平行线基础训练
- 格式:doc
- 大小:283.50 KB
- 文档页数:5
《平行线》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法中,正确的有()①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个2.(5分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角.A.1个B.2个C.3个D.4个3.(5分)下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个4.(5分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直5.(5分)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c二、填空题(本大题共5小题,共25.0分)6.(5分)平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成个部分.7.(5分)在同一平面内,两条不相重合的直线位置关系有两种:和.8.(5分)下列说法正确的有(填序号):.①同位角相等;②一条直线有无数条平行线;③在同一平面内,两条不相交的线段是平行线;④在同一平面内,如果a∥b,b∥c,则a∥c;⑤过一点有且只有一条直线与已知直线平行.9.(5分)在同一平面内,不重合的两条直线有种位置关系,它们是.10.(5分)如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来;.三、解答题(本大题共5小题,共50.0分)11.(10分)在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.12.(10分)(1)如图,三根木条相交成∠1、∠2,固定木条b、c,转动木条a,在木条a的转动过程中,∠1与∠2的大小关系发生了什么变化?木条a、b的位置关系发生了什么变化?(2)改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?画出图形,填下列表格:图形∠2与∠1的大小关∠2∠1∠2∠1∠2∠1系木条a与b的位置关系13.(10分)如图,在长方体中,A1B1∥AB,AD∥BC,你还能再找出图中的平行线吗?14.(10分)如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.15.(10分)直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.《平行线》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法中,正确的有()①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【分析】利用直线的性质,度分秒的换算,以及角平分线定义判断即可.【解答】解:①过两点有且只有一条直线,正确;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外,正确;③在角的内部,一条射线把一个角分成两个角,这条射线叫这个角的平分线,错误;④40°50′=40.83°,错误;⑤在一个平面内,不相交的两条直线叫做平行线,错误.故选:B.【点评】此题考查了平行线,直线的性质,度分秒的换算,以及角平分线定义,熟练掌握各自的性质是解本题的关键.2.(5分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】直接利用对顶角的性质以及平行线和相交线的定义分析得出即可.【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故原命题错误;(2)在同一平面内,两条直线的位置关系只有相交、平行两种,正确;(3)在同一平面内,不相交的两条直线叫做平行线,故原命题错误;(4)相等的角不一定是对顶角,故原命题错误.故错误的有3个.故选:C.【点评】此题主要考查了对顶角的性质以及平行线和相交线的定义等知识,正确把握平行线的定义是解题关键.3.(5分)下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】平行线的性质即可判断①;根据补角的定义即可判断②,根据平行线的性质即可判断③,根据两直线的位置关系即可判断④;根据对顶角的定义即可判断⑤.【解答】解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,故选:A.【点评】本题考查了对顶角的定义,平行线的性质,两直线的位置关系灯知识点,能熟记知识点的内容是解此题的关键.4.(5分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直【分析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.【点评】本题主要考查了同一平面内,两条直线的位置关系,解题的关键是注意垂直是相交的一种特殊情况,不能单独作为一类.5.(5分)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【分析】根据题意画出图形,从而可做出判断.【解答】解:先根据要求画出图形,图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线,根据题意画出符合题意的图形是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成50个部分.【分析】先计算出6条不平行的直线所能将平面分成的部分,然后再计算加入第一条平行线所增加的平面数量,从而可得出第二、第三、第四条加上后的总数量.【解答】解:6条不平行的直线最多可将平面分成2+2+3+4+5+6=22个部分,加入第一条平行线后,它与前面的6条直线共有6个交点,它被分成7段,每一段将原有的部分一分为二,因此增加了7个部分,同理每增加一条平行线就增加7个部分,故这10条直线最多将平面分成22+7×4=50.故答案为50.【点评】本题考查直线相交所产生平面个数的问题,有一定难度,注意先计算6条不平行的直线所分成的平面数量.7.(5分)在同一平面内,两条不相重合的直线位置关系有两种:相交和平行.【分析】同一平面内,直线的位置关系通常有两种:平行或相交.【解答】解:平面内的直线有平行或相交两种位置关系.故答案为:相交,平行.【点评】本题主要考查了在同一平面内的两条直线的位置关系,属于基础题,应熟记这一知识点.8.(5分)下列说法正确的有(填序号):②④.①同位角相等;②一条直线有无数条平行线;③在同一平面内,两条不相交的线段是平行线;④在同一平面内,如果a∥b,b∥c,则a∥c;⑤过一点有且只有一条直线与已知直线平行.【分析】根据平行线的性质,平行公理以及平行线与线段的区别对各小题分析判断后利用排除法求解.【解答】解:①应是两直线平行,同位角相等,故本小题错误;②一条直线有无数条平行线,正确;③因为线段有端点,所以有长短,不相交也不一定平行,故在同一平面内,两条不相交的线段不一定是平行线,故本小题错误;④在同一平面内,如果a∥b,b∥c,则a∥c,符合平行公理,正确;⑤应为过直线外一点可以而且只可以画一条直线与已知直线平行,故本小题错误,故答案为:②④.【点评】本题主要考查了平行线的性质及平行公理,都是基础知识,需要熟练记忆.9.(5分)在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.【分析】根据同一平面内,不重合的两条直线的位置关系可知.【解答】解:在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.【点评】本题是基础题型,主要考查了在同一平面内,不重合的两条直线的两种位置关系.10.(5分)如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来;CD∥MN,GH∥PN.【分析】分别找出各线段与水平方向的夹角在网格上所截得的竖直方向的线段与水平方向的线段的长度,然后求出它们的比值,比值相同的线段就是互相平行的线段.【解答】解:AB,竖直方向的长度为3个单位,水平方向的长度为1个单位,比值为:3:1;CD,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;EF,竖直方向的长度为3个单位,水平方向的长度为2个单位,比值为:3:2;GH,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;MN,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;PN,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;结合图形线段的倾斜方向相同,比值相同的线段是CD与MN,GH与PN,∴互相平行的线段是CD∥MN,GH∥PN.故答案为:CD∥MN,GH∥PN.【点评】本题考查了平行线与网格相结合,准确识图,找出线段在网格上的水平方向上的长度与竖直方向上的长度并求出比值是解题的关键,是基础题.三、解答题(本大题共5小题,共50.0分)11.(10分)在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.【分析】根据同一平面内的两条直线有相交、平行两种关系画出图形即可解答.【解答】解:不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.【点评】本题考查的是相交线与平行线,解答此题的关键是熟知同一平面内两条直线的两种位置关系.12.(10分)(1)如图,三根木条相交成∠1、∠2,固定木条b、c,转动木条a,在木条a的转动过程中,∠1与∠2的大小关系发生了什么变化?木条a、b 的位置关系发生了什么变化?(2)改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?画出图形,填下列表格:图形∠2与∠1的大小关∠2<∠1∠2=∠1∠2>∠1系木条a与b的位置关相交平行相交系【分析】(1)利用已知操作方法得出,∠1与∠2的大小关系的变化和木条a、b 的位置关系变化情况;(2)利用平行线的判定方法得出即可.【解答】解:(1)图形∠2<∠1∠2=∠1∠2>∠1∠2与∠1的大小关系木条a与b的位置关相交平行相交系(2)如图所示:当∠2=∠1时,木条a与木条b平行.【点评】此题主要考查了平行线的判定与性质,根据题意得出a,b的位置关系是解题关键.13.(10分)如图,在长方体中,A1B1∥AB,AD∥BC,你还能再找出图中的平行线吗?【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,结合长方体直接判断即可.【解答】解:图中的平行线有:AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥DD1.【点评】本题考查了平行线的定义,注意在同一平面内,两直线的位置关系只有平行和相交(重合除外).14.(10分)如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.【分析】根据平行于同一直线的两直线互相平行解答.【解答】解:∵AB∥DC,EF∥AB,∴EF∥DC(平行公理).【点评】本题考查了平行公理,是基础题,需熟记.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.15.(10分)直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.【分析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.【解答】解:(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【点评】本题考查了平行公理和推论的应用,主要考查学生的理解能力和推理能力,题目比较好,难度不大.。
专题1.2 平行线(专项练习)一、单选题1.若直线a,b,c,d有下列关系,则推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c2.若直线a∥b,b∥c,则a∥c的依据是().A.平行的性质B.等量代换C.平行于同一直线的两条直线平行.D.以上都不对3.如图,在平面内经过一点作已知直线的平行线,可作平行线的条数有()A.0条B.1条C.0条或1条D.无数条4.在同一平面内,a、b、c是直线,下列说法正确的是( )A.若a∥b,b∥c 则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c5.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A.1cm B.3cm C.5cm或3cm D.1cm或3cm6.下列说法正确的有()①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC=BC,则点C就是线段AB的中点.⑤不相交的两条直线是平行线A.1个B.2个C.3个D.4个7.如果同一平面内有三条直线,那么它们交点个数是()个.A.3个B.1或3个C.1或2或3个D.0或1或2或3个8.在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行9.已知直线a,b,c是同一平面内的三条不同直线,下面四个结论:①若则;②若则;③若则;④若且与相交,则与相交,其中,结论正确的是( )A.①②B.③④C.①②③D.②③④10.给出下列说法:(1)过平面内一点有且只有一条直线与已知直线平行;(2)相等的两个角是对顶角;(3)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;(4)不相交的两条直线叫做平行线;(5)垂直于同一条直线的两条直线平行.其中正确的有()A.0个B.1个C.2个D.3个二、填空题11.若直线a//直线b,直线b//直线c,则直线a 和直线c 的位置关系是_____.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是_____.13.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是_____.14.空间两直线的位置关系有___________________________.15.如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有_____条.16.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______ 17.如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:_____.18.完成下列推理,并在括号内注明理由.(1)如图1所示,因为(已知).所以三点__________;( )(2)如图2所示,因为(已知),所以________∥_____________.( )三、解答题19.如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.20.读下列语句,并画出图形:(1)点是直线外一点,直线经过点,且与直线平行;(2)直线,是相交直线,点是直线,外的一点,直线经过点且与直线平行,与直线相交于点.21.已知:∠AOB及∠AOB内部一点P.(1)过点P画直线PC∥OA交OB于点C;(2)过点P画垂线PD⊥OB于点D;(3)测量∠AOB与∠CPD的度数,并猜想∠AOB与∠CPD的数量关系是 .22.如图,∠AOB内有一点P.根据下列语句画图:(1)过点P作OB的垂线段,垂足为Q ;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D ;(3)如果∠O = 40°,那么∠DPQ =°;(4)比较PQ和PD的大小:PQ PD,依据是.23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,求∠FEC的度数.24.将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?参考答案1.C【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”进行分析,得出正确答案.【详解】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、c、d与不同的直线平行,无法推出两者也平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行,故错误.故选:C.【点拨】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.2.C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点拨】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.3.C【分析】根据平行公理的定义:过直线外一点,有且只有一条直线与已知直线平行,可直接得结论.【详解】解:在同一平面内,当这个点在直线上时,此时可作0条与已知直线平行的线,,当这个点在直线外时,可以作一条直线于已知直线m的平行.故选C.【点拨】本题考查了平行线的定义.掌握平行线的定义是解决本题的关键.4.A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.5.C【详解】分析:分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.详解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4-1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或5cm.故选C.点拨:本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.平行线间的距离处处相等.注意分类讨论.6.B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点拨】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.7.D【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D.【点拨】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.8.C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点拨】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.9.A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若则;故说法正确;②若则,故说法正确;③根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若则;说法错误;④若且与相交,则与不一定相交,故说法错误故正确的有:①②故选:A【点拨】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系.10.A【分析】根据平行线的定义、平行公理、对顶角的概念以及点到直线的距离的概念进行判断即可.【详解】解:(1)过已知直线外一点有且只有一条直线与已知直线平行,说法(1)错误;(2)相等的两个角不一定是对顶角,对顶角是在两直线相交的前提条件下形成的,故说法(2)错误;(3)直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,点到直线的距离是一个长度,而不是一个图形,故说法(3)错误;(4)同一平面内,不相交的两条直线叫做平行线,故说法(4)错误;(5)同一平面内,垂直于同一条直线的两条直线平行,故说法(5)错误.故说法正确的有0个.故选:A.【点拨】本题主要考查了相交线与平行线的一些基本概念,解题时注意:对顶角是相对于两个角而言,是指两个角的一种位置关系;点到直线的距离只能量出或求出,而不能说画出;平行公理中要准确理解“有且只有”的含义.【分析】根据平行公理的推论直接判断直线a与直线c的位置关系即可.【详解】∵直线a∥直线b,直线b∥直线c,∴直线a与直线c的位置关系是:a∥c.故答案为:a∥c.【点拨】本题主要考查了平行公理的推论,熟记“如果两条直线平行于第三条直线,那么这两条直线也平行”是解题关键.12.经过直线外一点,有且只有一条直线与这条直线平行【详解】解:如图,∵MC∥AB,NC∥AB,∴直线MC与NC互相重合(经过直线外一点,有且只有一条直线与这条直线平行).故答案为:经过直线外一点,有且只有一条直线与这条直线平行.13.3【分析】根据平行线间的距离与点到直线的距离即可求出.【详解】解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为3.【点拨】此题主要考查平行线之间的距离,解题的关键是正确理解点到直线的距离. 14.平行、相交、异面【分析】当两条直线在同一平面内和不在同一平面内进行分析即可.【详解】当两条直线在同一平面内时,位置关系有平行、相交;当两条直线不在同一平面内时,位置关系有异面;故答案为:平行、相交、异面.【点拨】考查了两条直线的位置关系,解题关键是分当两条直线在同一平面内和不在同一平面内进行分析,注意不要漏掉不在同一平面内的情况.15.三条【分析】根据正方体的特征及平行线的定义进行解答.【详解】解:与棱AD平行的棱有:BC,B′C′,A′D′,共有三条.故答案为三条.【点拨】本题主要考查对正方体的认识,空间中的平行关系的判定,熟练掌握相关的知识是解题的关键.16.平行【分析】根据同一平面内,一条直线与两条直线垂直,那么这两条直线平行判断即可.【详解】本题考查了平行线和相交线,同一平面内,一条直线与两条直线垂直,那么这两条因为a⊥b,a⊥c,所以b∥c.【点拨】本题是对相交线,平行线知识的考查,熟练掌握一条直线与两条直线垂直,那么这两条直线平行是解决本题的关键.17.③②④①【分析】根据同位角相等两直线平行判断即可.【详解】解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.18.共线平行公理AB EF平行公理的推论【分析】(1)根据平行公理:过已知直线外一点,有且只有一条直线与已知直线平行进行求解即可;(2)根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也平行.【详解】解:(1)∵,,∴A、B、C三点共线(平行公理);(2)∵,,∴AB∥EF(平行公理的推论).故答案为:(1)共线;平行公理;(2)AB;EF;平行公理的推论.【点拨】本题主要考查了平行公理和平行公理的推论,解题的关键在于能够熟练掌握相关知识进行求解.19.平行【分析】由邻补角关系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出结论.【详解】平行,因为,所以,所以根据“同位角相等,两直线平行”可得.【点拨】本题考查了平行线的判定方法、邻补角关系;熟记同位角相等,两直线平行,证出∠BPQ=∠BNG是解决问题的关键.20.(1)见解析;(2)见解析.【分析】(1)过直线AB外的点P作即可;(2)先画两条相交直线AB、CD,在直线AB、CD外取一点P,过点P作,交CD 于E即可.【详解】解:(1)如图所示:(2)如图所示:【点拨】本题考查了作图,相交线与平行线,主要考查学生的理解能力和动手操作能力,用了数形结合思想.21.(1)见解析;(2)见解析;(3)∠AOB=44°,∠CPD=46°.∠AOB+∠CPD=90°【分析】(1)根据平行线的定义画出图形即可.(2)根据垂线的定义画出图形即可.(3)利用量角器测量角的大小即可.【详解】解:(1)如图,直线PC即为所求.(2)如图,直线PD即为所求.(3)测量可得:∠AOB=44°,∠CPD=46°.猜想:∠AOB+∠CPD=90°.理由如下:故答案为:∠AOB+∠CPD=90°.【点拨】本题考查作图-复杂作图,平行线的定义,垂线的定义等知识,解题的关键是熟练掌握平行线的定义,垂线的定义,属于中考常考题型.22.(1)见解析;(2)见解析;(3);(4);垂线段最短【分析】(1)利用三角板的直角,过点P作OA⊥PQ即可;(2)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D即可;(3)利用平行线的性质和三角形内角和定理即可求解.(4)根据直线外一点与直线上所有点的连线中垂线段距离最短即可求解.【详解】如图:(2)如图:(3)∵AO∥PD,∴∠O=∠ODP=40°,∵PQ⊥BO,∴∠PQD=90°,∴∠DPQ=50°,故答案为:50°.(4)因为PQ⊥BO,所以;点到直线上所有连线中,垂线段距离最短.故答案为:垂线段最短.【点拨】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕迹.23.∠FEC=20°.【详解】分析:由EF与AD平行,AD与BC平行,利用平行于同一条直线的两直线平行得到EF与BC平行,利用两直线平行同旁内角互补求出∠ACB度数,进而求出∠FCB度数,根据CE为角平分线求出∠BCE度数,再利用两直线平行内错角相等即可求出所求角度数.本题解析:∵AD∥BC,∴∠ACB=180°﹣∠DAC=180°﹣115°=65°,∵∠ACF=25°,∴∠BCF=∠ACB﹣∠ACF=65°﹣25°=40°,∵CE平分∠BCF,∴∠BCE=∠BCF=×40°=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠FEC=∠BCE=20°.24.CD∥AB,理由见解析.【分析】首先证明CD∥EF,进而证明AB∥EF,即可解决问题.【详解】CD∥AB.理由如下:由题意易知CD∥EF,EF∥AB,∴CD∥AB.【点拨】本题主要考查了平行线的判定问题;灵活运用判定定理是解题的关键.。
《平行线性质与判定的综合》基础训练知识点1 综合运用平行线的性质与判定进行计算或说理1.如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.32°2.如图,直线EB∥FD,直线c分别交EB、FD于点A、C,∠BAC的平分线交直线FD于点G,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°3.如图,一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°4.如图,直线,,,a b c d ,已知,c a c b ⊥⊥,直线,,b c d 交于一点.若150︒∠=,则2∠等于( )A.60︒B.50︒C.40︒D.30︒5.如图,直线,a b 被直线,c d 所截.若12,3125︒∠=∠∠=,则4∠的度数是()A.65︒B.60︒C.55︒D.75︒6.如图,若180A ABC ︒∠+∠=,则下列结论正确的是( )A.12∠=∠B.23∠=∠C.13∠=∠D.24∠=∠7.如图,12,60A ︒∠=∠∠=,则ADC ∠=____________.8.如图,//,180BC DE E B ︒∠+∠=,则AB 和EF 的位置关系为____________.9.如图所示,//,,AB DC ABC ADC BF ∠=∠和DE 分别平分ABC ∠和ADC ∠.试说明://ED BF .解:因为BF 和DE 分别平分ABC ∠和ADC ∠(已知),所以EDC ∠=____________,ADC FBA ∠∠=_________ABC ∠(角平分线的定义). 又因为ADC ABC ∠=∠(已知),所以∠___________FBA =∠(等量代换). 因为//AB DC (已知),所以AED EDC ∠=∠(______________).所以∠______=∠_______(等量代换).所以//ED BF (______________).10.如图,已知180,B BCD B D ︒∠+∠=∠=∠.请你观察图形,写出E ∠和DFE ∠满足什么数量关系?并说明理由.知识点2 利用平行线的性质与判定解决实际问題11.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120,为使管道对接,另一侧铺设的角度大小应为()A.120︒B.100︒C.80︒D.60︒12.如图,在,A B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42,,A B 两地同时开工,B地所挖水渠走向应为南偏东_________.13.一条建设中的高速公路要穿过一山体开挖一条隧道,甲、乙两工程队分别从山体两侧的,A B两点同时开工,现甲队从A点测得道路的走向是北偏东55,为了不浪费人力、物力,问乙队在B点处应该按β∠等于多少度开挖,才能够保证隧道准确接通?14.如图,B处在A处的南偏西45°方向,C处在B处的北偏东80°方向.(1)求∠ABC的度数;(2)要使CD∥AB,D处应在C处的什么方向?15.如图,已知CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.16.如图,已知AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.参考答案1、B 2.C 3.D4.答案:C解析:∵a ∥b,∴∠1=∠2,∵∠1=58°,∴∠2=58°,故选C.5.答案:C解析:∵EB ∥FD,∴∠BAG=∠2=50°,∵AG 平分∠BAC,∴∠GAC=∠BAG=50°,∴∠1=180°-∠BAG-∠GAC=80°,故选C.6.答案:C解析:根据题意可知∠2+∠3=60°,因为∠2=44°,所以∠3=16°,再根据直尺的对边平行,可知∠1=∠3=16°.7.120 8.平行 9.12 12EDC 两直线平行,内错角相等 FBA AED 同位角相等,两直线平行10.解:E DFE ∠=∠.理由如下:因为180,B BCD B D ︒∠+∠=∠=∠,所以180D BCD ︒∠+∠=.所以//AD BE .所以E DFE ∠=∠.11.D 12.4213.解:因为指北方向平行,且,A B 两点走向形成一条直线,即//CA DB ,所以a ∠和β∠就构成了一对同旁内角.所以180a β︒∠+∠=,即18055125β︒︒︒∠=-=.因此,乙队在B 点处应该按125β︒∠=开挖.14.答案:见解析解析:(1)如图,由题意,得∠FAB=45°.因为AF ∥BE,所以∠FAB=∠ABE=45°,因为∠EBC=80°,所以∠ABC=35°.(2)D处在C处的南偏西45°方向.理由如下:如图,因为CG∥BE,所以∠GCB=∠EBC=80°.因为∠GCD=45°,所以∠BCD=35°,所以∠ABC=∠BCD=35°,所以CD∥AB.15.答案:见解析解析:证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠DCB(两直线平行,内错角相等).∵CD⊥AB,GF⊥AB,∴∠BDC=90°,∠BFG=90°, ∴CD∥FG(同位角相等,两直线平行),∴∠2=∠DCB(两直线平行,同位角相等).∴∠1=∠2(等量代换).16.答案:见解析解析:证明:(1)∵AB∥CD,∴∠4=∠BAF.∵∠1=∠2,∴∠BAF=∠1+∠CAF=∠2+∠CAF=∠DAC,∴∠4=∠DAC.(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE.。
《平行线》基础全练基础题知识点1认识平行1.(和平区期末)点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P能画一条直线与直线l平行2.在同一平面内的两条不重合的直线的位置关系(C)A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个公共点,则a与b重合.4.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:CD∥MN,GH∥PN.5.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2平行公理及其推论6.在同一平面内,下列说法中,错误的是(B)A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直7.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线互相平行8.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.9.如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.中档题10.下列说法错误的是(A)A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交11.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C) A.4组B.5组C.6组D.7组12.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作AB的平行线即可,其理由是平行于同一条直线的两条直线平行.13.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.14.观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC;(2)AB与B1C1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.15.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.解:有四种可能的位置关系,如下图:16.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解:(1)(2)如图所示.(3)l1与l2的夹角有两个:∠1,∠2.因为∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.17.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE 平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题18.利用直尺画图:(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)CD∥AB,PQ⊥AB.(2)四边形ABCD是符合条件的四边形.。
平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。
平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。
本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。
练习题一:判断下列直线是否平行。
1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。
2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。
3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。
练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。
若AE = 4,求FG的值。
答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。
设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。
根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
平行线练习题及答案一、选择题1. 在平面内,如果两条直线不相交,那么这两条直线被称为:A. 相交线B. 垂直线C. 平行线D. 异面直线答案:C2. 根据平行线的性质,下列哪项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 如果一条直线与两条平行线中的一条相交,则与另一条也相交D. 平行线可以确定一个平面答案:C3. 如果直线AB与直线CD平行,且点E在直线AB上,点F在直线CD 上,那么直线EF与AB的关系是:A. 平行B. 垂直C. 相交D. 无法确定答案:D二、填空题4. 如果直线l1与直线l2平行,且直线l1上的点P到直线l2的距离为d,那么直线l1上任意一点到直线l2的距离都是________。
答案:d5. 平行线的性质之一是,如果一条直线与两条平行线中的一条相交,则与另一条________。
答案:不相交三、判断题6. 平行线在任何情况下都不会相交。
()答案:正确7. 如果两条直线相交,它们就不可能平行。
()答案:正确8. 平行线之间的夹角总是90度。
()答案:错误四、简答题9. 解释什么是平行线,并给出平行线的基本性质。
答案:平行线是两条直线在同一个平面内,且不论延伸多远都不相交的直线。
基本性质包括:平行线之间的距离处处相等,平行线永远不会相交,如果一条直线与两条平行线中的一条平行,则与另一条也平行。
10. 描述如何使用直尺和三角板来检验两条直线是否平行。
答案:首先,使用直尺画出两条直线。
然后,用三角板的一边与直线之一对齐,确保没有间隙。
接着,将三角板沿着直线滑动,检查三角板的另一边是否始终与另一条直线平行。
如果始终平行,则两条直线平行。
五、计算题11. 在平面直角坐标系中,已知直线l1的方程为y=2x+3,直线l2的方程为y=2x+5。
请判断这两条直线是否平行,并给出理由。
答案:这两条直线是平行的。
因为它们的斜率相同,都是2,而截距不同,分别是3和5。
根据平行线的性质,当两条直线的斜率相同时,它们是平行的。
5.2 平行线达标训练一、基础·巩固·达标1.如图5-2-15,若∠1=∠2,则______∥______,理由是____________;若∠2=∠3,则______∥______,理由是_______________;且l1、l2、l3满足位置关系__________,理由是_________.图5-2-15 图5-2-16 图5-2-17 2.如图5-2-16,填上一个合适条件_________,可得BC//DE.3.如图5-2-17,直线a、b被皮直线c所截,现给了四个条件:(1)∠1=∠5,(2)∠1=∠7(3)∠2+∠3=180°(4)∠6=∠8,其中能判定a∥b的条件序号是()A.(1)(2)B.(3)C.(4)D.(3)(4)4.如图5-2-18,已知直线AB、CD被直线EF所截,且∠AGE=46°,∠EHD=134°,那么AB∥CD 吗?试说明理由.图5-2-185.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行6.如图5-2-19,已知∠1=∠2,BD平分∠ABC,可得到哪两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一作如何改变?图5-2-19二、综合·应用·创新7.已知(如图5-2-20),∠B=∠C,∠DAC=∠B+∠C,AE平分∠DAC,求证:AE∥BC.图5-2-20 8.已知(如图5-2-21)直线a∥c,∠1+∠2=180°,求证:b∥c.图5-2-21 9.看图填空.①如图5-2-22,同位角有______对,内错角有______对,同旁内角有______对.图5-2-22 图5-2-23 图5-2-24 图5-2-25②如图5-2-23,同位角有______对,内错角有______对,同旁内角有______对.③如图5-2-24,同位角有______对,内错角有______对,同旁内角有______对.④如图5-2-25,同位角有______对,内错角有______对,同旁内角有______对.10.王老师在广场上练习驾驶汽车,他第一次向左拐65°后,第二次要怎样拐才能使行驶路线与原来平行?11.如图5-2-26,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB.要使DF∥BC,只需再有下列条件中的什么即可()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD图5-2-26 图5-2-2712.如图5-2-27,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为__________.参考答案一、基础·巩固·达标1.如图5-2-15,若∠1=∠2,则______∥______,理由是____________;图5-2-15若∠2=∠3,则______∥______,理由是_______________;且l1、l2、l3满足位置关系__________,理由是_________.解析:图中∠1与∠2是内错角,∠2与∠3是同位角,根据平行线判定方法可以作出判断.答案:l1l2内错角相等,两直线平行l2l3同位角相等,两直线平行l1∥l2∥l3平行于同一直线的两直线互相平行2.如图5-2-16,填上一个合适条件_________,可得BC//DE.图5-2-16解析:这是一道开放题,即给出题目结论,要求寻找使结论成立的条件.本题要使BC∥DE,应从角去识别,具体有三种方法,作为填空题,只填一种即可.答案:∠ADE=∠ABC(或∠CDE=∠DCB或∠DEC+∠BCE=180°)3.如图5-2-17,直线a、b被皮直线c所截,现给了四个条件:(1)∠1=∠5,(2)∠1=∠7(3)∠2+∠3=180°(4)∠6=∠8,其中能判定a∥b的条件序号是()A.(1)(2)B.(3)C.(4)D.(3)(4)图5-2-17解析:根据平行线判定方法:因为∠1与∠5是同位角,故(1)成立;(2)中有∠7=∠5,所以∠7=∠1,可得∠1=∠5,故也成立.答案:A4.如图5-2-18,已知直线AB、CD被直线EF所截,且∠AGE=46°,∠EHD=134°,那么AB∥CD 吗?试说明理由.图5-2-18解析:结合图形,利用对顶角相等或邻补角知识把∠AG E与∠EHD转化为同旁内角或同位角.答案:解法一:因为∠BGH=∠AGE=46°(对顶角相等),∠EHD=134°,所以∠BGH+∠EHD=180°.所以AB∥CD(同旁内角互补,两直线平行).解法二:因为∠CHE=180°-∠EHD=46°(邻补角定义),而∠AGE=46°,所以∠CHE=∠AGE.所以AB∥CD(同位角相等,两直线平行).5.不能判定两直线平行的条件是()A.同位角相等B.内错角相等C.同旁内角相等D.都和第三条直线平行解析:判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理.在解答本题时要注意紧扣这四个判定方法.答案:C6.如图5-2-19,已知∠1=∠2,BD平分∠ABC,可得到哪两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一作如何改变?图5-2-19解析:因为BD平分∠ABC,所以∠1=∠DBC,又因为∠1=∠2,所以∠2=∠DBC,所以AD∥BC(内错角相等,两直线平行).若要AB∥DC,则需∠1=∠BDC,而∠1=∠2,故应有∠2=∠BDC,故将“BD平分∠ABC”改为“DB平分∠ADC”即可.答案:AD∥BC;将“BD平分∠ABC”改为“DB平分∠ADC”即可.二、综合·应用·创新7.已知(如图5-2-20),∠B=∠C,∠DAC=∠B+∠C,AE平分∠DAC,求证:AE∥BC.图5-2-20解析:要证AE∥BC,只要证∠1=∠B或∠2=∠C即可.答案:∵AE平分∠DAC(已知),∴∠1=∠2,∠DAC=2∠1(角平分线定义).又∵∠DAC=∠B+∠C,∠B=∠C(已知),∴∠1=∠B,∴AE∥BC(同位角相等,两直线平行).8.已知(如图5-2-21)直线a∥c,∠1+∠2=180°,求证:b∥c.图5-2-21解析:本题的解法比较多,根据本题的图形结构特征,我们选择利用平行公理的推论(平行线的传递性)比较简单.答案:∵∠1+∠3=180°(邻补角定义),∠1+∠2=180°(已知),∴∠2=∠3(同角的补角相等),∴a∥b(同位角相等,两直线平行).又∵a∥c(已知),∴b∥c(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).9.看图填空.①如图5-2-22,同位角有______对,内错角有______对,同旁内角有______对.图5-2-22 图5-2-23 图5-2-24 图5-2-25②如图5-2-23,同位角有______对,内错角有______对,同旁内角有______对.③如图5-2-24,同位角有______对,内错角有______对,同旁内角有______对.④如图5-2-25,同位角有______对,内错角有______对,同旁内角有______对.解析:可在每个图形中找“F、Z、U”图形,再确定它们的对数或根据定义找,但要注意图形中的线段、射线和直线.解:①4 2 2 ②4 2 9 ③4 6 6 ④0 2 510.王老师在广场上练习驾驶汽车,他第一次向左拐65°后,第二次要怎样拐才能使行驶路线与原来平行?解析:可先在其行驶路线图上(如图所示)作原行驶路线的平行线,根据平行线判定方法可得结论.要注意的是,要根据前后两次行驶方向的夹角来确定度数.答案:向右拐65°或向左拐115°11.如图5-2-26,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB.要使DF∥BC,只需再有下列条件中的什么即可()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD图5-2-26解析:要判定DF∥BC,根据本题图形结构特点,应选择运用平行线的判定公理或两个判定定理,因此应通过∠1和它的同位角相等、∠1和它的同旁内角互补或者∠2和它的内错角相等得出DF∥BC.由EF∥AB可知∠1=∠2,所以当∠1=∠DFE时∠2=∠DFE,可得DF∥BC.答案:B12.如图5-2-27,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为__________.图5-2-27解析:由AB∥CD可知∠CFE=∠B=68°,∠CFE是∠DFE的一个外角,∠CFE=∠D+∠E,可进一步求得∠D的度数.答案:48°。
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
平行线
一、选择题
1.下列命题中,不正确的是( )
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图1,可以得到DE∥BC的条件是( )
图1
A.∠ACB=∠BAC
B.∠ABC+∠BAE=180°
C.∠ACB+∠BAD=180°
D.∠ACB=∠BAD
3.如图2,直线a、b被直线c所截,现给出下列四个条件:
图2
(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,
其中能判定a∥b的条件是( )
A.(1)(3)
B.(2)(4)
C.(1)(3)(4)
D.(1)(2)(3)(4)
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向右拐40°,第二次向左拐40°
B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130°
5.如图3,如果∠1=∠2,那么下面结论正确的是( )
图3
A.AD∥BC
B.AB∥CD
C.∠3=∠4
D.∠A=∠C
二、填空题
6.如图4,∠1=∠2=∠3,则直线l1、l2、l3的关系是________.
图4
7.如图5,由下列条件可判定哪两条直线平行,并说明根据.
图5
(1)∠1=∠2,________________________.
(2)∠A=∠3,________________________.
(3)∠ABC+∠C=180°,________________________.
8.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.
9.同垂直于一条直线的两条直线________.
10.如图6,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:___________________________________________________.
图6
三、解答题
11.已知:如图7,∠1=∠2,且BD平分∠ABC.
图7
求证:AB∥CD.
12.已知:如图8,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
图8
13.已知:如图9,∠1=∠2,∠3=100°,∠B=80°.求证:EF ∥C D.
图9
14.已知:如图10,F A⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.
求证:AF∥C D.
图10
参考答案
一、1.C 2.B 3.D 4.A 5.B
二、6.l1∥l2∥l37.(1)AD∥BC内错角相等,两直线平行(2)AD ∥BC同位角相等,两直线平行(3)AB∥DC同旁内角互补,两直线平行8.平行9.平行10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD(同位角相等,两直线平行).
三、11.略 12.略 13.略 14.略。