数学建模零件参数的优化设计完整版
- 格式:docx
- 大小:388.93 KB
- 文档页数:14
零件的参数设计孙连山,洪献,曹奕剑模型是研究产品各零件参数对产品某一性能影响的连续模型,以减少生产产品总费用最小为最终目的,主要用非线性规划化的思想建立,因为零件参数为随机变量,所以建模时要用概率论的方法给出非线性规划化问题目标函数。
模型形式简洁,因零件加工精度的限制,实际参数标定值的选取是离散的,我们可充分利用计算机的数值计算能力,用格种方法搜索最优值,其中虎克—吉福斯直接搜索法效果最好。
零件的参数设计.pdf (362.12 KB)零件参数设计的数学模型黄杲,陈旭东,邵伟本文建立了一个关于零件参数设计的数学模型,本文首先利用概率的理论,假设各零件产品的参数服务从正态分布,推出粒子分离器某参数(y)偏差的分布函数,进而可得一批产品总费用的目标函数,运用龙贝格数值积分将其转化为计算机可求值的函数,然后运用网格搜索法和蒙特卡罗法求出目标函数的全局最优解。
零件参数设计的数学模型.pdf (309.51 KB)零件的参数设计何华海,李江滔,束礼宝本文对零件参数设计问题提出了有效的算法, 零件参数设计可以归结为在一定约束条件下求总费用(成本和质量损失的总和)最小的一个非线性规划问题,我们采用分两步走的策略来简化问题,即首先选定零件参数的标定值,再在此基础上选取零件容差等级。
设计的总费用是由y的具体分布所决定的,我们采用了两种方法来计算y的概率分布:一种是用蒙特卡罗方法来模拟;另一种是将y的经验公式作线性近似,得到y近似服从正态分布,我们又引入了函数E(y-1.5)~2,以此作为新的目标函数对问题进行简化,对模型的求解,我们采用了梯度法来搜索目标函数在限定区域内的最优解,得到相应的总费用(单件产品)为 430元,远低于原设计方案的3150元。
通过检验,我们发现通过线性近似得到y服从正态分布的结论是基本可靠的,分两步走策略也是合理、有效的,最后我们还讨论了当质量损失函数为连续(特例为抛物线)时的情形。
零件的参数设计(1).pdf (333.62 KB)零件参数设计的动态规划模型高洁,郭去疾,康俊海对于本零件参数设计问题,我们建立一个动态规划模型,分阶段以不同的目标搜索求优。
零件参数的优化设计摘 要本文建立了一个非线性多变量优化模型。
已知粒子分离器的参数y 由零件参数)72,1( =i x i 决定,参数i x 的容差等级决定了产品的成本。
总费用就包括y 偏离y 0造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。
2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。
在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。
但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。
经过对模型以及matlab 代码的综合优化,最终程序运行时间仅为3.995秒。
最终计算出的各个零件的标定值为:i x ={0.0750,0.3750,0.1250,0.1200,1.2919,15.9904,0.5625},等级为:B B C C B B B d ,,,,,,=一台粒子分离器的总费用为:421.7878元与原结果相比较,总费用由3074.8(元/个)降低到421.7878(元/个),降幅为86.28%,结果是令人满意的。
为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。
最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。
关键字:零件参数 非线性规划 期望 方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
零件参数包括标定值和容差两部分。
进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。
若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。
在零件的参数优化设计中的数学建模
吴新烨;徐学林
【期刊名称】《木工机床》
【年(卷),期】2003(000)004
【摘要】零件参数的选取是一个最优化问题.假定产品与零件的参数为正态分布的随机变量.在此基础上,以零件的标定值和容差为决策函数,以产品的总费用为目标函数构造一个非线性规划的模型.首先,用计算机程序选择适当的零件标定值使产品参数的平均值达到标定值;而后,再用计算机程序对容差的选取方式逐步尝试,选择最优的容差方式使得总费用最小.
【总页数】3页(P13-15)
【作者】吴新烨;徐学林
【作者单位】湖南株洲中南林学院;湖南株洲中南林学院
【正文语种】中文
【中图分类】O1
【相关文献】
1.零件参数优化设计模型 [J], 丁旺才
2.衔铁零件挤压凹模结构参数优化设计及模拟 [J], 李红;伍权
3.食品挤压机双螺杆零件参数优化设计 [J], 夏萍
4.机械零件结构的参数优化设计与三维优化模型的实现 [J], 邹建荣
5.电子表格在机械零件结构参数优化设计中的应用 [J], 张云健;于国幸
因版权原因,仅展示原文概要,查看原文内容请购买。
数学建模零件参数的优化设计Company number【1089WT-1898YT-1W8CB-9UUT-92108】零件参数的优化设计摘要本文建立了一个非线性多变量优化模型。
已知粒子分离器的参数y由零件参数)72,1(=ixi 决定,参数ix的容差等级决定了产品的成本。
总费用就包括y偏离y造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。
2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。
在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。
但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。
经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。
最终计算出的各个零件的标定值为:ix={,,,,,,},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:元与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。
最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。
关键字:零件参数 非线性规划 期望 方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
零件参数包括标定值和容差两部分。
进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。
若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。
进行零件参数设计,就是要确定其标定值和容差。
这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。
一、问题重述1、利用优化设计相关理论计算法,对某设计问题做优化设计。
要求如下:①列出优化数学模型;②选择所用优化算法;③画出程序框图;④程序编写;⑤程序调试运算结果。
现根据以上条件,结合生活实际,准备以铁板为材料设计一鱼缸,为了能使鱼儿有更大的生存空间,要求鱼缸容积最大。
现有边长为5米长的方形铁板,预备在四个角减去四个相等的方形面积,用以制成方形鱼缸,如何减能使鱼缸的容积最大。
二、问题分析2.1、对于此问题,我采用的数学模型包括三部分,即设计变量、目标函数和约束条件。
模型如下:其中,设裁去铁块的边长为:x(0<x<2.5)则鱼缸的容积可表示成函数:y=-x*(5-2*x)^2上述问题则可以描述为:求变量:x使函数:min y=-x*(5-2*x)^2(前加有”负”号,,故所求最大容积为最小y值)...........................................................................(1*)约束条件:0<x<2.5(保证能够做成鱼缸)2.2、本模型采用无约束优化数学模型,运用一位搜索中的0.618法进行最优值求解,通过Visio软件制作流程图,结合MATLAB软件进行编程(因C语言编程多次调试没能成功),plot函数进行绘图分析,最终成功的调试得出运算结果。
三、程序框图四、程序编写及函数图像4.1求极值所用程序如下:function q=line_s(a,b)N=10000;r=0.01;a=0;b=1.5;for k=1:N;v=a+0.382*(b-a);u=a+0.618*(b-a);fv=-25*v+20*v^2-4*v^3;fu=-25*u+20*u^2-4*u^3;if fv>fuif b-v<=rufubreak;elsea=v;v=u;u=a+0.618*(b-a);endelseif u-a<=rv-fvbreak;elseb=u;u=v;v=a+0.382*(b-a);endk=k+1endend4.2 函数曲线图程序如下:如下曲线所得y值为负,前面(1*)已作解释。
优化设计数学模型在数学建模中,优化设计是指通过数学方法和技巧对给定的问题进行优化求解,以获得最优解或近似最优解的过程。
优化设计在实际问题中有着广泛的应用,如制定最佳生产计划、优化调度问题、设计最佳投资组合等。
本文将探讨优化设计的几个关键要点,并结合实例进行说明。
首先,一个优秀的数学模型应该具备良好的可解性。
可解性是指模型是否能够通过有效的数学方法求解,并在可接受的时间内得到结果。
在优化设计中,常用的数学方法包括线性规划、整数规划、非线性规划、动态规划等。
在实际问题中,选择合适的数学方法对问题进行建模非常重要。
例如,在制定最佳生产计划时,如果生产过程满足线性规划的条件,我们可以通过线性规划模型来求解最优解。
如果涉及到离散决策变量,可以使用整数规划模型。
通过选择合适的数学方法,可以提高模型的可解性,并获得较好的优化结果。
其次,优化设计中的数学模型应该具备较好的可靠性。
可靠性是指模型是否能够在不同条件下对问题进行准确的预测和分析。
在实际问题中,我们常常需要考虑各种不确定性因素,如生产时间波动、需求波动等。
为了提高模型的可靠性,我们可以引入风险管理和灵敏度分析等方法。
风险管理可以通过引入概率论和统计学的方法来分析不确定因素对结果的影响,从而减少风险并提高决策的可靠性。
灵敏度分析可以通过对模型中参数的变动进行分析,评估参数变化对结果的影响程度,并确定哪些参数对结果影响较大。
通过引入风险管理和灵敏度分析等方法,可以提高模型的可靠性,并为实际决策提供科学依据。
此外,一个优化设计的数学模型应该具备良好的可解释性。
可解释性是指模型能够以直观和易懂的方式表达实际问题,并将问题的本质和关键信息明确地传递给决策者。
在实际问题中,决策者常常需要根据模型的结果做出决策。
如果模型的结果无法被决策者所理解和接受,那么模型对于实际决策的指导作用就会大打折扣。
为了提高模型的可解释性,我们可以采用可视化技术、图形展示等方法来呈现模型的结果。
数学建模零件参数的优化设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】零件参数的优化设计摘要本文建立了一个非线性多变量优化模型。
已知粒子分离器的参数y由零件参数)72,1 (=ixi 决定,参数ix的容差等级决定了产品的成本。
总费用就包括y偏离y0造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。
2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。
在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。
但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。
经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。
最终计算出的各个零件的标定值为:ix={,,,,,,},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:元与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。
最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。
关键字:零件参数非线性规划期望方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
零件参数包括标定值和容差两部分。
进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。
若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。
进行零件参数设计,就是要确定其标定值和容差。
这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。
试通过如下的具体问题给出一般的零件参数设计方法。
粒子分离器某参数(记作y)由7个零件的参数(记作x1,x2,...,x7)决定,经验公式为:y的目标值(记作y0)为。
当y偏离y+时,产品为次品,质量损失为1,000元;当y偏离y+时,产品为废品,损失为9,000元。
零件参数的标定值有一定的容许范围;容差分为A、B、C三个等级,用与标定值的相对值表示,A等为+1%,B等为+5%,C等为+10%。
7个零件参数标定值的容许范围,及不同容差等级零件的成本(元)如下表(符号/表示无此等级零件):x 1=,x 2=,x 3=,x 4=,x 5=,x 6=16,x 7=;容差均取最便宜的等级。
请你综合考虑y 偏离y 0造成的损失和零件成本,重新设计零件参数(包括标定值和容差),并与原设计比较,总费用降低了多少?二、模型假设1、将各零件参数视为随机变量,且各自服从正态分布;2、假设组成离子分离器的各零件互不影响,即各零件参数互相独立;3、假设小概率事件不可能发生,即认为各零件参数只可能出现在容许范围内;4、在大批量生产过程中,整批零件都处于同一等级,。
本题可认为1000各零件都为A 等、B 等或C 等;5、生产过程中出质量损失外无其他形式的损失;6、在质量损失计算过程中,认为所有函数都是连续可导的。
三、符号说明i x :第i 类零件参数的标定值(i=1,2……7);i x ∆:第i 类零件参数的实际值相对目标值的偏差(i=1,2……7);i r :第i 类零件参数的容差(i=1,2,……7);i σ:第i 类零件参数的方差(i=1,2,……7);i i b a ,:标定值i x 的上、下限;y :离子分离器某参数的实际值;0y :离子分离器该参数的目标值;y :离子分离器某参数的均值;y ∆:离子分离器某参数的实际值y 相对平均值y 的偏差;σ:离子分离器某参数的方差;yP:一批产品中正品的概率;1P:一批产品中次品的概率;2P:一批产品中废品的概率;3W:一批产品的总费用(包括损失和成本费);C:第i类零件对应容差等级为j的成本(j=A,B,C)单位:元/个。
ij四、问题分析Array又能满足产品的预先设定值,设计方向应该如下:(1)设计的零件参数,要保证由零件组装成的产品参数符合该产品的预先设定值,即使有偏离也应是在满足设计最优下的容许范围。
(2)零件参数(包括标定值和容差等级)的设计应使总费用最小为优。
此外分析零件的成本及产品的质量损失不难发现,质量损失对费用的影响远大于零件成本对费用的影响,因而设计零件参数时,主要考虑提高产品质量来达到减少费用的目的。
五、模型建立为了确定原设计中标定值(的期望值)及已给的容差对产品性能参数影响而导致的总损失W ,即确定偏离目标值所造成的损失和零件成本,先列出总损失的数学模型表达如下:当然,为了确定总损失W ,必须知道1P 、2P 、3P (即正品、次品及废品的概率)。
为此,将经验公式用泰勒公式在)72,1( ==i x X i 处展开并略去二次以上高次项后来研究y 的概率分布,设y x f =)(,则 将标定值)72,1( =i x i 带入经验公式即得 所以 i i ix x fy y y ∆∂∂=-=∆∑=71 由于在加工零件时,在标定值知道的情况下,加工误差服从正态分布,即 且i x ∆相互独立,由正态分布性质可知 由误差传递公式得 22712712)()()(i i i i ii i i yx x x f x f σσσ∑∑==∂∂=∂∂= (1)由于容差为均方差的3倍,容差与标定值的比值为容差等级,则y 的分布密度函数为y 偏离1.00±y 的概率,即次品的概率为⎰⎰+=8.16.14.12.12)()()()(y d y y d y P ϕϕ (2)y 偏离3.00±y 的概率,即废品的概率为⎰⎰+∞∞-+=8.12.13)()()()(y d y y d y P ϕϕ (3)由于y 偏离0y 越远,损失越大,所以在y σ固定时,调整y 使之等于目标值0y 可降低损失。
取0y y y -=∆即0y y =,则)(t φ为标准正态分布函数。
综合考虑y 偏离y 0造成的损失和零件成本,设计最优零件参数的模型建立如下: 目标函数min )90001000(10003271P P C W i ij ++⨯=∑=. )72,1( =≤≤i a x b ii i六、模型求解初略分析进一步分析发现,参数均值y =偏离目标值0y =太远,致使损失过大。
尽管原设计方案保证了正本最低,但由于零件参数的精度过低,导致正品率也过低。
所以我们应综合考虑成本费和损失费。
模型的实现过程:本模型通过matlab 进行求解,我们通过理论模型求解和随机模拟的求解过程如下:在给定容差等级的情况下,利用matlab 中求解非线性规划的函数fmincon ,通过多次迭代求解,最终求得一组最优解。
最初,我们设定的fmincon 函数的目标函数就是总费用,约束条件为各个标定值的容许范围,以及各零件标定值带入产品参数表达式应为0y ,即。
然而,在迭代过程中我们发现,求解过程十分慢,在给定容差等级的确定的情况下,计算最优标定值需要将近400秒,如果在此基础上对108种容错等级进行穷举查找最优组合,将需要大概12小时。
显然这是不合理的。
因此,我们在仔细对matlab 实现代码研究发现,求解过程之所以慢,是因为代码中存在多次调用求偏导和积分的函数,在fmincon 的多次迭代中,耗费大量时间。
所以,为了提高求解速度,我们首先利用matlab 中diff 函数对产品参数中的各个表达式进行求偏导,然后得到多个带参表达式,利用int 函数对y 的概率密度函数进行积分,分别得到出现次品和废品概率的表达式,然后将这些表达式写进程序里,这样在求解过程中就不需要在每一次迭代中都要求偏导和积分了,修改后的程序运行时间大大减少。
N 算 法 结 束N离子分离器参数均值y = 离子分离器参数方差y σ=模型检验对设计方案进行动态模拟,由于每种零件参数均服从正态分布,用正态分布随机数发生器在每种零件参数允许范围内产生1000个随机数参与真实值i x 的计算随根据最优解的y =,y σ=画出y 的概率分布图,再对x 随机取样画出y 的概率分布图(见图),由图可知:两组数据所画概率分布图的拟合度相当高,进一步确保了模型的正确性。
图概率分布图对比图通过以上数据,与原设计方案所得结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
七、误差分析1、在建模过程中,通过泰勒公式将)(X f y =展开并略去二次及以上项使线性化,不可避免地产生了截断误差,所以展开后的式子只是原经验公式的近似关系式。
但在一般情况下,线性化和求总和在实用上具有足够的精度,所以由于函数线性化而略去的高次项可以忽略不计。
在函数关系式较复杂的情况下,将其线性化更具有明显的优势。
2、本模型忽略了小概率事件发生的可能,认为零件的参数只可能出现在允 范围内,即[]i i i i x x σσ3,3+-。
现实中,小概率事件仍有发生的可能性,但在大批量生产中,小概率事件的发生对最终结果没有影响,所以可以忽略。
3、该模型对于质量损失的计算,将所有函数都看作连续函数,而这对于每 个零件参数而言是不可能的,所以其中也会产生误差。
八、模型的评价及推广1.优点(1)建模过程中,采用泰勒公式将经验公式简化,并假设各零件参数都服从满足大量数据的正态分布,使得整个模型的建立及求解得到大大简化。
(2)本模型运用概率统计与优化知识对零件参数进行优化设计。
通过建立一个反映设计要求的数学模型,利用MATLAB软件,经过编程来实现对设计方案参数的调整,将总费用由(元/个)降低到(元/个),降幅达到%,结果还是令人十分满意的。
(3)本模型在程序运算的过程中,做了适当处理,将每次循环本该由计算机求偏导和积分的提前人为处理,将求偏导和积分后的算式写入程序中,这样大大节约了运算时间,将运行时间由几个小时缩短为。
2.缺点(1)本模型在模型的求解过程中,对一些可接受范围内的误差直接进行了忽略,因而对于结果的精确性还是会有一定的影响。
(2)本模型是建立在一些假设中的,所有实用性受到了限制,在实际生产中,如果可以把更多的一些因素考虑进去应该会更好。
在已假定的条件下,本模型的优化结果是好的。
3推广此模型有较强的应用价值。
工程中往往因为某个零件的选取不当,而影响产品的参数,使可靠性降低,造成了极大的经济损失。