30,则该学生家长从下班后,在学校规定时间内接到孩子的概率为( ) A .78B .34C .12D .14【答案】A 【解析】 【分析】根据题意,设学生出来的时间为x ,家长到达学校的时间为y ,转化成线性规划问题,利用面积型几何概型求概率,即可求得概率. 【详解】解:根据题意,设学生出来的时间为x ,家长到达学校的时间为y , 学生出来的时间为17:00-18:00,看作56x ≤≤, 家长到学校的时间为17:30-18:30,5.5 6.5y ≤≤,要使得家长从下班后,在学校规定时间内接到孩子,则需要y x ≥, 则相当于565.56.5x y ≤≤⎧⎨≤≤⎩,即求y x ≥的概率,如图所示:约束条件对应的可行域面积为:1, 则可行域中y x ≥的面积为阴影部分面积:111712228-⨯⨯=,所以对应的概率为:77818=,即学生家长从下班后,在学校规定时间内接到孩子的概率为:78. 故选:A.【点睛】本题考查利用面积型几何概型求概率,考查运算求解能力.9.某城市有3 个演习点同时进行消防演习,现将5 个消防队分配到这3 个演习点,若每个演习点至少安排1 个消防队,则不同的分配方案种数为( ) A .150 B .240 C .360 D .540【答案】A 【解析】试题分析:由题意得,把5个消防队分成三组,可分为1,1,3,1,2,2两类方法,(1)分为1,1,3,共有1135432210C C C A =种不同的分组方法;(2)分为1,2,2,共有1225422215C C C A =种不同的分组方法;所以分配到三个演习点,共有33(1015)150A +⨯=种不同的分配方案,故选A .考点:排列、组合的应用.【方法点晴】本题主要考查了以分配为背景的排列与组合的综合应用,解答的关键是根据“每个演习点至少要安排1个消防队”的要求,明确要将5个消防队分为1,1,3,1,2,2的三组是解得关键,着重考查了分析问题和解答问题的能力,属于中档试题,本题的解答中,先将5个消防队分为三组,则分配到三个演习点,然后根据分步计数原理,即可得到答案.10.某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36 B .72 C .108 D .144【答案】D 【解析】 【分析】按三步分步进行,先考虑甲单位招聘,利用间接法,因为至少招聘一名男生,将只招女生的情况去掉,录取方案数为2263C C -,然后剩余四人依次分配给乙单位和丙单位,分别为24C 、22C ,然后根据分步乘法计数原理将三个数相乘可得出答案。
2023-2024学年高考数学专项复习——计数原理与概率统计决胜2024年高考数学专项特训:计数原理与概率统计(解答题篇)1.镇安大板栗又称中国甘栗、东方珍珠,以味道甜脆,甘美可口,老幼皆宜,营养丰富而著称于世.现从某板栗园里随机抽取部分板栗进行称重(单位:克),将得到的数据按[30,40),[40,50),[50,60),[60,70),[70,80]分成五组,绘制的频率分布直方图如图所示.(1)请估计该板栗园的板栗质量的中位数;(2)现采用分层抽样的方法从质量在[40,50)和[70,80]内的板栗中抽取10颗,再从这10 颗板栗中随机抽取 4 颗,记抽取到的特等板栗(质量≥70克)的个数为X,求X的分布列与数学期望.2.杭州第19届亚运会,中国代表团共获得201金111银71铜,共383枚奖牌,金牌数超越2010年广州亚运会的199枚,标志着我国体育运动又有了新的突破.某大学从全校学生中随机抽取了130名学生,对其日常参加体育运动情况做了调查,其中是否经常参加体育运动的数据统计如下:经常参加不经常参加男生6020女生4010(1)利用频率估计概率,现从全校女生中随机抽取5人,求其中恰有2人不经常参加体育运动的概率;(2)依据小概率值的独立性检验,能否认为是否经常参加体育运动与性别有关联.0.1α=2χ参考公式.()()()()22(),n ad bc n a b c da b c d a c b d χ-==+++++++α0.10.050.010.0050.001x α2.7063.8416.6357.87910.8283.某学校有高中学生500人,其中男生300人,女生200人.有人为了获得该校全体高中学生的身高信息,采用分层抽样的方法抽取样本,并观测样本的指标值(单位:),计算得cm 男生样本的均值为170,方差为17,女生样本的均值为160,方差为30.(1)根据以上信息,能够计算出总样本的均值和方差吗?为什么?(2)如果已知男、女样本量按比例分配,你能计算出总样本的均值和方差各为多少吧?4.一个问题,甲正确解答的概率为,乙正确解答的概率为.记事件甲正确解答,事0.80.7:A 件乙正确解答.假设事件与相互独立.:B A B (1)求恰有一人正确解答问题的概率;(2)某同学解“求该问题被正确解答的概率”的过程如下:解:“该问题被正确解答”也就是“甲、乙二人中至少有一人正确解答了问题”,所以随机事件“问题被正确解答”可以表示为.A B +所以.()()()0.80.7 1.5P A B P A P B +=+=+=请你指出这位同学错误的原因,并给出正确解答过程.5.某学校为了学习、贯彻党的二十大精神,组织了“二十大精神”知识比赛,甲、乙两位教师进行答题比赛,每局只有1道题目,比赛时甲、乙同时回答这一个问题,若一人答对且另一人答错,则答对者获得10分,答错者得分;若两人都答对或都答错,则两人均得010-分.根据以往答题经验,每道题甲、乙答对的概率分别为,且甲、乙答对与否互不影响,12,23每次答题的结果也互不影响.(1)求在一局比赛中,甲的得分的分布列与数学期望;X (2)设这次比赛共有3局,若比赛结束时,累计得分为正者最终获胜,求乙最终获胜的概率.6.为了解顾客对五种款式运动鞋的满意度,厂家随机选取了2000名顾客进行回访,调查结果如表:运动鞋款式A B C D E 回访顾客(人数)700350300250400满意度0.40.50.60.50.6注:1.满意度是指:某款式运动鞋的回访顾客中,满意人数与总人数的比值;2.对于每位回访顾客,只调研一种款式运动鞋的满意度.假设顾客对各款式运动鞋是否满意相互独立,用顾客对某款式运动鞋的满意度估计对该款式运动鞋满意的概率.(1)从所有的回访顾客中随机抽取1人,求此人是C 款式运动鞋的回访顾客且对该款鞋满意的概率;(2)从A 、E 两种款式运动鞋的回访顾客中各随机抽取1人,设其中满意的人数为,求的X X 分布列和数学期望;(3)用“”和“”分别表示对A 款运动鞋满意和不满意,用“”和“”分别表示对1ξ=0ξ=1η=0η=B 款运动满意和不满意,试比较方差与的大小.(结论不要求证明)()D ξ()D η7.某人从地到地有路程接近的2条路线可以选择,其中第一条路线上有个路口,第二A B n 条路线上有个路口.m (1)若,,第一条路线的每个路口遇到红灯的概率均为;第二条路线的第一个路2n =2m =23口遇到红灯的概率为,第二个路口遇到红灯的概率为,从“遇到红灯次数的期望”考虑,3435哪条路线更好?请说明理由.(2)已知;随机变量服从两点分布,且,.则,i X ()()110ii i P X P X p ==-==11ni i n ii E X p ==⎛⎫= ⎪⎝⎭∑∑且.若第一条路线的第个路口遇到红灯的概率()2112,1,2,3,,n ni i i i i j i j E X p p p i j n ==≠⎡⎤⎛⎫=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑∑ i 为,当选择第一条路线时,求遇到红灯次数的方差.12i8.中华文化源远流长,为了让青少年更好地了解中国的传统文化,某培训中心计划利用暑期开设“围棋”、“武术”、“书法”、“剪纸”、“京剧”、“刺绣”六门体验课程.(1)若体验课连续开设六周,每周一门,求“京剧”和“剪纸”课程排在不相邻的两周的所有排法种数;(2)现有甲、乙、丙三名学生报名参加暑期的体验课程,每人都选两门课程,甲和乙有一门共同的课程,丙和甲、乙的课程都不同,求所有选课的种数;(3)计划安排A 、B 、C 、D 、E 五名教师教这六门课程,每门课程只由一名教师任教,每名教师至少任教一门课程,教师A 不任教“围棋”课程,教师B 只能任教一门课程,求所有课程安排的种数.9.根据张桂梅校长真实事迹拍摄的电影《我本是高山》于2023年11月24日上映,某数学组有3名男教师和2名女教师相约一起去观看该影片,他们的座位在同一排且连在一起.求:(1)2名女教师必须坐在一起的坐法有多少种?(2)2名女教师互不相邻的坐法有多少种?10.绵阳市37家A级旅游景区,在2023年国庆中秋双节期间,接待人数和门票收入大幅增长.绵阳某旅行社随机调查了市区100位市民平时外出旅游情况,得到的数据如下表:喜欢旅游不喜欢旅游总计男性203050女性302050x A(1)求月份与商品的月销售量(2)若规定月销售量大于35的月份为合格月,在合格月中月销售量低于分,月销售量不低于50的视为优秀,记12.聊天机器人(chatterbot )是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.(1)求一个问题的应答被采纳的概率;(2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为,事件()的概率为,求当最大时的值.X X k =0,1,,8k = ()P X k =()P X k =k 13.某班社会实践小组在寒假去书店体验图书销售员工作,并对某图书定价x (元)与当天销量y (本/天)之间的关系进行调查,得到了一组数据,发现变量大致呈线性关系,数据如下表,x y 所示定价x (元)681012销量y (本/天)141187参考数据:,1()()24nii i xx y y =--=-∑参考公式:回归方程中斜率的最小二乘估计值公式为y bx a =+$$$121()()()nii i nii xx y y bxx ==--=-∑∑ (1)根据以上数据,求出y 关于x 的回归直线方程;(2)根据回归直线方程,预测当该图书每天的销量为4本时,该图书的定价是多少元?14.俗话说:“人配衣服,马配鞍”.合理的穿搭会让人舒适感十足,给人以赏心悦目的感觉.张老师准备参加某大型活动,他选择服装搭配的颜色规则如下:将一枚骰子连续投掷两次,两次的点数之和为3的倍数,则称为“完美投掷”,出现“完美投掷”,则记;若掷出1ξ=的点数之和不是3的倍数,则称为“不完美投掷”,出现“不完美投掷”,则记;若,0ξ=1ξ=则当天穿深色,否则穿浅色.每种颜色的衣物包括西装和休闲装,若张老师选择了深色,再选西装的可能性为,而选择了浅色后,再选西装的可能性为.35310(1)求出随机变量的分布列,并求出期望及方差;ξ(2)求张老师当天穿西装的概率.15.已知一个盒子中装有1个黑球和2个白球,这些球除颜色外全部相同.每次从盒子中随机取出1个球,并换入1个黑球,记以上取球换球活动为1次操作.设次操作后盒子中所剩黑n 球的个数为.ξ(1)当时,求的分布列;3n =ξ(2)当时,求的分布列和数学期望.(3)n k k =≥ξ()E ξ16.数字乡村是乡村振兴的战略方向,也是建设数字中国的重要内容.从乡村民宿到旅游演艺,(2)估计这100名员工各项素质分数的平均数与方差;(同一组中的数据用该组区间的中点值作为代表)(3)若该平台准备挑选成绩较好的员工组建少?17.为回馈顾客,某商场拟通过摸球兑奖的方式对一个装有4个标有面值的球的袋中一次性随机摸出18.某超市计划按天从厂家订购酸奶,每瓶进价为4元,零售价为6元,若进货不足,则该超市以每瓶5元的价格进行补货,若销售有余,则厂家以3元回购,为此该超市收集并整理了30天这种酸奶的销售记录,得到了如下数据:销售瓶数2030405060频数361263以频率代替概率,记为这家超市每天销售该酸奶的瓶数,表示超市每天购进该酸奶的瓶X n 数.(1)求的分布列和数学期望;X (2)以销售该酸奶所得的利润的期望为决策依据,在和之中选一个,应选用哪个?55n =60n =答案:1.(1)57.5(2)分布列见解析,85【分析】(1)先通过分析确定中位数在内;再设中位数为,列出方程求解即可.[)50,60m (2)先根据分层抽样确定从质量在内的板栗中抽取颗,从质量在内的板栗[)40,506[]70,80中抽取颗;再写出的所有可能取值并计算相应的概率,列出分布列并根据数学期望公式4X 可得出答案.【详解】(1)因为,()0.0080.018100.260.5+⨯=<0.260.032100.580.5+⨯=>所以该板栗园的板栗质量的中位数在内.[)50,60设该板栗园的板栗质量的中位数为,m 则,解得,()500.0320.260.5m -⨯+=57.5m =所以该板栗园的板栗质量的中位数约为57.5.(2)由题意可知采用分层抽样的方法从质量在内的板栗中抽取[)40,50颗,从质量在内的板栗中抽取颗.0.0181060.0180.012⨯=+[]70,800.0121040.0180.012⨯=+的所有可能取值为.X 0,1,2,3,4,()()431664441010C C C 180,1C 14C 21P X P X ======,()()22136464441010C C C C 342,3C 7C 35P X P X ======.()44410C 14C 210P X ===从而的分布列为X X01234P114821374351210故.()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=2.(1);128625(2)经常参加体育运动与性别没有关联.【分析】(1)由题设知抽取到不经常参加体育运动的女生人数服从,应用二项1(5,)5X B 分布概率求法求概率;(2)写出列联表,应用卡方公式求卡方值,根据独立检验基本思想得到结论.【详解】(1)由表格知:经常参加与不经常参加体育运动的女生比例为,4:1所以,抽取到不经常参加体育运动的女生人数服从,1(5,)5X B 故恰有2人不经常参加体育运动的概率.232541128C ()()55625=(2)由题设得列联表如下:22⨯经常参加不经常参加男生602080女生40105010030130故,22130(60104020)0.433 2.706100308050χ⨯⨯-⨯=≈<⨯⨯⨯所以,依据小概率值的独立性检验认为经常参加体育运动与性别没有关联.0.1α=3.(1)不能,因为题目没有给出男、女生的样本量(2)均值为166,方差为46.2【分析】(1)由于不知道男、女生的样本量,故无法得到总样本的均值和方差;(2)根据男、女样本量按比例分配,得到总样本的均值,再根据公式得到总样本的方差.【详解】(1)不能,因为题目没有给出男、女生的样本量.(2)总体样本的均值为,300200170160166500500⨯+⨯=总体样本的方差为.2230020017(170166)30(160166)46.2500500⎡⎤⎡⎤⨯+-+⨯+-=⎣⎦⎣⎦4.(1)0.38(2)答案见解析【分析】(1)分析可知,事件“恰有一人正确解答”可表示为,利用互斥事件和独立AB AB +事件的概率公式可求得所求事件的概率;(2)指出该同学作答的错误之处,分析可知,“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为,利用互斥事件和独立事件的概率公式可求AB AB AB ++得所求事件的概率,或利用对立事件和独立事件的概率公式可求得所求事件的概率.【详解】(1)解:事件“恰有一人正确解答”可表示为,AB AB +因为、互斥,与相互独立,AB AB A B 所以.()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+0.20.70.80.30.38=⨯+⨯=(2)解:该同学错误在于事件、不互斥,而用了互斥事件的概率加法公式.A B 正确的解答过程如下:“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为,且、、两两互斥,与相互独立,AB AB AB ++AB AB AB A B 所以()()()()P AB AB AB P AB P AB P AB ++=++.()()()()()()0.20.70.80.30.80.70.94P A P B P A P B P A P B =++=⨯+⨯+⨯=或者.()()()()11P A B P AB P A P B +=-=-()()110.810.70.94=---=5.(1)分布列见解析,()53E X =-(2)55108【分析】(1)由题意知,取值可能为,分别求出对应的概率,写出分布列,再X 10,0,10-由数学期望公式即可.(2)由独立事件乘法公式及互斥事件的概率即可求出结果.【详解】(1)取值可能为,X 10,0,10-;()121101233P X ⎛⎫=-=-⨯=⎪⎝⎭;()1212101123232P X ⎛⎫⎛⎫==⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭,()121101236P X ⎛⎫==⨯-= ⎪⎝⎭所以的分布列为X X10-010P131216.()1115100103263E X =-⨯+⨯+⨯=-(2)由(1)可知在一局比赛中,乙获得10分的概率为,乙获得0分的概率2111323⎛⎫⨯-=⎪⎝⎭为,乙获得分的概率为.121211123232⎛⎫⎛⎫⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭10-1211236⎛⎫⨯-= ⎪⎝⎭在3局比赛中,乙获得30分的概率为;3111327P ⎛⎫==⎪⎝⎭在3局比赛中,乙获得20分的概率为;2223111C 326P ⎛⎫=⨯=⎪⎝⎭在3局比赛中,乙获得10分的概率为,2212333111111C C 323636P ⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭所以乙最终获胜的概率为.12311115527636108P P P P =++=++=6.(1)顾客是款式运动鞋的回访顾客且对该款鞋满意的概率是.C 9100(2)的分布列见解答.的期望是1X X (3)()()D D ξη<【分析】(1)求出款式运动鞋的回访顾客且对该款鞋满意的人数,然后求解顾客是款C C 式运动鞋的回访顾客且对该款鞋满意的概率.(2)的取值为0,1,2,设事件为“从款式运动鞋的回访顾客中随机抽取的1人对X M A 该款式运动鞋满意”,事件为“从款式运动鞋的回访顾客中随机抽取的1人对该款式运N E 动鞋满意”,说明事件与相互独立.然后求解的概率,得到分布列,然后求解期M N X 望.(3)由两点分布的方差公式计算比较与的大小.()D ξ()D η【详解】(1)由题意知,是款式运动鞋的回访顾客且对该款鞋满意的人数为,C 3000.6180⨯=故从所有的回访顾客中随机抽取1人,此人是C 款式运动鞋的回访顾客且对该款鞋满意的概率是.18092000100=(2)的取值为0,1,2.设事件为“从款式运动鞋的回访顾客中随机抽取的1人对X M A 该款式运动鞋满意”,事件为“从款式运动鞋的回访顾客中随机抽取的1人对该款式运动鞋满意”,N E 且事件与相互独立.M N 根据题意,,.()0.4P M =()0.6P N =则,(0)()(1())(1())0.60.40.24P X P MN P M P N ===--=⨯=,()()(1)()()()1()1()()0.40.40.60.60.52P X P MN P MN P M P N P M P N ==+=-+-=⨯+⨯=,(2)()()()0.40.60.24P X P MN P M P N ====⨯=所以的分布列为:X X012P0.240.520.24的期望是:.(3)都服从两点分布,X ()00.2410.5220.241E X =⨯+⨯+⨯=,ξη,,()10.4P ξ==()10.5P η==,,()()0.410.40.24D ξ=⨯-=()()0.510.50.25D η=⨯-=所以.()()D D ξη<7.(1)应选择第一条路线,理由见解析(2)2113342n n+-⋅【分析】(1)由题意,,分别求出相应的概率然后,结合期望公式即可10,1,2X =20,1,2X =比较,得出结论.(2)结合所给的均值方差性质,以及等比数列前项和公式即可求解.n 【详解】(1)应选择第一条路线,理由如下:设走第一、第二条路线遇到的红灯次数分别为随机变量、,1X 2X 则,,10,1,2X =20,1,2X =,,,()2111039P X ⎛⎫=== ⎪⎝⎭()1122141C 339P X ==⨯⨯=()2212242C 39P X ⎛⎫==⋅= ⎪⎝⎭所以;()1484993E X =+=又,,,()212104510P X ==⨯=()2321391454520P X ==⨯+⨯=()233924520P X ==⨯=所以;()299272202020E X =+⨯=因为,所以应选择第一条路线.427320<(2)设选择第一条路线时遇到的红灯次数为,X 所以;,()11nni i i i E X E X p ==⎛⎫== ⎪⎝⎭∑∑()22112n n i i i ji i i j E X E X p p p ==≠⎡⎤⎛⎫==+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑∑设随机变量,取值为,其概率分别为,且,Y Y ()1,2,3,,i Y i n =L i q 11ni i q ==∑()(){}21ni i i D Y Y E Y q ==-⎡⎤⎣⎦∑()(){}2212n i i i i ii Y q E Y Y q E Y q ==⋅-⋅+⋅⎡⎤⎣⎦∑()()()()()22221112nnni i i i i i i i Y q E Y Y q E Y q E Y E Y ====⋅-⋅+⋅=-⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑所以()()()()22D X E X E X =-2112nn i i j i i i j i p p p p =≠=⎛⎫=+- ⎪⎝⎭∑∑∑,21122nn i i j i i j i i j i i j p p p p p p =≠=≠⎛⎫=+-+ ⎪⎝⎭∑∑∑∑()21ni i i p p ==-∑又因为,所以.12i i p =()1111111111224411241124n nn n i i i i D X ==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-=---∑∑2113342n n =+-⋅8.(1)480(2)360(3)1140【分析】(1)采用插空法,先拍其余四科,再插空;(2)特殊的先排,再用分步乘法;(3)按甲所教科目的数量分类,然后由分类加法计数原理求解.【详解】(1)第一步,先将另外四门课排好,有种情况;44A 第二步,将“京剧”和“剪纸”课程分别插入5个空隙中,有种情况;25A 所以“京剧”和“剪纸”课程排在不相邻的两周的排法有种;4245A A 480⨯=(2)第一步,先将甲和乙的不同课程排好,有种情况;26A 第二步,将甲和乙的相同课程排好,有种情况;14C 第三步,因为丙和甲、乙的课程都不同,所以丙的排法种情况;23C 因此,所有选课种数为.212643A 6C C 30⨯⨯=(3)①当A 只任教1科时:先排A 任教科目,有种;再从剩下5科中排B 的任教科目,15C 有种;接下来剩余4科中必有2科为同一名老师任教,分三组全排列,共有种;所以15C 2343C A 当A 只任教1科时,共有种;1123554343C C C A 5532190021⨯=⨯⨯⨯⨯⨯=⨯②当A 任教2科时:先选A 任教的2科有中,这样6科分为4组共有25C 种,245454C A 432124021⨯=⨯⨯⨯⨯=⨯所以,当A 任教2科时,共有种,9002401140+=综上,A 不任教“围棋”的课程安排方案有1140种.9.(1)48(2)72【分析】(1)捆绑法结合分步计数原理即可;(2)插空法结合分步计数原理即可;【详解】(1)根据题意,先将2名女教师排在一起,有种坐法,22A 2=将排好的女教师视为一个整体,与3名男教师进行排列,共有种坐法,44A 24=由分步乘法计数原理,共有种坐法.22448⨯=(2)根据题意,先将3名男教师排好,有种坐法,33A 6=再在这3名男教师之间及两头的4个空位中插入2名女教师,有种坐法,24A 12=由分步乘法计数原理,共有种坐法.61272⨯=10.(1)有的把握认为喜欢旅游与性别有关95%(2)分布列见解析,()45E ξ=【分析】(1)将表中数据代入的计算公式并将计算结果与比较大小,由此可知结果;2K 3.841(2)根据条件判断出,然后计算出在不同取值下的概率,由此可求分布列,22,5B ξ⎛⎫⎪⎝⎭:ξ根据分布列可求.()E ξ【详解】(1)因为,22100(20203030)4 3.84150505050K ⨯⨯-⨯==>⨯⨯⨯所以有的把握认为喜欢旅游与性别有关.95%(2)由表中数据可知:从全市男性市名中随机抽取一人,该人喜欢旅游的概率为,202505=由题意可知:,的可能取值为0,1,2.22,5B ξ⎛⎫⎪⎝⎭:ξ所以,()222290C 15525P ξ⎛⎫⎛⎫==⨯-⨯=⎪ ⎪⎝⎭⎝⎭,()111222121C 15525P ξ⎛⎫⎛⎫==⨯-⨯=⎪ ⎪⎝⎭⎝⎭,()02222242C 15525P ξ⎛⎫⎛⎫==⨯-⨯=⎪ ⎪⎝⎭⎝⎭所以的分布列为:ξξ12P9251225425所以(或者).()912440122525255E ξ=⨯+⨯+⨯=()24255E ξ=⨯=11.(1)ˆ523yx =+(2)分布列见解析,()21E X =【分析】(1)由题意先分别算出,,结合已知参数即可算出,4x =721140ii x==∑ˆ5b =,从而即可得解.ˆ23a=(2)合格月有5个,其中记为5分的月份有3个,记为10分的月份有2个,由超几何分布的概率公式即可求出分布列,进一步得出数学期望.【详解】(1),,()112345674,437x y =++++++==711344i i i x y ==∑,72222222211234567140ii x==++++++=∑所以,,213447443ˆ514074b -⨯⨯==-⨯ˆˆ435423a y b x =-⋅=-⨯=所以.ˆ523yx =+(2)由题可知,合格月有5个,其中记为5分的月份有3个,记为10分的月份有2个,所以,()()()21123232333555C C C C 113315,20,25C 10C 5C 10P X P X P X =========所以的分布列为X X152025P11035310数学期望.()1331520252110510E X =⨯+⨯+⨯=12.(1)0.75(2)6【分析】(1)根据全概率公式即可求解,(2)根据二项分布的概率公式,利用不等式即可求解最值.【详解】(1)记“输入的问题没有语法错误”为事件, “一次应答被采纳”为事件,A B 由题意,,,则()0.1P A =()0.8P B A =()0.3P B A =,()1()0.9P A P A =-=.()()()()()()()0.90.80.10.30.75P B P AB P AB P A P B A P A P B A =+=+=⨯+⨯=(2)依题意,,,3(8,)4X B 8831()()()44k k kP X k -==C 当最大时,有()P X k =()()()()1,1,P X k P X k P X k P X k ⎧=≥=+⎪⎨=≥=-⎪⎩即解得:,,8171888191883131C C ,44443131C C ,4444k k k k k k k k k kk k -+-+----⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪≥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩232744k ≤≤k ∈N 故当最大时,.()P X k =6k =13.(1);1.220.ˆ8yx =-+(2).14【分析】(1)利用最小二乘法直接计算求回归直线方程即可;(2)利用回归直线方程代入计算即可.【详解】(1)由表格可知,6810121411879,1044x y ++++++====则,()()()()4222221()698910912920ii x x =-=-+-+-+-=∑所以,41421()()1.2()ˆiii ii x x y y bx x ==--==--∑∑则,故;1.2.8ˆ20ˆy x aa =-+⇒= 1.220.ˆ8y x =-+(2)由(1)知,当时,,1.220.ˆ8yx =-+4y =14x =即当该图书每天的销量为4本时,该图书的定价是元.1414.(1)分布列见解析;,()13E ξ=()29D ξ=(2)25【分析】(1)结合古典概型即可写出分布列,进而可求期望与方差;(2)结合条件概率即可求解.【详解】(1)将一枚骰子连续投掷两次共有基本事件种,6636⨯=掷出的点数之和是3的倍数有:,12种;(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6)则掷出的点数之和不是3的倍数有24种,随机变量的取值为0,1,ξ,()2420363P ξ===()1211363P ξ===所以的分布列为:ξξ1P2313.()21101333E ξ=⨯+⨯=;()22111221033339D ξ⎛⎫⎛⎫=-⨯+-⨯=⎪ ⎪⎝⎭⎝⎭(2)设表示深色,则表示穿浅色,表示穿西装,则表示穿休闲装.A AB B 根据题意,穿深色衣物的概率为,则穿浅色衣物的概率为,()13P A =()23P A =穿深色西装的概率为,穿浅色西装的概率为,()30.65P B A ==()310P B A =则当天穿西装的概率为.()()()()()13232353105P B P B A P A P B A P A =+=⨯+⨯=所以张老师当天穿西装的概率为.2515.(1)分布列见解析(2)分布列见解析,数学期望为2323k⎛⎫- ⎪⎝⎭【分析】(1)首先分析题意,列出,即3次摸换球后的可能取值为1,2,3,3n =ξ再一次计算可能即可.(2)利用(1)中题意,进行分析即可,最后算出答案.【详解】(1),即3次摸换球后的可能取值为1,2,3.3n =ξ当,即3次摸球都摸到黑球,1ξ=1111(1)33327P ξ==⨯⨯=当,即3次摸球中有且仅有2次摸到黑球,1次白球,2ξ=()()()(2)P P P P ξ==++黑黑白黑白黑白黑黑112122222333333333=⨯⨯+⨯⨯+⨯⨯1427=当,即3次摸球中有且仅有1次摸到黑球,2次白球,3ξ=()()()(3)P P P P ξ==++黑白白白黑白白白黑12122121133333333=⨯⨯+⨯⨯+⨯⨯.1227=分布列为∴ξ122P12714271227(2)时,即次摸球换球后,黑球个数可能取值为1,2,3(3)n k k =≥k ξ同(1)当,即次摸球都摸到黑球,1ξ=k 1(1)3kP ξ⎛⎫== ⎪⎝⎭当,即次摸球有且仅有“”次摸到黑球,1次摸到白球,2ξ=k 1k -()()()(2)P P P P ξ==+++白黑黑黑黑黑黑黑白黑白12122122123333333k k k ---⎛⎫⎛⎫⎛⎫=⨯+⨯⨯++⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()112223kk k -=+++ .当,()2121312kk -=⋅-2123k k -=⋅3ξ=(3)1(1)(2)P P P ξξξ==-=-=,,()2211133k kk -⎛⎫=-- ⎪⎝⎭12113k k +-=-()()14213211()3333k k k k k E ξ+--⎛⎫∴=++- ⎪⎝⎭2233kk ⋅=-2323k⎛⎫=- ⎪⎝⎭(2)由题知,平均数为65x =方差为20.1(6582)0.3S =⨯-+⨯(3)因为从100名员工中挑选工组建“数字乡村发展部”,所以应选成绩为70百分位数及其后的分数的员工,所以被挑选的员工分数不低于.87.517.(1)12(2)方案二,理由见解析【分析】(1)由古典概型结合组合数公式求解;(2)分别求解两方案的均值和方差比较可得结果【详解】(1)设顾客的奖励额为X,依题意得()111324C C 160C 2P X ===(2)根据方案一,设顾客的奖励额为其可能取值为30,,30m60,901,X ,,()22124C 130C 6P X ===()1122124C C 4260C 63P X ====()22124C 190C 6P X ===()112130609060636E X =⨯+⨯+⨯=()()()()2221121306060609060300636D X =-⨯+-⨯+-⨯=根据方案二,设顾客的奖励额为其可能取值为40,60,802,X ,,()22224C 140C 6P X ===()1122224C C 4260C 63P X ====()22224C 180C 6P X ===()212140608060636E X =⨯+⨯+⨯=()()()()22221214004060606080606363D X =-⨯+-⨯+-⨯=商场对奖励总额的预算是30000元,故每个顾客平均奖励额最多为60,两方案均符合要求,但方案二奖励的方差比方案一小,所以应选择方案二18.(1)分布列见解析,数学期望为40;(2).55n =【分析】(1)直接根据表格计算离散型随机变量的分布列及期望即可;(2)分类计算两种情形的分布列及期望,比较大小决定即可.【详解】(1)根据表格可知的所有可能取值为:,X 20,30,40,50,60且,()()36200.1,300.23030======P X P X,()()()1263400.4,500.2,600.1303030=========P X P X P X 所以分布列为:X2030405060P0.10.20.40.20.1.()200.1300.2400.4500.2600.140E X =⨯+⨯+⨯+⨯+⨯=(2)①当时,设为“超市销售该酸奶所得的利润”,55n =1Y 则当时,;当时,;20X =12201355Y =⨯-⨯=30X =123012535Y =⨯-⨯=当时,;当时,;40X =124011565Y =⨯-⨯=50X =12501595Y =⨯-⨯=当时,;60X =125515115Y =⨯+⨯=所以的分布列为:1Y 1Y 5356595115P0.10.20.40.20.1,()150.1350.2650.4950.21150.164E Y =⨯+⨯+⨯+⨯+⨯=②当时,设为“超市销售该酸奶所得的利润”,则60n =2Y 当时,;20X =22201400Y =⨯-⨯=当时,;30X =223013030Y =⨯-⨯=当时,;40X =224012060Y =⨯-⨯=当时,;50X =225011090Y =⨯-⨯=当时,;60X =2260120Y =⨯=所以的分布列为:2Y 2Y 0306090120P0.10.20.40.20.1,()200.1300.2600.4900.21200.160E Y =⨯+⨯+⨯+⨯+⨯=,故应选.()()12E Y E Y >55n =。
【高中数学】数学《计数原理与概率统计》试卷含答案一、选择题1.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92B .94C .93D .1【答案】B【解析】【分析】求出二项式()913x -展开式的通项为()193r r r T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >, 因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦. 故选:B.【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.2.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A .96种B .124种C .130种D .150种【答案】D【解析】【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2当按照1、1、3来分时共有C 53=10种分组方法; 当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种;故选D .【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.3.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为三角形ABC 的BC ,AB 和AC .若10BC =,8AB =,6AC =,ABC V 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅱ的概率为( )A .92524ππ+ B .162524π+ C .252425ππ+ D .484825π+ 【答案】D【解析】【分析】 根据题意,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到结论.【详解】 由题意,如图:Ⅰ所对应的面积为1186242S =⨯⨯=, Ⅱ所对应的面积29252482422S πππ=++-=, 整个图形所对应的面积9252482422S πππ=++=+, 所以,此点取自Ⅱ的概率为484825P π=+. 故选:D.【点睛】 本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.4.如图所示,将四棱锥S-ABCD 的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为( )A .240B .360C .420D .960【答案】C【解析】【分析】 可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.【详解】由题设,四棱锥S-ABCD 的顶点S 、A 、B 所染的颜色互不相同,它们共有54360⨯⨯=种染色方法.设5种颜色为1,2,3,4,5,当S 、A 、B 染好时,不妨设其颜色分别为1、2、3, 若C 染2,则D 可染3或4或5,有3种染法;若C 染4,则D 可染3或5,有2种染法,若C 染5,则D 可染3或4,有2种染法. 可见,当S 、A 、B 已染好时,C 、D 还有7种染法,故不同的染色方法有607420⨯=(种).故选:C【点睛】本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.5.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( )A .5108B .113C .17D .710【答案】B【解析】【分析】根据条件概率的计算公式即可得出答案.【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B【点睛】 本题主要考查了利用条件概率计算公式计算概率,属于中档题.6.2020(1)(1)i i +--的值为( )A .0B .1024C .1024-D .10241-【答案】A【解析】【分析】利用二项式定理展开再化简即得解.【详解】由题得原式=11223319192011223319192020202020202020201++i )1i )C i C i C i C i C i C i C i C i ++++--+-+-+L L (( =1133551919202020202()C i C i C i C i ++++L=1133555331132020202020202(++)C i C i C i C i C i C i ++++L=113355553312020202020202(C )C i C i C i i C i C i +++---L=0.故选:A【点睛】本题主要考查二项式定理,意在考查学生对该知识的理解掌握水平和分析推理能力.7.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A ∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件.其中正确命题的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A 与B 是互斥事件时,才有P(A ∪B)=P(A)+P(B),对于任意两个事件A ,B 满足P(A ∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球},显然事件A 与B 不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.已知a c ≠,随机变量ξ,η的分布列如表所示. ξ1 2 3 P a b cη1 2 3 P c b a命题p :=E E ξη,命题q :D D ξη=,则( )A .p 真q 真B .p 真q 假C .p 假q 真D .p 假q 假 【答案】C【解析】【分析】首先分别求E ξ和E η,然后比较,利用公式()()22D E E ξξξ=-,利用公式1a b c ++=,计算D D ξη-的值.【详解】12323E a b c a b c ξ=⨯+⨯+⨯=++12332E c b a a b c η=⨯+⨯+⨯=++ ,()2E E c a ξη-=- a c ≠Q ,E E ξη∴≠,所以命题p 是假命题,()249E a b c ξ=++,()()2223E a b c ξ=++, 所以()()24923D a b c a b c ξ=++-++ ()294E a b c η=++,()()2232E a b c η=++, ()()()()2229432D E E a b c a b c ηηη=-=++-++ ,()()()()()2283223D D c a a b c a b c ξη-=-+++-++ ()()()822444c a a c a b c =-+-++ ,1a b c ++=Q ,所以()()()()880D D c a a c ξη-=-+-=,即()()D D ξη=,所以命题q 是真命题.综上可知p 假q 真.故选:C【点睛】本题考查离散型分布列的期望方差,属于重点题型,本题使用的关键公式是()()22D E E ξξξ=-,比较大小的关键是利用1a b c ++=.9.已知59290129(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则7a =( )A .9B .36C .84D .243【答案】B【解析】【分析】 ()()59x 1x 2++-等价变形为[()][()()]59x 12x 11-++-+-,然后利用二项式定理将其拆开,求出含有7(1)x -的项,便可得到7a . 【详解】解:55(1)[(1)2]x x +=-+展开式中不含7(1)x -;()[()()]99x 2x 11-=-+-展开式中含7(1)x -的系数为()729C 136-= 所以,7a 36=,故选B【点睛】本题考查二项式定理,解题的关键是要将原来因式的形式转化为目标因式的形式,然后再进行解题.10.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A .12B .13C .16D .112【答案】B【解析】【分析】 求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动, 基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】 本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.11.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( )A .12B .1C .32D .2【答案】B【解析】由题意2ξ=或4,则221[(23)(43)]12D ξ=-+-=,故选B .12.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A.413B.21313C.926D.31326【答案】A【解析】【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在ABD∆中,3AD=,1BD=,120ADB∠=︒,由余弦定理,得222cos12013AB AD BD AD BD=+-⋅︒=,所以13DFAB=.所以所求概率为24=1313DEFABCSS∆∆=⎪⎝⎭.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.13.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是()A.与2015年相比,2018年一本达线人数减少B.与2015年相比,2018二本达线人数增加了0.5倍C.2015年与2018年艺体达线人数相同D.与2015年相比,2018年不上线的人数有所增加【答案】D【解析】【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=,显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.14.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为 1.160.5ˆ37yx =-,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米,【答案】D【解析】【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确.【详解】A ,身高极差大约为25,臂展极差大于等于30,故正确;B ,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C ,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D ,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确.故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.15.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( )A .280B .320C .400D .1000【答案】C【解析】【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题, Q 青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本, ∴要从该单位青年职员中抽取的人数为:10200801087⨯=++ Q 每人被抽取的概率为0.2, ∴该单位青年职员共有804000.2= 故选C【点睛】 本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题。
数学《计数原理与概率统计》复习知识点一、选择题1.已知a c ≠,随机变量ξ,η的分布列如表所示.命题p :=E E ξη,命题q :D D ξη=,则( ) A .p 真q 真 B .p 真q 假C .p 假q 真D .p 假q 假【答案】C 【解析】 【分析】首先分别求E ξ和E η,然后比较,利用公式()()22D E E ξξξ=-,利用公式1a b c ++=,计算D D ξη-的值.【详解】12323E a b c a b c ξ=⨯+⨯+⨯=++12332E c b a a b c η=⨯+⨯+⨯=++ ,()2E E c a ξη-=- a c ≠Q ,E E ξη∴≠,所以命题p 是假命题,()249E a b c ξ=++,()()2223E a b c ξ=++,所以()()24923D a b c a b c ξ=++-++()294E a b c η=++,()()2232E a b c η=++,()()()()2229432D E E a b c a b c ηηη=-=++-++ ,()()()()()2283223D D c a a b c a b c ξη-=-+++-++()()()822444c a a c a b c =-+-++ , 1a b c ++=Q ,所以()()()()880D D c a a c ξη-=-+-=, 即()()D D ξη=,所以命题q 是真命题.综上可知p 假q 真. 故选:C 【点睛】本题考查离散型分布列的期望方差,属于重点题型,本题使用的关键公式是()()22D E E ξξξ=-,比较大小的关键是利用1a b c ++=.2.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60 D .58【答案】A 【解析】 【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案. 【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个, (2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 故选:A. 【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.4.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118 SPS⨯⨯===⨯阴影正方形.故选:A.【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.5.在矩形ABCD中,AB AD>,在CD上任取一点P,使ABP△的最大边是AB的概率为35,则在折线A-D-C-B上任取一点Q,使ABQ△是直角三角形的概率为()A.611B.511C.59D.49【答案】A【解析】【分析】由题意设5AB=,由几何概型概率公式结合勾股定理可得3AD=,再由几何概型概率公式即可得解.【详解】如图,矩形是对称的,设P在线段MN上时,ABP△的最大边为AB,则此时AM BN AB==,设5AB=,则3MN=,所以1DN CM==,4DM=,5AM=,由勾股定理知3AD=,当Q在AD或BC上时,ABQ△为直角三角形,故所求概率为611AD BCpAD CD BC+==++.故选:A.【点睛】本题考查了几何概型概率的求解,考查了转化化归思想,属于中档题.6.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为()A .13B .14C .15D .12【答案】A 【解析】 【分析】根据条件概率的公式与排列组合的方法求解即可. 【详解】由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率113333155C C A 9A 20P ==,其中学生丙第一个出场的概率1333255C A 3A 20P ==,所以所求概率为2113P P P ==. 故选:A 【点睛】本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型.7.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23【答案】D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.8.若52345012345(23)x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++为() A .-233 B .10C .20D .233【答案】A 【解析】 【分析】对等式两边进行求导,当x =1时,求出a 1+2a 2+3a 3+4a 4+5a 5的值,再求出a 0的值,即可得出答案. 【详解】对等式两边进行求导,得:2×5(2x ﹣3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1,得10=a 1+2a 2+3a 3+4a 4+5a 5; 又a 0=(﹣3)5=﹣243,∴a 0+a 1+2a 2+3a 3+4a 4+5a 5=﹣243+10=﹣233. 故选A . 【点睛】本题考查了二项式定理与导数的综合应用问题,考查了赋值法求解二项展开式的系数和的方法,利用导数得出式子a 1+2a 2+3a 3+4a 4+5a 5是解题的关键.9.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A .2B .3C .10D .15【答案】C 【解析】 【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果. 【详解】设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.10.已知不等式501x x -<+的解集为P ,若0x P ∈,则“01x <”的概率为( ). A .14 B .13C .12D .23【答案】B 【解析】 【分析】 【详解】分析:解分式不等式得集合P ,再根据几何概型概率公式(测度为长度)求结果. 详解:(5)(1)050101x x x x x -+<⎧-<⇒⎨+≠+⎩,∴{}|15P x x =-<<,||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.11.某校从6名教师中选派3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是( ) A .252 B .288C .360D .216【答案】A 【解析】 【分析】3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,所以当3名教师确定时,则其中1人必须完成两项工作,故完成工作的方法有121342C C C ••种,然后再根据甲、乙、丙三人的条件要求,分三种情况讨论,得出结果. 【详解】解:因为3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,所以当3名教师确定时,则其中1人必须完成两项工作,故安排3名教师完成4项工作,可以先确定完成两项工作的1名人员,其方法有13C , 然后再确定完成的工作,其方法有24C ,然后再将剩下的两项工作分配给剩下的两人,其方法有12C ,故当3名教师确定时,完成工作的方法有121342C C C ••种; 因为甲和乙不同去,甲和丙只能同去或同不去, 故有三种方法选择教师,第一种方法:甲参加,乙不参加,丙参加,再从剩下的3人中选择1人,其方法有13C 种, 第二种方法:甲不参加,乙参加,丙不参加,再从剩下的3人中选择2人,其方法有23C 种,第三种方法:甲不参加,乙不参加,丙不参加,再从剩下的3人中选择3人,其方法有33C 种;故最终选派的方法为()123121333342C C C C C C 252++•••=,故选A.【点睛】本题考查了排列组合的知识、分类分步的计数原理,解题的关键是要辨析清楚何时是分类,何时是分步.12.若实数2a =,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()1019222101010101022222232.a C a C a a -+-+=-==L本题选择A 选项.13.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331321222228D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.【详解】由题意可知:()()221210p p p p -+-+= , 且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭ ()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2880,2D p p t ξ=-+=∈,21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.14.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.将编号1,2,3,4的小球放入编号为1,2,3盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有 A .6种 B .9种C .12种D .18种【答案】C 【解析】由题意可知,这四个小球有两个小球放在一个盒子中,当四个小球分组为如下情况时,放球方法有:当1与2号球放在同一盒子中时,有2种不同的放法;当1与3号球放在同一盒子中时,有2种不同的放法;当1与4号球放在同一盒子中时,有2种不同的放法;当2与3号球放在同一盒子中时,有2种不同的放法;当2与4号球放在同一盒子中时,有2种不同的放法;当3与4号球放在同一盒子中时,有2种不同的放法;因此,不同的放球方法有12种.故选:C16.数学老师给校名布置了10道数学题,要求小明按照序号从小到大的顺序,每天至少完成一道,如果时间允许,也可以多做,甚至在一天全部做完,则小明不同的完成方法种数为A .55B .90C .425D .512 【答案】D【解析】利用隔板法,10道题中间有9个空格,若1天做完,有09C 种;若2天做完,从9个空格中插入一个板,分成2天,则有19C 种;若3天做完,则有29C 种;以此类推,若9天做完,则有89C 种;若10天做完,则有99C 种;故总数为012899999992512C C C C C +++⋅⋅⋅+==. 故选D.17.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( )A .518B .12C .59D .79【答案】D【解析】【分析】现在小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,由此能求出他取到的书的书名中有“算”字的概率.【详解】解: 小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,那么他取到的书的书名中有“算”字的概率为357459m p n ===. 故选:D .【点睛】 本题考查排列组合与古典概型的综合应用,难度一般.注意此题中的书名中有“算”字包含两种情况:仅有一本书的书名中有“算”、两本书的书名中都有“算”,分类需要谨慎.18.古代人常常会研究“最大限度”问题,下图是一个正三角形内最大限度地可以放入三个同样大小的圆,若将一个质点随机投入如图所示的正三角形ABC 中(阴影部分是三个半径相同的圆,三个圆彼此互相外切,且三个圆与正三角形ABC 的三边分别相切),则质点落在阴影部分内部的概率是( )A .2334-B .(233)4π-C .2332-D .(233)2π- 【答案】D【解析】【分析】设圆的半径为r ,表示出三角形的边长,分别求出圆的面积和三角形面积,根据几何概型求解概率.【详解】设“质点落在阴影部分内部”为事件M .如右图所示:设圆的半径为r ,正三角形ABC 的边长为a .因为130PBO ∠=︒,所以3tan 30r BP =︒=3BP r =.同理,3CQ r =. 又因为122PQ O O r ==,所以332(232)BP CQ PQ r r r r BC a ++=++===,所以由几何概型得,点落在阴影部分内部的概率是223)()222P Mπ===.故选:D.【点睛】此题考查求几何概型,关键在于准确求出圆的面积和三角形的面积,找出其中的等量关系即可得解.19.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y,设事件A为“x y+为偶数”,事件B为“x y、中有偶数,且x y≠”,则概率()P B A=( )A.13B.12C.14D.25【答案】A【解析】【分析】根据题意有()))|(=(n ABPnAAB,所以只须分析事件A和事件AB所包含的基本事件,即可根据公式求出结果.【详解】解:事件A中“x y+为偶数”,所以,x y同奇同偶,共包含22318⨯=种基本事件;事件AB同时发生,则,x y都为偶数,且x y≠,则包含236A=个基本事件;()()61=)13|=(8n ABn AP B A=.故选:A.【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.20.把15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,则共有多少种放法()A.18B.28C.38D.42【答案】B【解析】【分析】根据题意,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3. 个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,由挡板法分析可得答案.【详解】根据题意,15个相同的小球放到三个编号为123,,的盒子中,且每个盒子内的小球数要多于盒子的编号数,先在1号盒子里放1个球,在2号盒子里放2个球,在3号盒子里放3个球,则原问题可以转化为将剩下的9个小球,放入3个盒子,每个盒子至少放1个的问题,将剩下的9个球排成一排,有8个空位,在8个空位中任选2个,插入挡板,有2 88728 2C⨯==种不同的放法,即有28个不同的符合题意的放法;故选B.【点睛】本题考查排列、组合的应用,关键是将原问题转化为将3个球放入3个盒子的问题,属于基础题.。
数学《计数原理与概率统计》知识点一、选择题1.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( ) A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B . 【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.2.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .25【答案】D 【解析】 【分析】 【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=102.255=故答案为D.3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A.112B.115C.118D.114【答案】D【解析】【分析】先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解.【详解】由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,随机选取两个不同的数,共有2828C=种,其中随机选取的两个不同的数,其和为20的有31720,71320+=+=,共有2种,所以概率为212814 P==.故选:D.【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用组合数的公式求得基本事件的总数是解答的关键,着重考查了推理与运算能力.4.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C 内任取一点,则该点落在区域M上的概率为()A.35B.925C.1625D.25【答案】B【解析】PQ中点组成的区域M如图阴影部分所示,那么在C内部任取一点落在M内的概率为25π-16π925π25=,故选B.5.设*N n ∈,n a 为()()41nnx x +-+的展开式的各项系数之和,7c t =-,R t ∈,1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L ([]x 表示不超过实数x 的最大整数).则()()22n n t b c -++的最小值为( )A .12B.2C.D.【答案】A 【解析】 【分析】令1x =可得,52n n n a =-,求出n b ,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方,最小值即(3,3)到7y t =-的距离d 的平方,然后由点到直线的距离公式求解即可得答案. 【详解】令1x =可得,52nnn a =-,2[][]55nn n n na n n =-g ,设25n n n n c =g ,所以1+11(1)22223()()055555n n n n n n n n n c c n +++-=-=-<g g , 所以数列{}n c 单调递减,所以数列2{}5nn n n -g 是单调递增数列,(增函数+增函数=增函数)当n →+∞时,20,5n n n →g 且20,5nn n >g 所以2[][]155n n n n na n n n =-=-g .21222[][][]12(1)5552n n n na a a n nb n -=++⋯+=++⋯+-=,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方, 即求点(n ,2)(*)2n nn N -∈到7y t =-的距离d 的最小值,所以222|7|157|14||()|4424n n n d n n n -+-==+-=+-, 当1n =时,957||=4444d =-; 当2n =时,2557||=4444d =- 当3n =时,4957||=2=44442d =-;当4n =时,8157||=6=44442d =-;由函数的图象可知当5,6,7,n =L 时,d > 所以点(n ,2)(*)2n nn N -∈为(3,3)时,它到7y t =-的距离d 最小,d ==Q ,∴2.∴()()22n n t b c -++的最小值为12. 故选:A . 【点睛】本题考查了二项式定理的应用,考查了点到直线的距离公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为 A .100 B .110 C .120 D .180【答案】B 【解析】试题分析:10人中任选3人的组队方案有310120C =,没有女生的方案有3510C =, 所以符合要求的组队方案数为110种 考点:排列、组合的实际应用7.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60 D .58【答案】A 【解析】 【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案. 【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个, (2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 故选:A. 【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.8.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23【答案】D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.9.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种. A .2267A AB .3247A AC .322367A A AD .362467A A A【答案】D 【解析】 【分析】采用捆绑法和插空法,将3个男生看成一个整体方法数是34A 种,再排列6个女生,最后让所有男生插孔即可. 【详解】采用捆绑法和插空法;从4名男生中选择3名,进而将3个相邻的男生捆在一起,看成1个男生,方法数是34A 种,这样与第4个男生看成是2个男生;然后6个女生任意排的方法数是66A 种;最后在6个女生形成的7个空隙中,插入2个男生,方法数是27A 种.综上所述,不同的排法共有362467A A A 种. 故选D. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .118【答案】C 【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C. 点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.11.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .7【答案】C 【解析】 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =Q ∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.在区间[2,2]-上任意取一个数x ,使不等式20x x -<成立的概率为( ) A .16B .12C .13D .14【答案】D 【解析】 【分析】先解不等式,再根据几何概型概率公式计算结果. 【详解】由20x x -<得01x <<,所以所求概率为1012(2)4-=--,选D.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.13.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331321222228D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.【详解】由题意可知:()()221210p p p p -+-+= , 且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭ ()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2880,2D p p t ξ=-+=∈,21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.14.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析 根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4aT C ax x +⎛== ⎝⎭.Q 第三项的系数为1,1,44a a ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.15.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A .23B .12C .13D .14【答案】B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC , 则PB PC +u u u r u u u r =PD u u u r , ∵20PB PC PA ++=u u u r u u u r u u u r r ,∴2PB PC PA +=-u u u r u u u r u u u r , ∴2PD PA =-u u u r u u u r,∴P 是△ABC 边BC 上的中线AO 的中点,∴点P 到BC 的距离等于A 到BC 的距离的12.∴S △PBC =12S △ABC . ∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为:P=PBC ABC S S V V =12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.16.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+ B .146π- C .4π D .16【答案】B【解析】【分析】 用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积.【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162r r r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2. 曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.17.设2012(12)n n n x a a x a x a x L -=++++,若340a a +=,则5a =( )A .256B .-128C .64D .-32【答案】D【解析】【分析】 由题意利用二项展开式的通项公式求得n 的值,从而求得5a 的值.【详解】∵()201212nn n x a a x a x a x -=++++L ,∵334434220n n a a C C +=⋅-+⋅-=()(), 5n ∴=,则5555232a C (),=⋅-=- 故选D .【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.18.数学老师给校名布置了10道数学题,要求小明按照序号从小到大的顺序,每天至少完成一道,如果时间允许,也可以多做,甚至在一天全部做完,则小明不同的完成方法种数为A .55B .90C .425D .512 【答案】D【解析】利用隔板法,10道题中间有9个空格,若1天做完,有09C 种;若2天做完,从9个空格中插入一个板,分成2天,则有19C 种;若3天做完,则有29C 种;以此类推,若9天做完,则有89C 种;若10天做完,则有99C 种;故总数为012899999992512C C C C C +++⋅⋅⋅+==. 故选D.19.我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有“算”字的概率为( )A .518B .12C .59D .79【答案】D【解析】【分析】现在小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,由此能求出他取到的书的书名中有“算”字的概率.【详解】解: 小明同学从这十本书中任借两本阅读,基本事件总数210C 45n ==,他取到的书的书名中有“算”字包含的基本事件总数211555C C C 35m =+=,那么他取到的书的书名中有“算”字的概率为357459m p n ===.故选:D .【点睛】本题考查排列组合与古典概型的综合应用,难度一般.注意此题中的书名中有“算”字包含两种情况:仅有一本书的书名中有“算”、两本书的书名中都有“算”,分类需要谨慎.20.已知不等式501x x -<+的解集为P ,若0x P ∈,则“01x <”的概率为( ). A .14 B .13 C .12 D .23【答案】B【解析】【分析】【详解】分析:解分式不等式得集合P ,再根据几何概型概率公式(测度为长度)求结果. 详解:(5)(1)050101x x x x x -+<⎧-<⇒⎨+≠+⎩, ∴{}|15P x x =-<<,||111x x <⇒-<<, ∴1(1)15(1)3P --==--. 选B .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.。
新数学高考《计数原理与概率统计》复习资料一、选择题1.336 ax⎛⎫-⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11adxx=⎰()A.2ln2B.ln2C.2D.1【答案】A【解析】【分析】首先根据二项式定理求出a,把a的值带入11adxx⎰即可求出结果.【详解】解题分析根据二项式336ax⎛⎫-⎪⎪⎝⎭的展开式的通项公式得2212133()4aT C ax x+⎛⎫=-=⎪⎪⎝⎭.Q第三项的系数为1,1,44aa∴=∴=,则4411111d d ln2ln2ax x xx x===⎰⎰.故选:A【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk nT a b-+=.属于中等题.2.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.15【答案】C【解析】【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.3.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( ) A .4πB .8π C .5π D .10π 【答案】D 【解析】 【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论. 【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240 230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V , 又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21122ππ⨯=;∴所求的概率为2510P ππ==,故选D .【点睛】本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.4.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( ) A .13B .14C .16D .112【答案】D 【解析】 【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。
【最新】数学《计数原理与概率统计》专题解析一、选择题1.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( ) A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B . 【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.2.设*N n ∈,n a 为()()41nnx x +-+的展开式的各项系数之和,7c t =-,R t ∈,1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L ([]x 表示不超过实数x 的最大整数).则()()22n n t b c -++的最小值为( ) A .12BC.D.【答案】A 【解析】 【分析】令1x =可得,52n n n a =-,求出n b ,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方,最小值即(3,3)到7y t =-的距离d 的平方,然后由点到直线的距离公式求解即可得答案. 【详解】令1x =可得,52nnn a =-,2[][]55nn n n na n n =-g ,设25n n n n c =g ,所以1+11(1)22223()()055555n n n n n n n n n c c n +++-=-=-<g g , 所以数列{}n c 单调递减,所以数列2{}5nn n n -g 是单调递增数列,(增函数+增函数=增函数)当n →+∞时,20,5n n n →g 且20,5nn n >g 所以2[][]155n n n n na n n n =-=-g .21222[][][]12(1)5552n n n na a a n nb n -=++⋯+=++⋯+-=,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方, 即求点(n ,2)(*)2n nn N -∈到7y t =-的距离d 的最小值,所以222|7|157|14||()|4424n n n d n n n -+-==+-=+-, 当1n =时,957||=4444d =-; 当2n =时,2557||=4444d =- 当3n =时,4957||44d =-; 当4n =时,8157||6=44d =-; 由函数的图象可知当5,6,7,n =L时,d >所以点(n ,2)(*)2n nn N -∈为(3,3)时,它到7y t =-的距离d 最小,2d ==Q ,∴2.∴()()22n n t b c -++的最小值为12. 故选:A . 【点睛】本题考查了二项式定理的应用,考查了点到直线的距离公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为 A .100 B .110 C .120 D .180【答案】B 【解析】试题分析:10人中任选3人的组队方案有310120C =,没有女生的方案有3510C =, 所以符合要求的组队方案数为110种 考点:排列、组合的实际应用4.已知()1nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,()20121nn n x a a x a x a x λ+=++++L ,若12242n a a a +++=L ,则()0121nn a a a a -+-+-L 的值为( )A .1B .1-C .2D .2-【答案】B 【解析】 【分析】由题意可得5n =,利用赋值法可求得2λ=,再令1x =-即可得解. 【详解】Q ()1nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,∴23n n C C =,∴5n =,令0x =,则051a =,令1x =,则()0155212422431a a a a λ+=++=+=++L ,∴2λ=,令1x =-,则()05251112a a a a -=+--+=-L . 故选:B. 【点睛】本题考查了二项式定理的应用,属于中档题.5.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60D .58【解析】【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案.【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个,(2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个.故选:A.【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.6.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为()A.240 B.360 C.420 D.960【答案】C【解析】【分析】可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.【详解】⨯⨯=种由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有54360染色方法.设5种颜色为1,2,3,4,5,当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.⨯=可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有607420(种).故选:C本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.7.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3C .0.58D .0.958【答案】D 【解析】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.8.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值.【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.9.某小学要求下午放学后的17:00-18:00接学生回家,该学生家长从下班后到达学校(随机)的时间为17:30-18:30,则该学生家长从下班后,在学校规定时间内接到孩子的概率为( ) A .78B .34C .12D .14【答案】A 【解析】 【分析】根据题意,设学生出来的时间为x ,家长到达学校的时间为y ,转化成线性规划问题,利用面积型几何概型求概率,即可求得概率. 【详解】解:根据题意,设学生出来的时间为x ,家长到达学校的时间为y , 学生出来的时间为17:00-18:00,看作56x ≤≤, 家长到学校的时间为17:30-18:30,5.5 6.5y ≤≤,要使得家长从下班后,在学校规定时间内接到孩子,则需要y x ≥,则相当于565.56.5x y ≤≤⎧⎨≤≤⎩,即求y x ≥的概率,如图所示:约束条件对应的可行域面积为:1, 则可行域中y x ≥的面积为阴影部分面积:111712228-⨯⨯=, 所以对应的概率为:77818=,即学生家长从下班后,在学校规定时间内接到孩子的概率为:78. 故选:A.【点睛】本题考查利用面积型几何概型求概率,考查运算求解能力.10.设1021001210(2)x a a x a x a x =++++L ,那么()(220210139)a a a a a a +++-+++LL 的值为( )A .0B .1-C .1D .10(21)【答案】C 【解析】 【分析】令1x =和1x =-得到012310a a a a a ++++L ,012310a a a a a -+-++L ,再整体代入可得; 【详解】解:因为)1021012102xa a x a x a x =++++L ,令1x =得)101231021a a a a a =++++L , 令1x =-得()101231021a a a a a =-+-++L ,所以()(220210139)a a a a a a +++-+++L L()()012310012310a a a a a a a a a a =++++-+-++L L))10102121=⋅))102121⋅⎡⎤⎣⎦=1011== 故选:C 【点睛】本题考查利用待定系数法求二项式系数和的问题,属于中档题.11.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125【答案】B 【解析】 【分析】利用二项式系数对应的杨辉上三角形的第1n +行,令1x =,得到二项展开式的二项式系数的和,再结合等差、等比数列的求和公式,即可求解. 【详解】由题意,n 次二项式系数对应的杨辉三角形的第1n +行, 令1x =,可得二项展开式的二项式系数的和2n ,其中第1行为02,第2行为12,第3行为22,L L 以此类推, 即每一行的数字之和构成首项为1,公比为2的对边数列,则杨辉三角形中前n 行的数字之和为122112nn n S -==--,若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,L可以看成构成一个首项为1,公差为2的等差数列,则(1)2n n n T +=, 令(1)152n n +=,解得5n =, 所以前15项的和表示前7行的数列之和,减去所有的1,即()72113114--=, 即前15项的数字之和为114,故选B. 【点睛】本题主要考查了借助杨辉三角形的系数与二项式系数的关系考查等差、等比数列的前n 项和公式的应用,其中解答中认真审题,结合二项式系数,利用等差等比数列的求和公式,准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.设01p <<,随机变量ξ的分布列是ξ-1 1 3P2(1)p - 2(1)p p -2p则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求()E ξ和()D ξ,然后换元()t E ξ=,()221331321222228D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.【详解】由题意可知:()()221210p p p p -+-+= , 且()2011p <-<,()0211p p <-<,201p <<解得:01p <<,()()()2211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,()()()()()()22222141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦288p p =-+,设()411,3E p t ξ=-=∈-,221113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪⎝⎭ ()21122t =--+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2880,2D p p t ξ=-+=∈,21822p t ⎛⎫--+= ⎪⎝⎭,21228t p -⎛⎫-= ⎪⎝⎭,当102p <<时,12p =,此时1412E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,所以当D ξ增加,不能推出E ξ减小.综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.13.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A .23B .12C .13D .14【答案】B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC , 则PB PC +u u u r u u u r =PD u u u r , ∵20PB PC PA ++=u u u r u u u r u u u r r ,∴2PB PC PA +=-u u u r u u u r u u u r , ∴2PD PA =-u u u r u u u r,∴P 是△ABC 边BC 上的中线AO 的中点,∴点P 到BC 的距离等于A 到BC 的距离的12.∴S △PBC =12S △ABC . ∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为:P=PBC ABC S S V V =12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.14.将编号1,2,3,4的小球放入编号为1,2,3盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有 A .6种 B .9种C .12种D .18种【答案】C 【解析】由题意可知,这四个小球有两个小球放在一个盒子中,当四个小球分组为如下情况时,放球方法有:当1与2号球放在同一盒子中时,有2种不同的放法; 当1与3号球放在同一盒子中时,有2种不同的放法; 当1与4号球放在同一盒子中时,有2种不同的放法; 当2与3号球放在同一盒子中时,有2种不同的放法; 当2与4号球放在同一盒子中时,有2种不同的放法; 当3与4号球放在同一盒子中时,有2种不同的放法; 因此,不同的放球方法有12种. 故选:C15.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( ) A .125个 B .60个 C .100个 D .48个【答案】C 【解析】由题意得,0a ≠,a 的选择一共有14C =4,b 的选择一共有155C =,c 的选择共155C =种,根据分步计数原理,不同的二次函数共有N=455⨯⨯=100种。
新《计数原理与概率统计》专题解析(1)一、选择题1.已知a c ≠,随机变量ξ,η的分布列如表所示.命题p :=E E ξη,命题q :D D ξη=,则( ) A .p 真q 真 B .p 真q 假C .p 假q 真D .p 假q 假【答案】C 【解析】 【分析】首先分别求E ξ和E η,然后比较,利用公式()()22D E E ξξξ=-,利用公式1a b c ++=,计算D D ξη-的值.【详解】12323E a b c a b c ξ=⨯+⨯+⨯=++12332E c b a a b c η=⨯+⨯+⨯=++ ,()2E E c a ξη-=- a c ≠Q ,E E ξη∴≠,所以命题p 是假命题,()249E a b c ξ=++,()()2223E a b c ξ=++,所以()()24923D a b c a b c ξ=++-++()294E a b c η=++,()()2232E a b c η=++,()()()()2229432D E E a b c a b c ηηη=-=++-++ ,()()()()()2283223D D c a a b c a b c ξη-=-+++-++()()()822444c a a c a b c =-+-++ , 1a b c ++=Q ,所以()()()()880D D c a a c ξη-=-+-=, 即()()D D ξη=,所以命题q 是真命题.综上可知p 假q 真. 故选:C 【点睛】本题考查离散型分布列的期望方差,属于重点题型,本题使用的关键公式是()()22D E E ξξξ=-,比较大小的关键是利用1a b c ++=.2.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .3.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( ) A .4π B .8π C .5π D .10π 【答案】D 【解析】 【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论. 【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤ 它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V , 又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21122ππ⨯=;∴所求的概率为2510P ππ==,故选D .【点睛】本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.4.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种. A .2267A A B .3247A AC .322367A A AD .362467A A A【答案】D 【解析】 【分析】采用捆绑法和插空法,将3个男生看成一个整体方法数是34A 种,再排列6个女生,最后让所有男生插孔即可. 【详解】采用捆绑法和插空法;从4名男生中选择3名,进而将3个相邻的男生捆在一起,看成1个男生,方法数是34A 种,这样与第4个男生看成是2个男生;然后6个女生任意排的方法数是66A 种;最后在6个女生形成的7个空隙中,插入2个男生,方法数是27A 种.综上所述,不同的排法共有362467A A A 种. 故选D. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.5.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60 D .58【答案】A 【解析】 【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案. 【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个, (2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 故选:A. 【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.6.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为三角形ABC 的BC ,AB 和AC .若10BC =,8AB =,6AC =,ABC V 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅱ的概率为( )A .92524ππ+B .162524π+C .252425ππ+D .484825π+【答案】D 【解析】 【分析】根据题意,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到结论.【详解】由题意,如图:Ⅰ所对应的面积为1186242S =⨯⨯=, Ⅱ所对应的面积29252482422S πππ=++-=, 整个图形所对应的面积9252482422S πππ=++=+, 所以,此点取自Ⅱ的概率为484825P π=+.故选:D. 【点睛】本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.7.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元【答案】B 【解析】 【分析】 【详解】试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4,∴42=9.4×3.5+a ,∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程8.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C.17D .710【答案】B 【解析】 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==Q ,11155561116691()1216C C C P B C C C =-=()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.9.如图,是民航部门统计的某年春运期间12个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高.B .深圳和厦门的平均价格同去年相比有所下降.C .平均价格从高到低居于前三位的城市为北京、深圳、广州.D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门. 【答案】D 【解析】 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】由图可知,选项A 、B 、C 都正确,对于D ,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误. 故选D . 【点睛】本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.10.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为( )A .110B .15C .25D .12【答案】C 【解析】 【分析】从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,由此能求出这3个数字的属性互不相克的条件下,取到属性为土的数字的概率. 【详解】由题意得数字4,9属性为金,3,8属性为木,1,6属性为水, 2,7属性为火,5,10属性为土,从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数1122152222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:1122122222()8,m C C C C C =+=,∴这3个数字的属性互不相克的条件下,取到属性为土的数字的概率82205m p n ===. 故选:C . 【点睛】此题考查古典概型,关键在于根据计数原理准确求解基本事件总数和某一事件包含的基本事件个数.11.数学老师给校名布置了10道数学题,要求小明按照序号从小到大的顺序,每天至少完成一道,如果时间允许,也可以多做,甚至在一天全部做完,则小明不同的完成方法种数为 A .55 B .90 C .425 D .512【答案】D 【解析】利用隔板法,10道题中间有9个空格,若1天做完,有09C 种;若2天做完,从9个空格中插入一个板,分成2天,则有19C 种;若3天做完,则有29C 种;以此类推,若9天做完,则有89C 种;若10天做完,则有99C 种;故总数为012899999992512C C C C C +++⋅⋅⋅+==.故选D.12.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( ) A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„,求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B . 【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.13.若实数2a =,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()1019222101010101022222232.a C a C a a -+-+=-==L本题选择A 选项.14.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式36ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.15.从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和为奇数,则不同取法种数有()A.60 B.66 C.72 D.126【答案】A【解析】【分析】要使四个数的和为奇数,则取数时奇数的个数必须是奇数个,再根据排列组合及计数原理知识,即可求解.【详解】从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和要为奇数,则取数时奇数的个数必须是奇数个:所以共有1331545460C C C C+=种取法.故选:A【点睛】本题考查了排列组合及简单的计数问题,属于简单题.16.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是()A.与2015年相比,2018年一本达线人数减少B.与2015年相比,2018二本达线人数增加了0.5倍C.2015年与2018年艺体达线人数相同D.与2015年相比,2018年不上线的人数有所增加【答案】D【解析】【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=,显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.17.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L ,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29sD .32x +,292s + 【答案】C【解析】【分析】由样本数据的平均数和方差的公式,化简、运算,即可求解,得到答案.【详解】由平均数的计算公式,可得数据12100,,,x x x L 的平均数为1231001()100x x x x x =++++L 数据1210032,32,,32x x x +++L 的平均数为: 121001210011[(32)(32)(32)][3()2100]32100100x x x x x x x ++++++=++++⨯=+L L , 数据12100,,,x x x L 的方差为2222121001[()()()]100s x x x x x x =-+-++-L , 数据1210032,32,,32x x x +++L 的方差为:222121001{[(32)(32)[(32(32)][(32)(32)]}100x x x x x x +-+++-++++-+L 2222121001[9()9()9()]9100x x x x x x s =-+-++-=L故选C.【点睛】本题主要考查了样本数据的平均数和方差的计算与应用,其中解答中熟记样本数据的平均数和方差的计算公式,合理化简与计算是解答的关键,着重考查了推理与运算能力,属于基础题.18.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ<D .12E E ξξ>,12D D ξξ>【答案】B【解析】【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】 1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.19.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( )A .125个B .60个C .100个D .48个【答案】C【解析】由题意得,0a ≠,a 的选择一共有14C =4,b 的选择一共有155C =,c 的选择共155C =种,根据分步计数原理,不同的二次函数共有N=455⨯⨯=100种。
【高中数学】数学《计数原理与概率统计》高考知识点一、选择题1.已知不等式501x x -<+的解集为P ,若0x P ∈,则“01x <”的概率为( ). A .14 B .13C .12D .23【答案】B 【解析】 【分析】 【详解】分析:解分式不等式得集合P ,再根据几何概型概率公式(测度为长度)求结果.详解:(5)(1)050101x x x x x -+<⎧-<⇒⎨+≠+⎩,∴{}|15P x x =-<<,||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.2.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( ) A .4π B .8π C .5π D .10π 【答案】D 【解析】 【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论. 【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤ 它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V , 又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21122ππ⨯=;∴所求的概率为2510P ππ==,故选D .【点睛】本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.3.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种C .42种D .25种【答案】C 【解析】 【分析】给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】甲可有3种安排方法, 若甲先安排第1社区,则第2社区可安排1个、第3社区安排3个,共1343C C ⋅;第2社区2个、第3社区安排2个,共2242C C ⋅;第2社区3个,第3社区安排1个,共1141C C ⋅;故所有安排总数为1322114342413()42C C C C C C ⨯⋅+⋅+⋅=.故选:C. 【点睛】本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.4.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取两卦,则这两卦的六根线中恰好有4根阴线的概率为( )A .314B .27C .928D .1928【答案】A 【解析】 【分析】列出所有28种情况,满足条件的有6种情况,计算得到概率. 【详解】 根据题意一共有:乾坤、乾巽、乾震、乾坎、乾离、乾艮、乾兑;坤巽、坤震、坤坎、坤离、坤艮、坤兑; 巽震、巽坎、巽离、巽艮、巽兑;震坎、震离、震艮、震兑;坎离、坎艮、坎兑; 离艮、离兑;艮兑,28种情况.满足条件的有:坤巽,坤离,坤兑,震坎,震艮,坎艮,共6种.故632814p ==. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.5.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .25【答案】D 【解析】 【分析】 【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=102.255= 故答案为D .6.某小学要求下午放学后的17:00-18:00接学生回家,该学生家长从下班后到达学校(随机)的时间为17:30-18:30,则该学生家长从下班后,在学校规定时间内接到孩子的概率为( ) A .78B .34C .12D .14【答案】A 【解析】 【分析】根据题意,设学生出来的时间为x ,家长到达学校的时间为y ,转化成线性规划问题,利用面积型几何概型求概率,即可求得概率. 【详解】解:根据题意,设学生出来的时间为x ,家长到达学校的时间为y , 学生出来的时间为17:00-18:00,看作56x ≤≤, 家长到学校的时间为17:30-18:30,5.5 6.5y ≤≤,要使得家长从下班后,在学校规定时间内接到孩子,则需要y x ≥, 则相当于565.56.5x y ≤≤⎧⎨≤≤⎩,即求y x ≥的概率,如图所示:约束条件对应的可行域面积为:1, 则可行域中y x ≥的面积为阴影部分面积:111712228-⨯⨯=,所以对应的概率为:77818=,即学生家长从下班后,在学校规定时间内接到孩子的概率为:78. 故选:A.【点睛】本题考查利用面积型几何概型求概率,考查运算求解能力.7.三位同学参加数学、物理、化学知识竞赛,若每人都选择其中两个科目,则有且仅有两人选择的科目完全相同的概率是( ) A .14B .13C .12D .23【答案】D 【解析】 【分析】先求出三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目的基本事件总数,再求出有且仅有两人选择的科目完全相同所包含的基本事件个数,利用古典概型的概率计算公式即可得到答案. 【详解】三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目共有233()27C =种不同结果,有且仅有两人选择的科目完全相同共有22133218C C C ⋅⋅=种,故由古典概型的概率计算公式可得所求概率为182273=. 故选:D 【点睛】不同考查古典概型的概率计算问题,涉及到组合的基本应用,考查学生的逻辑推理与数学运算能力,是一道中档题.8.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种 D .150种【答案】D 【解析】 【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2 当按照1、1、3来分时共有C 53=10种分组方法;当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种; 故选D . 【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.9.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2,故D 不正确.故选D .10.某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36 B .72 C .108 D .144【答案】D 【解析】 【分析】按三步分步进行,先考虑甲单位招聘,利用间接法,因为至少招聘一名男生,将只招女生的情况去掉,录取方案数为2263C C -,然后剩余四人依次分配给乙单位和丙单位,分别为24C 、22C ,然后根据分步乘法计数原理将三个数相乘可得出答案。
数学《计数原理与概率统计》试卷含答案(1)一、选择题1.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B 213C .926D 313【答案】A 【解析】 【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可. 【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD =+-⋅︒所以13DF AB =. 所以所求概率为24=1313DEF ABC S S ∆∆=. 故选A. 【点睛】本题考查了几何概型的概率计算问题,是基础题.2.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( ) A .12B .13C .24D .23【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以211d k =≤+,解得22k -≤≤ 所以相交的概率22224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.3.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,8【答案】C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图4.已知()1nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,()20121nn n x a a x a x a x λ+=++++L ,若12242n a a a +++=L ,则()0121nn a a a a -+-+-L 的值为( )A .1B .1-C .2D .2-【答案】B 【解析】 【分析】由题意可得5n =,利用赋值法可求得2λ=,再令1x =-即可得解. 【详解】Q ()1nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,∴23n n C C =,∴5n =,令0x =,则051a =,令1x =,则()0155212422431a a a a λ+=++=+=++L ,∴2λ=,令1x =-,则()05251112a a a a -=+--+=-L . 故选:B. 【点睛】本题考查了二项式定理的应用,属于中档题.5.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60 D .58【答案】A 【解析】 【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案. 【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个, (2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 故选:A. 【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2表3表4A.成绩B.视力C.智商D.阅读量【答案】D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d -=++++分别计算得:A.2252(6221014):0.00916363220A K ⨯-⨯=≈⨯⨯⨯;2252(4201216): 1.76916363220B K ⨯-⨯=≈⨯⨯⨯;2252(824812): 1.316363220C K ⨯-⨯=≈⨯⨯⨯;2252(143062):23.4816363220D K ⨯-⨯=≈⨯⨯⨯选项D 的值最大,所以与性别有关联的可能性最大,故选D. 【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.7.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2 B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.8.已知()812x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ba的值( )A .1265B .1285C .1253D .26【答案】B 【解析】 【分析】根据二项式系数的性质求得a ,系数的最大值为b 求得b ,从而求得ba的值. 【详解】由题意可得4870a C ==,又展开式的通项公式为182r rr r T C x +=,设第1r +项的系数最大,则11881188·2?2·2?2r r r r r r r r C C C C ++--⎧⎨⎩……,即56r r ⎧⎨⎩…„, 求得=5r 或6,此时,872b =⨯,∴1285b a =, 故选:B . 【点睛】本题主要考查二项式系数的性质,第n 项的二项式系数与第n 项的系数之间的关系,属于中档题.9.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A .2B .3C .10D .15【答案】C 【解析】 【分析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.设阴影部分的面积是s ,由题意得,选C.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.10.若二项式2nx x ⎫⎪⎭的展开式中各项的系数和为243,则该展开式中含x 项的系数为( ) A .1 B .5 C .10 D .20【答案】C 【解析】 【分析】对2nx x ⎫⎪⎭令1x =,结合展开式中各项的系数和为243列方程,由此求得n 的值,再利用二项式展开式的通项公式,求得含x 项的系数.【详解】对2n x x ⎫⎪⎭令1x =得()123243n n +==,解得5n =.二项式52x x ⎫⎪⎭展开式的通项公式为()515312225522rr rr rr C x xC x---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭,令53122r -=,解得1r =,故展开式中含x 项的系数为115210C ⋅=.故选:C. 【点睛】本小题主要考查二项式展开式各项系数之和,考查求二项式展开式指定项的系数,属于基础题.11.根据中央对“精准扶贫”的要求,某市决定派7名党员去甲、乙、丙三个村进行调研,其中有4名男性党员,3名女性党员现从中选3人去甲村若要求这3人中既有男性,又有女性,则不同的选法共有( ) A .35种 B .30种C .28种D .25种【答案】B 【解析】 【分析】首先算出7名党员选3名去甲村的全部情况,再计算出全是男性党员和全是女性党员的情况,即可得到既有男性,又有女性的情况. 【详解】从7名党员选3名去甲村共有37C 种情况,3名全是男性党员共有34C 种情况,3名全是女性党员共有33C 种情况,3名既有男性,又有女性共有33374330C C C --=种情况.故选:B 【点睛】本题主要考查组合的应用,属于简单题.12.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( ) A .125个 B .60个 C .100个 D .48个【答案】C 【解析】由题意得,0a ≠,a 的选择一共有14C =4,b 的选择一共有155C =,c 的选择共155C =种,根据分步计数原理,不同的二次函数共有N=455⨯⨯=100种。
选C.13.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为 1.160.5ˆ37yx =-,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系,C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米, 【答案】D 【解析】 【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确.【详解】A,身高极差大约为25,臂展极差大于等于30,故正确;B,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确.故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.14.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.1000【答案】C【解析】【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题,Q青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:1020080 1087⨯=++Q每人被抽取的概率为0.2,∴该单位青年职员共有80400 0.2=故选C【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题。