苏科版八年级上册数学第一章全等三角形的判定(SSS)习题及答案
- 格式:doc
- 大小:326.00 KB
- 文档页数:4
苏科版八年级上册1.3探索三角形全等的条件SSS培优训练1.3探索三角形全等的条件SSS一、选择题1.如图,已知,再添加一个条件仍不能判定≌的是A. B.C. D.2.如图,点F、C在线段BE上,且,,补充一个条件,不一定使≌成立的是A. B. C. D.3.如图,点A,E,F,D在同一直线上,,,,则图中全等三角形共有A.1对B.2对C.3对D.4对4.如图,已知,则不一定能使≌的条件是A. B.C.D.5.如图,尺规作图作的平分线的方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于点C 、D ,再分别以点C 、D 为圆心,大于的长为半径画弧,两弧交于点P ,作射线由作法得≌从而得两角相等的根据是A.SASB.SSSC.AASD.ASA6.如图,点E 、F 、C 、B 在同一直线上,,,添加下列一个条件,不能判定≌的条件是A. B. C. D.二、填空题7.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:;≌;;四边形ABCD的面积,其中,正确的结论有__________.8.阅读下面材料:下面是“作角的平分线”的尺规作图过程.已知:.求作:射线OC,使它平分.如图,作法如下:以点O为圆心,任意长为半径作弧,交OA于E,交OB于D;分别以点D,E为圆心,以大于的同样长为半径作弧,两弧交于点C;作射线则射线OC就是所求作的射线.请回答:该作图的依据是______.9.如图,已知,若使≌则可添加的一个条件是______.10.如图,,垂足为点A,,,射线,垂足为点B,一动点E从A点出发以秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持,当点E运动______秒时,与全等.11.如图,在和中,点B、F、C、E在同一条直线上,,,要使≌,则只需添加一个适当的条件是______只填一个即可12.如图,点A,B,C在同一条直线上,,请你只添加一个条件,使得≌你添加的条件是______要求:不再添加辅助线,只需填一个答案即可三、解答题13.已知:如图,点A,D,C,B在同一条直线上,,,求证:.14.点F、B、E、C在同一直线上,并且,能否由上面的已知条件证明≌?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件添加到已知条件中,使≌,并给出证明.提供的三个条件是:;;.15.在数学活动课上,李老师让同学们试着用角尺平分如图所示有两组同学设计了如下方案.方案:将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度位于OA,OB上,且交点分别为M,N,即,过角尺顶点P的射线OP就是的平分线.方案:在边OA,OB上分别截取,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与点M,N重合,即,过角尺顶点P的射线OP就是的平分线.方案与方案是否可行?若可行,请证明;若不可行,请说明理由.16.如图,已知,,AC与BD相交于E,F是BC的中点,求证:.17.阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图1,我用相同的两块含角的直角三角板可以画角的平分线.画法如下:在的两边上分别取点M,N,使;把直角三角板按如图所示的位置放置,两斜边交于点P.射线OP是的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:小惠的做法正确吗?说明理由;请你和小旭一样,只用刻度尺画出图2中的平分线,并简述画图的过程.苏科版数学八年级培优训练(教师卷)1.3探索三角形全等的条件SSS一、选择题1.如图,已知,再添加一个条件仍不能判定≌的是A.B.C.D.答案:D解析:【分析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.根据全等三角形的判定定理分别判定即可.【解答】解:A、根据HL可判定≌,故本选项不符合题意;B、根据SAS可判定≌,故本选项不符合题意;C、根据SSS可判定≌,故本选项不符合题意;D、根据SSA不能判定≌,故本选项符合题意;故选:D.2.如图,点F、C在线段BE上,且,,补充一个条件,不一定使≌成立的是A. B. C.答案:A解析:【分析】本题考查三角形全等的判定方法.解题关键是掌握全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.解题时,根据题中的已知条件,,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【解答】解:在和中,,.A.当时,由已知条件,,可知SSA不能判定两个三角形全等,故此选项符合题意;B.当时,由已知条件,,可知SAS能判定两个三角形全等,故此选项不符合题意;C.当时,由已知条件,,可知AAS能判定两个三角形全等,故此选项不符合题意;D.当时,由已知条件,,可知ASA能判定两个三角形全等,故此选项不符合题意.故选A.3.如图,点A,E,F,D在同一直线上,,,,则图中全等三角形共有A.1对B.2对C.3对D.4对答案:C解析:【分析】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,求出,,根据SAS推出≌,≌,求出,,推出,根据SAS推出≌即可.【解答】解:,,,,,在和中,,≌,在和中,,≌,,,,在和中,,≌,即全等三角形有3对.故选C.4.如图,已知,则不一定能使≌的条件是A.B.C.D.答案:A解析:解:A、,BC为公共边,若,则不一定能使≌,故本选项正确;B、,BC为公共边,若,则≌,故本选项错误;C、,BC为公共边,若,则≌,故本选项错误;D、,BC为公共边,若,则≌,故本选项错误;故选:A.利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,尺规作图作的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于点C、D,再分别以点C、D为圆心,大于的长为半径画弧,两弧交于点P,作射线由作法得≌从而得两角相等的根据是A.SASB.SSSC.AASD.ASA答案:B解析:解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即;以点C,D为圆心,以大于长为半径画弧,两弧交于点P,即;在和中,≌.故选:B.认真阅读作法,从角平分线的作法得出与的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,点E、F、C、B在同一直线上,,,添加下列一个条件,不能判定≌的条件是A.B.C.D.答案:A解析:解:A、添加不能判定≌,故本选项符合题意;B、添加可用SAS进行判定,故本选项不符合题意;C、添加然后可用ASA进行判定,故本选项不符合题意;D、添加可用AAS进行判定,故本选项不符合题意;故选:A.分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.二、填空题7.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中,,詹姆斯在探究筝形的性质时,得到如下结论:;≌;;四边形ABCD的面积,其中,正确的结论有__________.答案:解析:【分析】此题考查全等三角形的判定和性质,关键是根据SSS证明与全等和利用SAS证明与全等.先证明与全等,再证明与全等即可判断.【解答】解:在与中,,≌,故正确;,在与中,,≌,,,,故正确.四边形的面积,故正确.故答案为.8.阅读下面材料:下面是“作角的平分线”的尺规作图过程.已知:.求作:射线OC,使它平分.如图,作法如下:以点O为圆心,任意长为半径作弧,交OA于E,交OB于D;分别以点D,E为圆心,以大于的同样长为半径作弧,两弧交于点C;作射线则射线OC就是所求作的射线.请回答:该作图的依据是______.答案:SSS解析:解:连接EC,DC,由作图可得,,在和中,≌,,平分.故答案为:SSS.【分析】由作图可得,,根据三角形全等的判定方法“SSS”解答.本题考查了全等三角形的应用,以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.9.如图,已知,若使≌则可添加的一个条件是______.答案:解析:解:,理由是:在和中≌,故答案为:.此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理就行.本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,,垂足为点A,,,射线,垂足为点B,一动点E从A点出发以秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持,当点E运动______秒时,与全等.答案:0,2,6,8解析:【分析】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.先分两种情况:当E在线段AB上时,当E在BN上,再分别分成两种情况,进行计算即可.【解答】解:当E在线段AB上,时,≌,,,,点E的运动时间为秒;当E在BN上,时,,,,点E的运动时间为秒;当E在线段AB上,时,≌,这时E在A点未动,因此时间为0秒;当E在BN上,时,≌,,点E的运动时间为秒,故答案为0,2,6,8.11.如图,在和中,点B、F、C、E在同一条直线上,,,要使≌,则只需添加一个适当的条件是______只填一个即可答案:解析:解:,理由是:,,,,,在和中,≌,故答案为:答案不唯一求出,,根据SAS推出两三角形全等即可.本题考查了全等三角形的判定的应用,关键是注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.12.如图,点A,B,C在同一条直线上,,请你只添加一个条件,使得≌你添加的条件是______要求:不再添加辅助线,只需填一个答案即可答案:答案不唯一解析:解:添加的条件是,理由是:,,,,在和中,,≌,故答案为:答案不唯一.此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.三、解答题13.已知:如图,点A,D,C,B在同一条直线上,,,求证:.答案:证明:,,,在和中,,≌,,在和中,,≌,.解析:证明≌,由全等三角形的性质得出,根据SAS证明≌,则可得出.本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定方法是解题的关键.14.点F、B、E、C在同一直线上,并且,能否由上面的已知条件证明≌?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件添加到已知条件中,使≌,并给出证明.提供的三个条件是:;;.答案:解:不能;选择条件:;,,即,在和中,≌.解析:此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.由可得,再有条件不能证明≌;可以加上条件,利用SAS定理可以判定≌.15.在数学活动课上,李老师让同学们试着用角尺平分如图所示有两组同学设计了如下方案.方案:将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度位于OA,OB上,且交点分别为M,N,即,过角尺顶点P的射线OP就是的平分线.方案:在边OA,OB上分别截取,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与点M,N重合,即,过角尺顶点P的射线OP就是的平分线.方案与方案是否可行?若可行,请证明;若不可行,请说明理由.答案:解:方案不可行;理由如下:只有,,不能判断≌,不能判定OP就是的平分线;方案可行;理由如下:在和中,,≌,.就是的平分线.解析:只有,,不能判断≌,得出方案不可行;由SSS证得≌,得出得出方案可行.本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.16.如图,已知,,AC与BD相交于E,F是BC的中点,求证:.答案:证明:在和中,,≌,,是BC的中点,,在和中,,≌,.解析:先利用AAS证明≌,再利用SSS证明≌即可.本题主要考查了全等三角形的判定与性质,解题的关键是熟练掌握利用AAS和SSS证明三角形全等,此题难度不大.17.阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图1,我用相同的两块含角的直角三角板可以画角的平分线.画法如下:在的两边上分别取点M,N,使;把直角三角板按如图所示的位置放置,两斜边交于点P.射线OP是的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:小惠的做法正确吗?说明理由;请你和小旭一样,只用刻度尺画出图2中的平分线,并简述画图的过程.答案:解:小惠的做法正确.理由如下:如图1,过O点作于C,于D.,由题意,,,..在和中,,≌,,,于C,于D,点O在的平分线上,,,,即射线OP 是的平分线;如图2,射线RX 是的平分线,作图过程是:用刻度尺作,,连接TW ,UV 交于点X ,射线RX 即为所求的平分线.解析:过O 点作于C ,于D ,求出≌,根据全等三角形的性质得出,,根据角平分线性质求出根据三角形内角和定理求出即可;根据全等三角形的判定定理SSS ,用刻度尺作出即可.本题考查了角平分线定义和全等三角形的判定和性质的应用,主要考查学生的理解能力和动手操作能力,题目比较好,难度适中.。
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、嘉淇发现有两个结论:在与中,①若,,,则;②若,,,则.对于上述的两个结论,下列说法正确的是()A.①,②都错误B.①,②都正确C.①正确,②错误 D.①错误,②正确2、如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=62°,则∠EFD的度数为()A.15°B.16°C.17°D.18°3、如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.54、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中错误的是()A. B. C.点D在的平分线上 D.点D是CF的中点5、下列各条件中,能作出唯一的△ABC的是( )A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=56、下列命题是真命题的是()A.两个锐角的和还是锐角;B.全等三角形的对应边相等;C.同旁内角相等,两直线平行;D.等腰三角形既是轴对称图形,又是中心对称图形.7、如图,△AOC≌△BOD,∠A和∠B,∠C和∠D是对应角,下列几组边中是对应边的是()A.AC与BDB.AO与ODC.OC与OBD.OC与BD8、用直尺和圆规作两个全等三角形,如图,能得到△COD≌△C'O'D'的依据是()A.SAAB.SSSC.ASAD.AAS9、如图所示,八年级某同学书上的图形(三角形)不小心被墨迹污染了一部分,但他很快就根据所学知识,画出一个与书上完全一样的三角形,那么这两个三角形全等的依据是()A.SSSB.SASC.AASD.ASA10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65°B.95°C.45°D.100°11、在△ABC与△A′B′C′中,已知∠A=∠A′,AC=A′C′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等 C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等 D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等12、如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为 ( )A.SSSB.SASC.ASAD.AAS13、如图,,,与相交于点.则图中的全等三角形共有( )A.6对B.2对 C.3对D.4对14、装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③D.④15、如图,过正方形ABCD的顶点B作直线l,过A、C作直线L的垂线,垂足分别为E、F,若AE=1,CF=2,则AB的长为()A. B.2 C.3 D.二、填空题(共10题,共计30分)16、如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=________.17、如图,在平面直角坐标系中,双曲线()与直线()交于A、B两点,点H是双曲线第一象限上的动点(在点A左侧),直线AH、BH分别与y轴交于P、Q两点,若,,则a-b的值为________.18、如图,中,,,平分交于,于,且,则的周长为________.19、如图,△ABD≌△ABC,∠C=100°,∠ABD=30°,则∠DAC=________.20、如图2,A、B两点分别位于一个池塘的两端,点C是AE的中点,也是BD 的中点,图1表示的是小明从D点走到E点路程与时间的关系,已知小明从D 点到E点走了3分钟,则AB= ________米.21、在矩形ABCD中,AB=6,AD=4,点E是DC的中点,点F在AD上,连接BF,EF,若FE恰好平分∠BFD,则FD=________.22、如图所示,在中,,以BC为斜边向外侧做等腰直角,过点D做于点E,若线段,,则________.23、如图,正方形ABCD的边长为2,E为射线CD上一动点(不与C重合),以CE为边向正方形ABCD外作正方形CEFG,连接DG,直线BE、DG相交于点P,连接AP,则线段AP长度的取值范围是________.24、如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=________。
全等三角形的判定二(SSS ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“边边边”,和判定方法4——“角角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC ≌△.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边” 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.''A B ''A C ''B C '''A BC要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“边边边”1、如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A .0对B .1对C .2对D .3对【思路点拨】首先证明△ABE ≌△AEC ,再证明△AEC ≌△ADC ,△ABE ≌△ADC .【答案与解析】解:在△ABE 和△AEC 中,⎪⎩⎪⎨⎧EC =BE AE =AE AC =AB ,∴△ABE ≌△AEC (SSS ),在△AEC 和△ADC 中,⎪⎩⎪⎨⎧EC =AD AC =AC CD =AE ,∴△ABO ≌△ADO (SSS ),∴△ABE ≌△ADC ,故选D【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定4——“角角边”2、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD 是△ABC 的中线,过C 、B 分别作AD 及AD 的延长线的垂线CF 、BE.求证:BE =CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中∴△BED ≌△CFD (AAS )∴BE =CFBAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)3、如图:AB=A ′B ′,∠A=∠A′,若△ABC≌△A′B′C ′,则还需添加的一个条件有( )种.A.1B. 2C.3D.4【思路点拨】本题要证明△ ABC ≌△ A ′B ′C ′,已知了AB=A ′B ′,∠ A=∠ A ′,可用的判别方法有ASA ,AAS ,及SAS ,所以可添加一对角∠B=∠B ′,或∠C=∠C ′,或一对边AC=A ′C ′,分别由已知与所添的条件即可得证.【答案与解析】解:添加的条件可以为:∠B=∠B′;∠C=∠C′;AC=A ′C ′,共3种.若添加∠B=∠B′,证明:在△ABC 和△A′B′C′中,⎪⎩⎪⎨⎧∠∠∠∠'B =B B'A'=AB 'A =A ,∴△ABC≌△A′B ′C ′(ASA );若添加∠C=∠C′,证明:在△ABC 和△A′B′C′中,⎪⎩⎪⎨⎧∠∠∠∠B'A'=AB 'C =C 'A =A ,∴△ABC≌△A′B′C′(AAS );若添加AC=A ′C ′,证明:在△ABC 和△A′B′C′中,⎪⎩⎪⎨⎧∠∠B'A'=AB 'A =A ''A =AC C ,∴△ABC≌△A′B′C ′(SAS ).故选C.【总结升华】此题考查了全等三角形的判定,是一道条件开放型问题,需要由因索果,逆向推理,逐步探求使结论成立的条件,解决这类问题要注意挖掘隐含的条件,如公共角、公共边、对顶角相等,这类问题的答案往往不唯一,只有合理即可.熟练掌握全等三角形的判定方法是解本题的关键.类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,∴△DEH ≌△DFH(SSS)∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题.举一反三:DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==【变式】雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=31AB ,AF=31AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.【答案】解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=31AB ,AF=31AC ,∴AE=AF,在△AOE 与△AOF 中,⎪⎩⎪⎨⎧OF=OE AO =AO AF=AE ,∴△AOE≌△AOF(SSS ),∴∠BAD=∠CAD.【巩固练习】一、选择题1. 如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是( )A.∠B=45° B.∠BAC=90° C. BD=AC D.AB=AC2. 如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD4. 如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1对B. 2对C. 3对D. 4对5.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED+AB=DBD.DC=CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△AEC , 根据是,再证△BDE ≌△,根据是.9. 如图,AD=AE,请你添加一个条件______________,使得△ADC≌△AEB.10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B=20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.14. 如图,已知D、E、B 三点共线,AE=CE ,AE⊥CE,∠D=∠B=90°.求证:CD+AB=DB.15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】D ; 【解析】解:当AB=AC 时,△ABD≌△ACD,∵AD 是△ABC 的边BC 上的高,AB=AC ,∴BD=CD,∵在△ABD 和△ADC 中⎪⎩⎪⎨⎧AC =AB D =BD AD =AD C ,∴△ABD≌△ACD(SSS ).2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】A【解析】解:由题意,得∠ABC=∠BAD ,AB=BA ,A 、∠ABC=∠BAD ,AB=BA ,AC=BD ,(SSA )三角形不全等,故A 错误;B 、在△ABC 与△BAD 中,⎪⎩⎪⎨⎧∠∠∠∠DBA =CAB BA =AB BAD =ABC ,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,⎪⎩⎪⎨⎧∠∠∠∠BA =AB BAD =ABC D =C ,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,⎪⎩⎪⎨⎧∠∠BA =AB BAD =ABC AD =BC ,△ABC ≌△BAD (SAS ),故D 正确;故选:A .4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条,的中点O 连在一起,说明OA =,OB =,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =, 所以∠DCB =∠ABC =25°+41°=66°.8. 【答案】ASA ,CDE ,SAS ;【解析】△AEB ≌△AEC 后可得BE =CE.9.【答案】答案不唯一,B C ∠=∠或AC AB =等;【解析】10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS ).12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD 中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC 和△DEC 中,⎪⎩⎪⎨⎧∠∠∠∠CE =BC 5=3D =1,∴△ABC≌△DEC(AAS ).14. 【解析】证明:∵AE⊥CE,∴∠AEB+∠CED=90°,又∵∠B=90°∴∠A+∠AEB=90°,∴∠A=∠CED,在△AEB与△ECD中,∴△AEB≌△ECD(AAS)∴AB=DE ,BE=CD∵DE+BE=DB∴CD+AB=DB15.【解析】证明:在△ABC和△DCB中∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,(含答案) 在△ABE和△DCE中∴△ABE≌△DCE(SAS)∴AE=DE.。
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、下列条件中,能利用“ ”判定△ ≌△A′B′C′的是()A.AB=A′B′,AC=A′C′,∠C=∠C′B.AB=A′B′,∠A=∠A′,BC=B′C′ C.AC=A′C′,∠C=∠C′,BC=B′C′ D.AC=A′C′,∠A=∠A′,BC=B′C′2、如图,在△ABC中,AD为∠BAC的平分线,BM⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC与∠C的关系为()A.∠ABC=2∠CB.∠ABC= ∠CC.∠ABC=∠C D.∠ABC=3∠C3、下列命题是假命题的是()A.三角形的外角和是360°B.线段垂直平分线上的点到线段两个端点的距离相等C.有一个角是60°的等腰三角形是等边三角形D.有两边和一个角对应相等的两个三角形全等4、如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件,使△ABC ≌△DEC,则添加的条件不能为()A.∠B=∠EB.AC=DCC.∠A=∠DD.AB=DE5、如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是()A.AB=DEB.∠B=∠EC.EF=BCD.EF//BC6、如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF 的长是()A. B. C.6 D.7、如图:Rt△ABC≌Rt△DEF,则∠D的度数为()A.30°B.45°C.60°D.90°8、已知ΔABC≌ΔA1B1C1,且ΔABC的周长是20,AB=8,BC=5,那么A1C1等于 ( )A.5B.6C.7D.89、如图,AB平分∠CAD,根据下列条件,不一定能判定△ACB≌△ADB的是( )A.AC=ADB.∠ABC=∠ABDC.∠C=∠DD.BC=BD10、如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:⑴AE=BF;⑵AE⊥BF;⑶AO=OE;⑷ 中正确的有()A.4个B.3个C.2个D.1个11、如图,,其中,,则()A. B. C. D.12、如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A.120°B.125°C.127°D.104°13、如图,已知E是正方形ABCD中AB边延长线上一点,且AB=BE,连接CE、DE,DE与BC交于点N,F是CE的中点,连接AF交BC于点M,连接BF。
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、若按给定的三个条件画一个三角形,图形惟一,则所给条件不可能是()A.两边一夹角B.两角一夹边C.三边D.三角2、三个正方形按图示位置摆放,S表示面积,则S的大小为 ( )A.10B.500C.300D.303、如图,中,,,直接使用“SSS”可判定()A. ≌B. ≌C. ≌D. ≌4、如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50°B.60°C.76°D.55°5、如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③△EBA和△EDC一定是全等三角形.其中正确的有( )A.0个B.1个C.2个D.3个6、如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠CB.∠BDA=∠CDAC.BD=CDD.AB=AC7、如图,点、、、在一条直线上,,,下列条件中,能判断的是()A. B. C. D.8、如图,的内角平分线与外角的平分线交于点,过作分别交于两点.下列结论:①;②;③;④,其中正确的结论有()A.只有①②③B.只有①②④C.只有③④D.①②③④9、如图,已知AB=AC , BD=CD ,那么下列结论中不正确的是()A. △ ABD ≌△ ACDB. ∠ ADB=90°C. ∠ BAD是∠ B的一半D. AD平分∠ BAC10、如图,矩形ABCD,沿对角线BD翻折△BCD,点E是点C的落点,BE交AD 于点F,若CD=4,EF=3,则BD的长为()A.5B.5C.4D.1011、用直尺和圆规作一个角的平分线如图所示,说明∠AOC=∠BOC的依据是( ).A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等12、如图,、、分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C. D.13、如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE 和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个14、如图,,则图中全等三角形共有()A.1对B.2对C.3对D.4对15、如图四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则DC+BC的值为()A.6B.C.D.7二、填空题(共10题,共计30分)16、如图,作一个角等于已知角,其尺规作图的原理是________17、如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC=12cm,AC=9cm,DO=2cm,那么OC的长是________cm.18、如图,为等边三角形,,则________ .19、如图,点、、、在一条直线上,若,,,则的长为________.20、如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②的周长为;③;④的面积的最大值.其中正确的结论是________.(填写所有正确结论的序号)21、如图,在平面直角坐标系中,点,的坐标分别为,,点是反比例函数图象上一点,,交轴于点,,则的值为________.22、如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作RT△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm ,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC 与△ABQ全等时,AQ=________23、如图,BC∥EF,AC∥DF,添加一个条件________,使得△ABC≌△DEF.24、如图,矩形ABCD全等于矩形BEFG,点C在BG上.连接DF,点H为DF的中点.若,,则CH的长为________.25、如图所示是一个的正方形,则________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知:AB⊥BC,AD⊥DC,∠1=∠2,求证:28、如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.29、如图△ABC≌△EDC,求证:BE=AD30、如图,点是菱形对角线的延长线上任意一点,以线段为边作一个菱形,且菱形菱形,连接,求证:.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、C5、C6、C7、D8、B9、C10、C11、A12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.AD∥BC,且AD=BCD.∠A+∠ABD=∠C+∠CBD2、下列四个命题是假命题的是().A.斜边和一条直角边分别相等的两个直角三角形全等B.有两边和一角对应相等的两上三角形全等C.角的平分线上的点到角的两边的距离相等 D.全等三角形的对应角相等3、如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD是△ABC的角平分线。
其中正确的有()。
A.1个B.2个C.3个D.4个4、如图1,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中能和△ABC 完全重合的是()A.丙和乙B.甲和丙C.只有甲D.只有丙5、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A.SASB.ASAC.AASD.SSS6、如图,AD、BC相交于点O,,,下列结论中,错误的是()A. B. C. D.7、如图,,,,,垂足分别是点D,E,,.则的面积是()A. B.5 C. D.8、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.66°B.60°C.56°D.54°9、如图,AB∥CD,AD∥BC;则图中的全等三角形共有()A.5对B.4对C.3对D.2对10、下列命题:①关于某条直线成轴对称的两个图形是全等图形;②有一个外角为60°的等腰三角形是等边三角形;③关于某直线对称的两条线段平行;④正五边形有五条对称轴;⑤在直角三角形中,30°角所对的边等于斜边的一半.其中正确的有()个.A.1个B.2个C.3个D.4个11、如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.512、如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是()A.20B.16C.34D.2513、如图,∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A.∠E=∠BB.ED=BCC.AB=EFD.AF=CD14、如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是()A. B. C. D.15、如图,若△OAD≌△OBC,且∠O=65º, ∠C=20º,求∠OAD的度数( )A.20ºB.65ºC.80ºD.95º二、填空题(共10题,共计30分)16、如图所示,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm.沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为________cm.17、用尺规做一个角等于已知角的依据是________ .18、如图,矩形ABCD中,点E,F分别在边AD,CD上,且,,的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若,则________ .19、如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:________,使△ABD≌CDB(只需写一个).20、如图,在正方形 ABCD ,E是对角线 BD 上一点, AE 的延长线交 CD 于点F,连接 CE .若∠BAE=56°,则∠CEF= ________ °.21、如图,在中,,点在上,,连接、,若,,则________.22、如图,AD 是△ABC 的角平分线,DE,DF 分别是△BAD 和△ACD 的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF 是正方形;④AE+DF=AF+DE.其中正确的是________(填序号).23、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________.24、如图,AC是汽车挡风玻璃的挂雨刷,如果AO=65cm,CO=15cm,则AC绕点O旋转90°时,则挂雨刷AC扫过的面积为________cm².25、小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG (如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,∠A=∠D=90°,AB=DC,AC与DB交于点E,F是BC中点.求证:∠BEF=∠CEF.28、已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.29、如图,在⊙O中,AD是直径,弧AB=弧AC,求证:AO平分∠BAC.30、如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:AB=AE.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、B5、A6、C7、B8、A9、B10、C11、B12、C13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
《第1章 全等三角形》一、选择题1.如图,OA=OB ,OC=OD ,∠O=50°,∠D=35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= cm.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:m.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是km.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是.三、解答题19.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.《第1章全等三角形》参考答案与试题解析一、选择题1.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60° B.50° C.45° D.30°【考点】全等三角形的判定与性质;多边形内角与外角.【分析】首先由已知可求得∠OAD的度数,通过三角形全等及四边形的知识求出∠AEB的度数,然后其邻补角就可求出了.【解答】解:∵在△AOD中,∠O=50°,∠D=35°,∴∠OAD=180°﹣50°﹣35°=95°,∵在△AOD与△BOC中,OA=OB,OC=OD,∠O=∠O,∴△AOD≌△BOC,故∠OBC=∠OAD=95°,在四边形OBEA中,∠AEB=360°﹣∠OBC﹣∠OAD﹣∠O,=360°﹣95°﹣95°﹣50°,=120°,又∵∠AEB+∠AEC=180°,∴∠AEC=180°﹣120°=60°.故选:A.【点评】本题考查了全等三角形的判定及性质;解题过程中用到了三角形、四边形的内角和的知识,要根据题目的要求及已知条件的位置综合运用这些知识.2.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ【考点】全等三角形的应用.【分析】利用全等三角形对应边相等可知要想求得MN 的长,只需求得其对应边PQ 的长,据此可以得到答案.【解答】解:要想利用△PQO ≌△NMO 求得MN 的长,只需求得线段PQ 的长,故选:B .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.3.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,而AAA 和SSA 不能判断两三角形全等.4.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E ,只要求出∠B=∠E 即可.【解答】解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC ≌△DEF ,故本选项错误;B 、∵在△ABC 和△DEF 中,∴△ABC ≌△DEF (SAS ),故本选项正确;C 、∵BC ∥EF ,∴∠F=∠BCA ,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC ≌△DEF ,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC ≌△DEF ,故本选项错误.故选B .【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CDC.BE<CD D.大小关系不确定【考点】全等三角形的判定与性质;等边三角形的性质.【分析】由全等三角形的判定可证明△BAE≌△DAC,从而得出BE=CD.【解答】解:∵△ABD与△ACE均为正三角形∴BA=DA,AE=AC,∠BAD=∠CAE=60°∴∠BAE=∠DAC∴△BAE≌△DAC∴BE=CD故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.8.如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等边三角形的性质;平行线分线段成比例.【专题】几何综合题;压轴题.【分析】根据题意,结合图形,对选项一一求证,判定正确选项.【解答】解:(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°,在△BCD和△ACE中∵,∴△BCD≌△ACE∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC,又∵∠ACG=∠BCF=60°,AC=BC∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∠DCE=∠ABC=60°,∴DC∥AB,∴,∵∠ACB=∠DEC=60°,∴DE∥AC,∴ =,∴,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°,∵△ACE≌△BCD,∴∠CDZ=∠CEN,在△CDZ和△CEN中∵,∴△CDZ≌△CEN,∴CZ=CN,∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述,四个结论均正确,故本题选D.【点评】本题综合考查了全等、圆、相似、特殊三角形等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.二、填空题9.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED等于70°.【考点】全等三角形的判定与性质.【分析】在△BCO中利用外角和定理求得∠DBE的度数,然后证明△ADO≌△BCO,求得∠D的度数,在△BED中利用内角和定理求解.【解答】解:∠DBE=∠O+∠C=60°+25°=85°,∵在△ADO和△BCO,,∴△ADO≌△BCO,∴∠D=∠C=25°,∴∠BED=180°﹣∠D﹣∠DBE=180°﹣25°﹣85°=70°.故答案是:70°.【点评】本题考查全等三角形的判定与性质,以及三角形的外角的性质以及三角形内角和定理,正确证明△ADO≌△BCO是关键.11.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:①②④.【考点】全等三角形的判定与性质.【分析】要得到OP=OP′就要证明两三角形全等,现有的条件为有一对角相等,一条公共边,缺少角,于是答案可得.【解答】解:①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④.【点评】本题考查了全等三角形的判定与性质;转化为添加条件使三角形全等是正确解答本题的关键.12.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN ≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.13.如图:在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E,若四边形ABCD的面积为16,则DE的长为 4 .【考点】全等三角形的判定与性质;三角形的面积.【专题】计算题.【分析】可过点C作CF⊥DE,得出Rt△ADE≌Rt△DCF,得出线段之间的关系,进而将四边形的面积转化为矩形BCFE的面积与2个△CDF的面积,通过线段之间的转化,即可得出结论.【解答】解:过点C作CF⊥DE交DE于F,∵AD=CD,∠ADE=90°﹣∠CDF=∠DCF,∠AED=∠DFC=90°,∴△ADE≌△DCF(AAS),∴DE=CF=BE,又四边形ABCD的面积为16,即S矩形BCFE +2S△CDF=16,即BE•EF+2×CF•DF=16,BE•DE=BE•BE=16,解得DE=4.故此题答案为4.【点评】本题主要考查了全等三角形的判定及性质以及三角形、矩形面积的计算,能够熟练掌握.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是 1 .【考点】全等三角形的判定与性质.【专题】几何图形问题.【分析】根据AD⊥BC,CE⊥AB,得出∠ADB=∠AEH=90°,再根据∠BAD=∠BCE,利用AAS得到△HEA ≌△BEC,由全等三角形的对应边相等得到AE=EC,由HC=EC﹣EH代入计算即可.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC﹣EH=AE﹣EH=4﹣3=1.故答案为:1.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质,解题的关键是找出图中的全等三角形,并进行证明.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,若EF=5cm,则AE= 3 cm.【考点】全等三角形的判定与性质.【分析】根据直角三角形的两锐角互余的性质求出∠ECF=∠B,然后利用“角边角”证明△ABC和△FCE全等,根据全等三角形对应边相等可得AC=EF,再根据AE=AC﹣CE,代入数据计算即可得解.【解答】解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B(等角的余角相等),在△FCE和△ABC中,,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=3cm.故答案为:3.【点评】本题考查了全等三角形的判定与性质,根据直角三角形的性质证明得到∠ECF=∠B是解题的关键.16.如图,小明为了测量河的宽度,他站在河边的点C,头顶为点D,面向河对岸,压低帽檐使目光正好落在河对岸的岸边点A,然后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头点B,他测出BC=30m,你能猜出河有多宽吗?说说理由.答:30 m.【考点】全等三角形的应用.【专题】应用题.【分析】要转化为数学问题,须仔细读题,找出有用的已知条件,其中∠BDC=∠ADC是不易被发现的.【解答】解:由题意知∠BCD=∠ACD=90°,CD=CD,∠BDC=∠ADC,∴△BCD≌△ACD,∴AC=BC=30m.故答案为:30.【点评】解决本题的关键是条件∠BDC=∠ADC的找出,做题时要认真读题,理解题意,这是正确解题的保证.17.如图,高速公路上有A、B两点相距25km,C、D为两村庄.已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则AE的长是15 km.【考点】全等三角形的应用.【分析】根据题意设出AE的长为x,再由勾股定理列出方程求解即可.【解答】解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故答案为:15【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.18.已知三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是1<x<6 .【考点】三角形三边关系;全等三角形的判定与性质.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:如图所示,AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故答案为:1<x<6.【点评】有关三角形的中线问题,通常要倍数延长三角形的中线,把三角形的一边变换到与另一边和中线的两倍组成三角形,再根据三角形三边关系定理列出不等式,然后解不等式即可.三、解答题19.(春•大丰市期末)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【考点】作图—应用与设计作图.【专题】网格型.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.20.已知:AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为什么?【考点】全等三角形的判定与性质.【分析】由平行线的性质可得∠A=∠C,已知AD=BC,根据等式的性质得AF=CE,从而可根据SAS判定△DAF≌△BCE,根据全等三角形的对应角相等即可求证.【解答】解:∠B=∠D.原因如下:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AF=CE.∵AD=BC,∴△DAF≌△BCE.∴∠B=∠D.【点评】此题主要考查学生对全等三角形的判定方法及全等三角形的性质的理解及运用.21.如图,已知:CD⊥AB于D,BE⊥AC于E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】首先证得△BOD≌△COE,得到:BD=CE,然后证明Rt△AOD≌Rt△AOE,从而证得.【解答】证明:∵OD⊥AB,OE⊥AC∴∠BDO=∠CEO=90°,又∵∠BOD=∠COE,BD=CE,∴△BOD≌△COE∴OD=OE又由已知条件得△AOD和△AOE都是Rt△,且OD=OE,OA=OA,∴Rt△AOD≌Rt△AOE.∴∠DAO=∠EAO,即AO平分∠BAC.【点评】本题主要考查了三角形全等的判定,可以通过全等三角形的对应边相等,对应角相等.22.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】要证BE=DE,先证△ADC≌△ABC,再证△ADE≌△ABE即可.【解答】解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC(公共边)BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.【点评】本题重点考查了三角形全等的判定定理,利用全等得出结论证明三角形全等是常用的方法.23.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC,CF.求证:CA是∠DCF的平分线.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证△ABF≌△CBF,得出AF=FC,利用等腰三角形的性质可知∠3=∠4,再利用平行线的性质可证出∠4=∠5,等量代换,可得:∠3=∠5.那么AC就是∠DCF的平分线.【解答】证明:∵BF是∠ABC的平分线,∴∠1=∠2,又AB=BC,BF=BF,∴△ABF≌△CBF(SAS),∴FA=FC,∴∠3=∠4,又AF∥DC,∴∠4=∠5,∴∠3=∠5,∴CA是∠DCF的平分线.【点评】本题考查了角平分线的性质、判定,全等三角形的判定和性质;找着并利用△ABF≌△CBF 是正确解答题目的关键.24.(•泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.25.(•河北)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;平移的性质.【专题】探究型.【分析】(1)根据图形就可以猜想出结论.(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出.(3)类比(2)的证明就可以得到,结论仍成立.【解答】解:(1)AB=AP;AB⊥AP;(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴△BCQ≌△ACP(SAS),∴BQ=AP.②如图,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°.∴BQ⊥AP;(3)成立.证明:①如图,∵∠EPF=45°,∴∠CPQ=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°.∴CQ=CP.∵在Rt△BCQ和Rt△ACP中,BC=AC,CQ=CP,∠BCQ=∠ACP=90°,∴Rt△BCQ≌Rt△ACP.∴BQ=AP.②如图③,延长QB交AP于点N,则∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.∵在Rt△BCQ中,∠BQC+∠CBQ=90°,又∵∠CBQ=∠PBN,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.【点评】证明两个线段相等可以转化为证明三角形全等的问题.证明垂直的问题可以转化为证明两直线所形成的角是直角来解决.。
八年级数学上册《三角形全等的判定》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.如图,//BC EF ,BC EF =,要使得ABC DEF △≌△,需要补充的条件不能是( )A .B E ∠=∠ B .AB DE =C .AD CF = D .//AB DE2.如图,已知ABC ,用直尺和圆规按以下步骤作出DEF .(1)画射线DM ,以点D 为圆心,AB 长为半径画弧,与DM 交于点E ;(2)分别以D ,E 为圆心,线段AC ,BC 长为半径画弧,两弧相交于点F ;(3)连接DF ,EF .则能用于证明ABC DEF ≌△△的依据是( )A .SSSB .SASC .ASAD .AAS3.如图,由AB =AC ,∠B =∠C ,便可证得BAD ∠CAE ,其全等的理由是( )A .SSSB .SASC .ASAD .AAS4.如图,在矩形ABCD 中,DE 平分ADC ∠交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE PD <,将DPF ∠绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:∠DH DE =;∠DP DG =;∠DG DF +;∠DP DE DH DC ⋅=⋅,其中一定正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠5.已知:如图AB //EF ,BC ∠CD ,则∠α,∠β,∠γ之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=C .90αβγ∠+∠-∠=D .90βγα∠+∠-∠=6.如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ∠BC ,EG ∠CD ,垂足分别是F 、G .若CG =3,CF =4,则AE 的长是( )A .3B .4C .5D .7二、填空题7.如图,在Rt ABC 中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AO 上运动,当AP =__________时,ABC 和PQA △全等.8.如图,AB 是∠O 的直径,AC 是∠O 的切线,A 为切点,连接BC ,与∠O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.9.正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.10.如图,已知l 1∠l 2,MN 分别和直线1l 、2l 交于点A 、B ,ME 分别和直线1l 、2l 交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合)如果点P 在直线AB 运动时,α∠、β∠、γ∠之间有何数量关系______.11.如图,EFG 和HIJ 都是等边三角形,连接HG ,EI 交于点P ,则EPH ∠=_________度.12.如图,ABC 中,AB AC =,AD BD ⊥于点D ,20BAD ∠=︒,若2BC BD =,则BAC ∠的度数为 _____.三、解答题13.如图,已知ABC(1)用直尺和圆规按下列要求作图:(保留作图痕迹)在BC 上作点D ,使点D 到AB 和AC 的距离相等;过点B 作//BE AD 交CA 的延长线于E ;(2)若AF BE ⊥,垂足为F ,证明BF EF =.14.在∠ABC 中,D 是BC 的中点,DE ∠AB ,DF ∠AC ,垂足分别是E ,F .(1)若BE =CF ,求证:AD 是∠ABC 的角平分线.(2)若AD 是∠ABC 的角平分线,求证:BE =CF .15.如图,AB CD ,AD 与BC 交于点O ,40C ∠=︒,80AOB ∠=︒,求A ∠的度数.16.在ABC 中,AB AC =,D 是BC 边的中点,E 、F 分别是AD 、AC 边上的点.(1)如图∠,连接BE 、EF ,若ABE EFC ∠=∠,求证:BE EF =;(2)如图∠,若B 、E 、F 在一条直线上,且45ABE BAC ∠=∠=︒,探究BD 与AE 的数量之间有何等量关系,并说明理由;17.如图,在Rt DEF △和Rt ABC 中,90D A ∠=∠=︒,30E ∠=︒,45C ∠=︒,AC 与DF 相交于点G ,若105FGC ∠=︒,请判断EF 与BC 是否平行?并说明理由.18.如图,点D ,E 分别在OA ,OB 上,点P 在OC 上,且PD PE =.若180ODP OEP ∠+∠=︒,求证:OC 平分AOB ∠.参考答案:1.B【分析】根据全等三角形的判定定理判断解答即可.【详解】解:A 、∠BC ∠EF ,∠∠ACB =∠DFE ,又∠B =∠E ,BC =EF ,∠∠ABC ∠∠DEF (ASA ),正确,不符合题意;B 、根据全等三角形的判定定理,不能证明∠ABC ∠∠DEF ,错误,符合题意;C 、∠BC ∠EF ,∠∠ACB =∠DFE ,∠AD=CF ,∠AD+DC=CF+DC ,∠AC=DF ,∠BC=EF ,∠ACB =∠DFE ,AC=DF ,∠∠ABC ∠∠DEF (SAS ),正确,不符合题意;D 、∠BC ∠EF ,AB ∠DE ,∠∠ACB =∠DFE ,∠BAC =∠EDF ,又BC=EF ,∠∠ABC ∠∠DEF (AAS ),正确,不符合题意,故选:B .【点睛】本题考查全等三角形的判定、平行线的性质,熟练掌握全等三角形的判定是解答的关键.2.A【分析】根据作图方法可知,DE AB =,DF AC =,EF BC =,由此可解.【详解】解:根据作图的步骤(1)知DE AB =,由步骤(2)知DF AC =,EF BC =,根据三组边对应相等(SSS ),可证ABC DEF ≌△△. 故答案为:A .【点睛】本题考查尺规作图和全等三角形的判定,根据作图的方法判断出两个三角形的三条边对应相等是解题的关键.3.C【分析】根据全等三角形的判定定理解答即可.【详解】解:在BAD 和CAE 中,A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠BAD ∠CAE ()ASA ,故选:C .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.4.D【分析】根据旋转的性质判断得()GPH DPF ASA ∆≅∆,可判断∠正确,证PDHCDE ∆∆可判断∠正确,从而得出结果.【详解】解:根据旋转的性质可知,90DPH GPF ∠=∠=︒,∠DE 平分ADC ∠,∠45HDP ∠=︒,∠45DHP PDH PDF ∠=∠=∠=︒,∠PH =PD ,∠90DPH GPF ∠=∠=︒∠GPH DPF ∠=∠在GPH ∆和DPF ∆中, ∠GHP FDP PH PD GPH DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()GPH DPF ASA ∆≅∆∠HG DF =∠45PDH ∠=︒∠DH =∠DF DG GH DG DH +=+==故∠正确;∠45PDH PDF ∠=∠=︒,90DPH DCE ∠=∠=︒∠PDHCDE ∆∆ ∠DH DP DE CD= 即DP DE DH DC ⋅=⋅,故∠正确;根据已知条件无法证明∠DH =DE ,∠DP =DG .故选:D .【点睛】本题主要考查矩形的性质、三角形的全等、三角形的相似,掌握相关知识并灵活应用是解题的关键.5.C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到最终结果.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,,,,,,,90,90,AB EF AB CM DN EF BCM MCD NDC NDE BC CD BCD BCM MCD NDCNDE αγααβαβγ∴∴∠=∠∠=∠∠=∠⊥∴∠=∠+∠=∠+∠=∠+∠-∠=︒∴∠+∠-∠=︒故选:C .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即∠两直线平行,同位角相等;∠两直线平行,内错角相等;∠两直线平行,同旁内角互补.6.C【分析】由“SAS”可证△ABE ∠∠CBE ,可得AE =CE ,可证四边形CFEG 是矩形,可得GC =EF =3,∠EFC =90°,由勾股定理可求解.【详解】解:如图,连接CE ,∠四边形ABCD 是正方形,∠AB =BC ,∠ABD =∠CBD =45°,在△ABE 和△CBE 中,AB BC ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABE ∠∠CBE (SAS ),∠AE =CE ,∠EF ∠BC ,EG ∠CD ,∠BCD =90°,∠四边形CFEG 是矩形,∠GC =EF =3,∠EFC =90°,∠CE5,∠AE =5,故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是解题的关键.7.5或10【分析】当AP =5或10时,∠ABC 和∠PQA 全等,根据HL 定理推出即可.【详解】解:∠∠C =90°,AO ∠AC ,∠∠C =∠QAP =90°,∠当AP =5=BC 时,在Rt ∠ACB 和Rt ∠QAP 中∠AB PQ BC AP =⎧⎨=⎩, ∠Rt ∠ACB ∠Rt ∠QAP (HL ),∠当AP =10=AC 时,在Rt ∠ACB 和Rt ∠P AQ 中AB PQ AC AP =⎧⎨=⎩, ∠Rt ∠ACB ∠Rt ∠P AQ (HL ),故答案为:5或10.【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA ,AAS ,SAS ,SSS ,HL .8.49【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B =12∠AOD =41°,根据AC 是∠O 的切线得到∠BAC =90°,即可求出答案.【详解】解:∠∠AOD =82°,∠∠B =12∠AOD =41°,∠AC 为圆的切线,A 为切点,∠∠BAC =90°,∠∠C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.9.24【分析】过点C 作CE ∠y 轴,由正方形的性质得出∠CBA =90°,AB =BC ,再利用各角之间的关系得出∠CBE =∠BAO ,根据全等三角形的判定和性质得出OA =BE =2,OB =CE =4,确定点C 的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C 作CE ∠y 轴,∠点B(0,4),A(2,0),∠OB=4,OA=2,∠四边形ABCD为正方形,∠∠CBA=90°,AB=BC,∠∠CBE+∠ABO=90°,∠∠BAO+∠ABO=90°,∠∠CBE=∠BAO,∠∠CEB=∠BOA=90°,,∠ABO BCE∠OA=BE=2,OB=CE=4,∠OE=OB+BE=6,∠C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,反比例函数解析式的确定等,理解题意,综合运用这些知识点是解题关键.10.∠α+∠β=∠γ【分析】根据平行线的性质可求出它们的关系,从点P作平行线,平行于AC,根据两直线平行内错角相等可得出.【详解】解:如图,过点P作AC的平行线PO,∠AC∠PO,∠∠β=∠CPO,又∠AC∠BD,∠PO∠BD,∠∠α=∠DPO ,∠∠α+∠β=∠γ,故答案为:∠α+∠β=∠γ.【点睛】本题主要考查了两直线平行,内错角相等,正确作出辅助线是解题的关键.11.60【分析】根据等边三角形的性质可证∠FIH ∠∠GJI ,再证明∠FGH ∠∠GEI ,根据全等三角形的性质可得∠FGH =∠GEI ,从而可得∠GEI +∠HGE =60°,根据外角的性质可得∠EPH 的度数.【详解】解:在等边∠EFG 中,∠F =∠FGE =60°,FG =GE ,∠∠FHI +∠FIH =120°,在等边∠HIJ 中,∠HIJ =60°,HI =JI ,∠∠FIH +∠JIG =120°,∠∠FHI =∠JIG ,在∠FIH 和∠GJI 中,F G FHI GIJ HI JI ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠FIH ∠∠GJI (AAS ),∠FH =GI ,在∠FGH 和∠GEI 中,FH GI F G FG GE =⎧⎪∠=∠⎨⎪=⎩,∠∠FGH ∠∠GEI (SAS ),∠∠FGH =∠GEI ,∠∠FGH +∠HGE =60°,∠∠GEI +∠HGE =60°,∠∠EPH =60°,故答案为:60【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质等,熟练掌握全等三角形的判定和性质是解题的关键.12.40︒【分析】如图(见详解),根据等腰三角形的三线合一性质,过点A 作AE BC ⊥于点E ,可证RT ABE RT ABD △≌△,即可求出BAC ∠的度数.【详解】解:如图,过点A 作AE BC ⊥于点E ,∠AB =AC ,∠E 是BC 的中点,且AE 平分BAC ∠.∠2BC BD =,∠BD =BE .在RT ABE 和RT ABD 中,()AB AB RT ABE RT ABD HL BD BE =⎧⇒⎨=⎩△≌△, ∠20BAD BAE CAE ∠=∠=∠=︒.∠40BAC ∠=︒.故答案为:40︒.【点睛】本题考查等腰三角形的三线合一性质以及直角三角形全等的判定定理,正确运用定理进行判定是解题的关键.13.(1)见解析;(2)见解析【分析】(1)作∠BAC 的平分线,交BC 于D ,作∠ABE =∠BAD ,交CA 延长线于E 即可;(2)根据已知条件,利用ASA 证明∠AFE ∠∠AFB ,可得结果.【详解】解:(1)如图所示,AD 和BE 即为所作;(2)∠BE ∠AD ,AF ∠BE ,∠∠DAF =180°-90°=90°,∠EAF +∠CAD =90°,即∠BAF +∠BAD =90°,由(1)可知:∠BAD =∠CAD ,∠∠CAD +∠BAF =90°,∠∠BAF =∠EAF ,∠∠AFE =∠AFB =90°,AF =AF ,∠∠AFE ∠∠AFB (ASA ),∠EF =BF .【点睛】本题考查了尺规作图,平行线的性质,角平分线的判定,全等三角形的判定和性质,正确的作出图形是解题的关键.14.(1)证明见解析;(2)证明见解析【分析】(1)根据D 是BC 的中点可得BD DC =,根据 DE ∠AB 可得90DEB DFC ∠=∠=︒,利用直角三角形全等的判定和性质可得Rt Rt BDE CDF ≌,DE =DF ,再用角平分线得判定定理即可证明;(2)根据角平分线的性质得到DE =DF ,根据D 是BC 的中点可得BD DC =,再用HL 证明Rt Rt BDE CDF ≌,最后用全等三角形对应边相等证明.(1)证明:∠DE ∠AB ,DF ∠AC ,∠∠BDE 与∠DCF 是直角三角形.在Rt∠BDE 与Rt∠CDF 中,BD CD BE CF=⎧⎨=⎩, ∠Rt∠BDE ∠Rt∠CDF (HL ),∠DE =DF .又∠DE ∠AB ,DF ∠AC ,∠AD 是∠ABC 的角平分线;(2)∠AD 是∠ABC 的角平分线,DE ∠AB 于E ,DF ∠AC 于F ,∠DE =DF ,∠AD 是BC 边的中线,∠BD =CD .在Rt∠BDE 和Rt∠CDF 中,BD CD DE DF =⎧⎨⎩=, ∠Rt∠BDE ∠Rt∠CDF (HL ),∠BE =CF .【点睛】本题考查直角三角形全等的判定(HL ),角平分线的性质定理和判定定理,用HL 证明Rt∠BDE ∠Rt∠CDF 是解题的关键.15.60︒【分析】由AB 与CD 平行,利用两直线平行内错角相等求出B 的度数,在AOB 中,利用三角形内角和定理即可求出A ∠的度数.【详解】解:∠AB CD ,40C ∠=︒,∠40B C ∠=∠=︒,∠180A B AOB ∠+∠+∠=︒,∠18060∠=︒-∠-∠=︒A AOB B .【点睛】此题考查了平行线的性质以及三角形内角和定理,熟练掌握平行线的性质及三角形内角和定理是解本题的关键.16.(1)证明见解析;(2)2AE BD =,理由见解析【分析】(1)AD 为线段BC 的垂直平分线,垂直平分线的性质可得∠ABC =∠ACB ,BE =CE ,通过角的等量替换可得∠ACE =∠EFC ,再证边长相等即可.(2)由(1)可得∠ABE =∠ACE ,直角三角形证明全等即可得出.(1)连接CE ,AB AC =,D 是BC 边的中点,AD ∴为线段BC 的垂直平分线,A ABC CB =∠∠,BE CE ∴=,EBC ECB ∴∠=∠,ABC EBC ACB ECB ∴∠-∠=∠-∠,即ABE ACE =∠∠,ABE EFC ∠=∠,ACE EFC ∴∠=∠,EF CE ∴=,BE EF ∴=;(2)连接CE ,由(1)可得ABE ACE =∠∠,45ABE BAC ∠=∠=︒,ABF ∴和CEF △都是等腰直角三角形,AF BF CF EF ∴==,,CBF EAF ∴≌△△,BC AE ∴=,2AE BD ∴=;(注:辅助线连接CE 不要求)17.EF BC ∥,理由见解析【分析】过G 点作GH BC ∥,根据平行线的性质,角的和差关系,三角形内角和定理可得∠F =∠FGH ,再根据平行线的判定即可求解.【详解】解:EF BC ∥.理由如下:过G 点作GH BC ∥,∠∠C =45°,90A ∠=︒,∠∠CGH =45°,∠∠FGC =105°,∠∠FGH =105°−45°=60°,在Rt ∠DEF 中,∠D =90°,∠E =30°,∠∠F =60°,∠∠F =∠FGH ,∠EF GH ∥,∠EF BC ∥.【点睛】本题考查了平行线的判定与性质,三角形内角和定理,关键是熟悉两条直线都和第三条直线平行,那么这两条直线平行.18.见解析【分析】过点P 作PF OA ⊥,PH OB ⊥,证明∠PDF ∠∠PEH ,得出PF PH =,根据角平分线的判定定理得出OC 平分AOB ∠.【详解】证明:过点P 作PF OA ⊥,PH OB ⊥,∠90PFD PHE ∠=∠=︒∠180ODP OEP ∠+∠=︒,180PEB OEP ∠+∠=︒∠ODP PEB ∠=∠在∠PDF 和∠PEH 中PFD PHE PDF PEH PF PH ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠PDF ∠∠PEHPF PH ∴=,∠OC 平分AOB ∠.【点睛】本题考查了角平分线的判定定理,全等三角形的性质与判定,掌握角平分线的判定定理是解题的关键.。
苏科版八年级上册数学第一章全等三角形含答案一、单选题(共15题,共计45分)1、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=AC2、下列命题中正确的是()A.周长相等的两个三角形全等B.关于某条直线对称的两个三角形全等 C.顶角相等的两个等腰三角形全等 D.两边和一角对应相等的两个三角形全等3、如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°4、下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形5、如图,在正方形中,是对角线上一点,且满足.连接并延长交于点,连接,过点作于点,延长交于点.在下列结论中:①;②;③;④,其中正确的结论有()个A.1B.2C.3D.46、如图,线段与交于点,且,则下面的结论中错误的是()A. B. C. D.7、如图,△ABC 和△DEF 中,给出下列四组条件:①AB=DE, BC=EF, AC=DF②AB=DE, ∠B=∠E, BC=EF③∠B=∠E, BC=EF, ∠C=∠F ④∠A=∠D, ∠B=∠E, AB=DF其中能使△ABC≌△DEF 的条件有()A.1 组B.2 组C.3 组D.4 组8、如图,用直尺和圆规作一个角等于已知角,能得出的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)9、下列命题的逆命题正确的是()A.如果两个角都是45°,那么它们相等B.全等三角形的周长相等 C.同位角相等,两直线平行 D.若a=b,则10、下列命题:①两直线平行,内错角相等;②对角线互相平分的四边形是平行四边形;③全等三角形对应角相等;④平行四边形的两组对边分别相等.其逆命题成立的个数有()A.1个B.2个C.3个D.4个11、如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )。
三角形全等的判定SSS练习题
1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,求∠ABC的度数。
2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是()
A.△ABD≌△ACD B.∠ADB=90°
C.∠BAD是∠B的一半D.AD平分∠BAC
3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。
试用你所学的知识说明理由。
4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.
中考真题
1.(怀化)如图,AD=BC,AB=DC. 求证:∠A+∠D=180°
2.(年四川省宜宾市)已知:如图,在四边形ABCD中,AB=CB,AD=CD.
求证:∠C=∠A.
参考答案:
随堂检测:
1、②①③.解析:本题是利用SSS 画全等三角形的尺规作图步骤,“作直线BP ,在BP 上截取BC=a ”也可表达为“画线段BC=a ”
2、由全等可得 AD 垂直平分BC
3、公共边相等是两个三角形全等的一个条件.
由于AC=AD ,BC=BD ,AB=AB ,所以,△A BC ≌△ABD(SSS),所以,∠CAB=∠DAB ,即AB 平分∠CAD. 拓展提高:
1、760
.解析:先证明全等,再利用全等三角形的对应角相等和三角形内角和定理 答案: 2、C.解析:利用SSS 证明两个三角形全等
3、由于已知DE=DF ,EH=FH ,连结DH ,这是两三
角形的公共边,于是,
在△DEH 和△DFH 中, DE DF EH FH DH DH =⎧⎪=⎨⎪=⎩
所以△DEH ≌△DFH (SSS ),所以∠DEH=∠DFH (全等三角形的对应角相
等)。
4、根据条件OA=OC,EA=EC ,OA 、EA 和OC 、EC 恰好分别是△EAC 和△EBC 的两条边,故可以构造两个三角形,利用全等三角形解决
解:连结OE
在△EAC 和△EBC 中
OA OC EA EC OE OE ⎧⎪⎨⎪⎩
===(已知)(已知)(公共边)
∴△EAC ≌△EBC (SSS )
∴∠A =∠C (全等三角形的对应角相等)
体验中考:
1、由条件可构造两个全等三角形
证明:连结AC
∵AD=BC,AB=DC,AC=CA
∴△ABC≌△CDA
∴∠BAC=∠ACD
∴AB∥CD
∴∠A+∠D=180°
2、证明:连接BD.
在△ABD和△CBD中,
∵AB=CB,AD=CD,BD=BD,
∴△ABD≌△CBD.
∴∠C=∠A.。