初中数学 《相交线、平行线》基础测试
- 格式:doc
- 大小:92.07 KB
- 文档页数:8
相交线与平行线【A 卷】1. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.2. 设a 、b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是_________;若,a b b c ⊥⊥,则a与c 的位置关系是_________;若//a b ,b c ⊥,则a 与c 的位置关系是________. 3. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.4. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.5. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠PAG 的大小.6. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.7. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.8、如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠CP OFDB EACQ21A1BCDEFGH2 【B 卷】1、如图,∠1+∠2=∠BCD ,求证AB ∥DE 。
2、已知:∠B+∠D+∠F=360o.求证:AB ∥EF 。
3、如图把长方形纸片沿EF 折叠,使D ,C 分别落在D ',C '的位置,若65EFB =∠,则AED '∠等于( )A.50 B.55 C.60 D.654、如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( )A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A5、已知:如图,AB//CD ,则图中 、 、 三个角之间的数量关系为( ). A 、 + + =360 B 、 + + =180 C 、 + - =180 D 、 - - =906、如图,把三角形纸片沿DE 折叠,当点A 落在四边形BCED 内部时, 则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是( ).(A)∠A =∠1+∠2 (B)2∠A =∠1+∠2 (C)3∠A =2∠1+∠2 (D)3∠A=2(∠1十∠2) 7、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. (1)、求证BC EF // ; (2)、求21∠∠与的度数8、如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由。
相交线与平行线测试题班级 姓名 成绩一、选择题(共30分)1.如图,1∠与2∠构成对顶角的是( )(A ) (B ) (C ) (D )2.如图,90ACB ∠=°,CD AB ⊥,垂足为D ,则点C 到AB 的距离可用 线段( )的长度来表示。
(A )CA ; (B )CD ; (C )CB ; (D )AD .3.如图,直线AB 、CD 被直线EF 所截,150∠=°,下列说法错误的是( ) (A )如果550∠=°,那么AB ∥CD ; (B )如果4130∠=°,那么AB ∥CD ; (C )如果3130∠=°,那么AB ∥CD ; (D )如果250∠=°,那么AB ∥CD . 4.如图,下列条件中,不能推断AB ∥CD 的是( )(A )5B ∠=∠; (B )12∠=∠; (C )34∠=∠; (D )180B BCD ∠+∠=°. 5. 下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
6.在一个平面内,任意四条直线相交,交点的个数最多有( ) A. 7个 B. 6个 C. 5个 D. 4个2121212154321EDCBADCBA54321FEDCB A 第2题图 第3题图 第4题图7. 如图,AB ∥EF ∥CD,EG ∥CB ,则图中与∠1相等的角共有( ) A 、3个 B 、4个 C 、5个 D 、6个8. 下列说法中正确的是()(A )有且只有一条直线垂直于已知直线(B) 从直线外一点到这条直线的垂线段,叫做这点到这条直线距离 (C) 互相垂直的两条线段一定相交(D) 直线c 外一点A 与直线c 上各点连接而成的所有线段中最短线段的长是3cm ,则点A 到直线c 的距离是3cm 。
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个3.如图所示,同位角共有()A.6对 B.8对 C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=.7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+ =180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF 的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3=.∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC=.(2)如图②,若∠A=100°,∠C=120°,则∠AEC=.(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?参考答案及解析一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个【分析】由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都与∠EOF互余,可知∠1=∠AOF,因而可以转化为求∠1和∠AOF的余角共有多少个.【解答】解:∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,即∠AOF+∠EOF=∠EOF+∠1,∴∠1=∠AOF,∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.∴与∠1互为余角的有∠COA、∠EOF、∠BOD三个.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
人教版数学7年级下册第5章专题01 相交线与平行线一、选择题(共24小题)1.下面各图中∠1和∠2是对顶角的是( )A.B.C.D.2.如图,下列图形中的∠1和∠2不是同位角的是( )A.B.C.D.3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30',则下列结论中不正确的是( )A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30'4.如图,点O在直线BD上,已知∠1=20°,OC⊥OA,则∠DOC的度数为( )A.20°B.70°C.110°D.90°5.下列说法错误的是( )A.两条直线相交,只有一个交点B.在连接直线外一点与直线上各点的线段中,垂线段最短C.同一平面内,过一点有且只有一条直线垂直于已知直线D.直线外一点到直线的距离就是这点到直线的垂线段6.如图,在三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则下列说法不正确的是( )A.线段AC的长是点A到BC的距离B.线段AD的长是点C到AB的距离C.线段BC的长是点B到AC的距离D.线段BD的长是点B到CD的距离7.如图,已知AC⊥BC于点C,CD⊥AB于点D,亮亮总结出了如下结论:①线段AC的长,表示点A到直线BC的距离;②线段CD的长,表示点C到直线AB的距离;③线段AD的长,表示点A到直线CD的距离;④∠ACD是∠BCD的余角.亮亮总结的结论正确的有( )个.A.1B.2C.3D.48.如图,AC⊥BC,CD⊥AB,则点A到CD的距离是线段( )的长度.A.CD B.AD C.BD D.BC9.如图,点P是直线l外一点,从点P向直线l引PA,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是( )A.PA B.PB C.PC D.PD10.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )使AC=53A.3.5B.4.1C.5D.5.511.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠3;②∠2=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判定a∥b的是( )A.①②④B.①③④C.②③④D.①②③12.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是( )A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行13.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.15°B.25°C.35°D.50°14.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2( )A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°15.若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE16.如图,下列说法中,正确的是( )A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD17.如图,下列能判定AB∥CD的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.418.如图,在下列条件中,能够证明AD∥CB的条件是( )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠319.如图为平面上五条直线l1,l2,l3,l4,l5相交的情形,根据图中标示的角度,下列叙述正确的是( )A.l1和l3平行,l2和l3平行B.l1和l3平行,l2和l3不平行C.l2和l3平行,l4和l5不平行D.l2和l3平行,l4和l5平行20.下列说法中正确的是( )A.过一点有且只有一条直线与已知直线平行B.两条直线有两种位置关系:平行或相交C.同一平面内,垂直于同一直线的两条直线平行D.三条线段两两相交,一定有三个交点21.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知∠1=∠3,∠2+∠3=180°,求证:AB与DE平行.证明:①:AB∥DE;②:∠2+∠4=180°,∠2+∠3=180°;③:∠3=∠4;④:∠1=∠4;⑤:∠1=∠3.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.15°B.18°C.25°D.30°23.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为( )A.40°B.35°C.30°D.25°24.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.58°B.42°C.32°D.30°二、填空题(共11小题)25.如图,CE∥AB,∠ACB=75°,∠ECD=45°,则∠A的度数为 .26.如图,已知DE∥BC,BE平分∠ABC,若∠1=70°,则∠AEB的度数为 .27.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为 度.28.如图,l1∥l2,则﹣γ+α+β= .29.如图,∠PQR=138°.SQ⊥QR于Q,QT⊥PQ于Q,则∠SQT等于 .30.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为 度.31.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD = .32.如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,则点A到直线BC的距离是 cm,点B到直线AC的距离是 cm,点C到直线AB的距离是 cm.33.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,AB=5,则点C到AB的距离为 .34.如图,要从马路对面给村庄P处拉网线,在如图所示的几种拉网线的方式中,最短的是PB,理由是 .35.如图,小华同学的家在点P处,他想尽快到公路边,所以选择沿线段PC去公路边,那么他的这一选择体现的数学基本事实是 .三、解答题(共16小题)36.如图,AB∥CD,点E在BC上.求证:∠B=∠D+∠CED.37.如图:已知直线AB、CD相交于点O,EO⊥CD.(1)若∠AOC=34°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:4,直接写出∠AOE= .38.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFD=30°.则∠EPF= ;(2)【问题归纳】如图1,若AB∥CD,请猜想∠BEP,∠PFD,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?直接写出结论.39.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.40.如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.41.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.42.如图,直线AB与CD相交于点O,OE是∠BOC的平分线,如果∠BOC:∠DOF:∠AOC =1:2:4.求∠BOE和∠DOF的度数.43.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.44.如图,直线AB,CD,EF相交于点O,OG平分∠BOC,∠DOF=90°.(1)写出∠AOE的余角和补角;(2)若∠BOF=30°,求∠AOE和∠COG的度数.45.已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .46.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°( )又,∵∠1=∠B(已知)∴ (同位角相等,两直线平行)∴∠AFB=∠AOE( )∴∠AFB=90°( )又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=( )°又∵∠A+∠2=90°(已知)∴∠A=∠AFC( )∴AB∥CD.(内错角相等,两直线平行)47.如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.48.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2= ( ),又∵∠1=∠2(已知),∴∠1=∠3( ),∴AB∥DG( )∴∠BAC+ =180°( ),∵∠BAC=70°(已知),∴∠AGD=110°49.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.50.如图,已知∠A=∠F,∠MCB+∠B=180°,AC⊥BC,垂足是C.(1)AN和EF平行吗?为什么?请说明理由.(2)若∠BEF=70°,求∠MCN的度数.51.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,求证:AC∥DF.参考答案一、选择题(共24小题)1.B2.C3.D4.C5.D6.B7.D8.B9.C10.D11.B12.C13.C14.A15.B16.D17.C18.D19.D20.C21.B22.A23.B24.C二、填空题(共11小题)25.60°26.35°27.7028.180°29.42°30.3531.40°32.4;1.5;233.12534.垂线段最短35.垂线段最短三、解答题(共16小题)36.证明:∵AB∥CD,∴∠B+∠C=180°,在△ECD中,∠CED+∠D+∠C=180°,∴∠C=180°﹣∠CED﹣∠D,∴∠B+180°﹣∠CED﹣∠D=180°,∴∠B=∠CED+∠D.37.解:(1)∵EO⊥CD,∴∠EOC=90°,∵∠AOC=34°,∴∠BOE=180°﹣∠AOC﹣∠COE=56°,∴∠BOE的度数为56°;(2)∵∠BOD:∠BOC=1:4,∠BOD+∠BOC=180°,∴∠BOD=180°×1=36°,14∴∠AOC=∠BOD=36°,∵∠COE=90°,∴∠AOE=∠AOC+∠COE=126°,∴∠AOE的度数为126°,故答案为:126°°.38.解:(1)如图1,过点P作PM∥AB,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP=25°,∠2=∠PFD=30°,∴∠EPF=∠1+∠2=25°+30°=55°.故答案为:55°;(2)∠EPF=∠BEP+∠PFD,理由如下:如图1,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP,∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD;(3)∠PFC=∠PEA+∠EPF,理由如下:如图2,过P点作PN∥AB,∵AB∥CD,∴AB∥PN∥CD,∴∠PEA=∠NPE,∠FPN=∠PFC,∴∠PFC=∠FPN=∠NPE+∠EPF=∠PEA+∠EPF.39.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE于E,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,∴∠ADC=∠2=∠DAF﹣∠FAB,∵∠FAB=55°,∴∠ADC=35°,∵DA平分∠BDC,∠1=∠BDC,∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.40.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.41.(1)证明:∵AB ∥DF ,∴∠D +∠BHD =180°,∵∠D +∠B =180°,∴∠B =∠DHB ,∴DE ∥BC ;(2)解:∵DE ∥BC ,∠AMD =70°,∴∠AGB =∠AMD =70°,∴∠AGC =180°﹣∠AGB =180°﹣70°=110°.42.解:设∠BOC =x °,则∠DOF =2x °,∠AOC =4x °,由题意得:x +4x =180,解得:x =36,∴∠BOC =36°,∠DOF =72°,∠AOC =144°,∵OE 是∠BOC 的平分线,∴∠BOE =∠COE =12∠BOC =12×36°=18°.43.解:∵OB ⊥OD ,∴∠BOD =90°,又∵∠BOC =40°,∴∠COD =90°﹣40°=50°,∵OC 平分∠AOD ,∴∠AOD =2∠COD =100°,∴∠AOB =∠AOD ﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.44.解:(1)∠AOE的余角是∠AOC,∠BOD;补角是∠AOF,∠EOB;(2)∠AOE=∠BOF=30°;∵∠DOF=90°,∴∠COF=90°,∵∠BOC=∠BOF+∠COF,∴∠BOC=90°+30°=120°,∵OG平分∠BOC,∠BOC=60°.∴∠COG=1245.解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∠MAB.∴∠GAF=12∵CH平分∠NCB,∠BCN.∴∠BCF=12∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,(∠BCN﹣∠MAB).∴∠AGH=12由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=1×92°=46°.2故答案为:46°.46.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.47.(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BFA=∠DEA=90°,∵AF=3,AB=4,∴BF===48.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.49.(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠D与∠1互余,∴∠D+∠1=90°,∴∠D=∠DOB,∴ED∥AB;(2)解:如图,∵ED∥AB,∠OFD=65°,∴∠AOF=∠OFD=65°,∵OF平分∠AOD,∴∠AOD=2∠AOF=130°,∵∠COD=90°,∠AOD=∠1+∠COD,∴∠1=40°.50.解:(1)AN∥EF,理由如下:∵∠MCB+∠B=180°,∴FM∥AB,∴∠A=∠MCA,∵∠A=∠F,∴∠MCA=∠F,∴AN∥EF;(2)∵∠BEF=70°,AN∥EF,∴∠A=∠BEF=70°,∵FM∥AB,∴∠FCN=∠A=70°,∴∠MCN=180°﹣∠FCN=110°.51.证明:如图,∵∠1=∠2(已知),且∠1=∠3(对顶角相等),∴∠2=∠3,∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF(内错角相等,两直线平行).。
2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(
)
A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。
相交线与平行线基础测试题含答案解析一、选择题1.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角2.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.3.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.4.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.8.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.9.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 的最小值为342=2348a ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC 23∵23a =14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =23a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.13.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.14.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.15.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..16.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.。
第五章相交线与平行线(基础卷)考试时间:120分钟满分:120分一、单选题(每小题3分,共18分)1.(2022·北京·统考中考真题)如图,利用工具测量角,则的大小为()A.30°B.60°C.120°D.150°【答案】A【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,.故选A.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.2.根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.【答案】D【分析】根据直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M进行判断,即可得出结论.【详解】解:A.由于直线l2不经过点M,故本选项不合题意;B.由于点M在直线l1上,故本选项不合题意;C.由于点M在直线l1上,故本选项不合题意;D.直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M,故本选项符合题意;故选:D.【点睛】本题主要考查了相交线以及点与直线的位置关系,两条直线交于一点,我们称这两条直线为相交线.3.2022年北京冬奥会男子500米短道速滑冠军高亭玉在一次速滑训练中,经过两次拐弯后的速滑方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐52°,第二次向右拐52°B.第一次向左拐48°,第二次向左拐48°C.第一次向左拐73°,第二次向右拐107°D.第一次向左拐32°,第二次向左拐148°【答案】D【分析】两次转弯后行进的方向与原来相反,说明两次转弯的方向相同,而且一共转过了180°,由此求解即可.【详解】∵经过两次拐弯后的速滑方向与原来的方向相反,∴两次转弯的方向相同,而且一共转过了180°,∴A、两次转弯方向相反,故不符合题意;B、,故不符合题意;C、两次转弯方向相反,故不符合题意;D、两次转弯的方向相同,,一共转过了180°,符合题意.故选:D.【点睛】此题考查了平行线的性质和判定,解题的关键是熟练掌握平行线的性质和判定方法.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.4.如图,若图形A经过平移与下方图形阴影部分拼成一个长方形,则平移方式可以是()A.向右平移4个格,再向下平移4个格B.向右平移6个格,再向下平移5个格C.向右平移4个格,再向下平移3个格D.向右平移5个格,再向下平移4个格【答案】A【分析】根据平移的性质、结合图形解答即可.【详解】解:图形A向右平移个格,再向下平移个格可以与下方图形阴影部分拼成一个长方形,故选:.【点睛】本题考查的是平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.5.如图,直线,相交于点,.平分,.则的度数为()A.B.C.D.【答案】A【分析】根据先求出∠BOE的度数,再结合对顶角的性质得到∠BOD的度数,继而求得∠DOE的度数,结合角平分线的定义及角的和差即可求得答案.【详解】解:∵∴∠BOE=90°,∵∠BOD=∠AOC=46°,∴∠DOE=∠BOE-∠BOD=90°-46°=44°,∵平分,∴∠EOF=∠DOE=22°,∴∠FOB=∠BOE-∠EOF=90°-22°=68°,故选:A.【点睛】本题考查了与角平分线有关的角的计算,对顶角性质,垂直的定义,结合图形,掌握角的和差运算是解题的关键.6.下列是命题的是()A.作两条相交直线B.∠和∠相等吗?C.全等三角形对应边相等D.若a2=4,求a的值【答案】C【分析】根据命题的定义对各选项进行判断.【详解】解:A.“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B.“∠和∠相等吗?”为疑问句,它不是命题,所以B选项错误;C.全等三角形对应边相等,它是命题,所以C选项正确;D.“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题(每小题3分,共18分)7.(2022春·江苏·七年级期末)如图,∠1=133°25′,AO⊥OB于点O,点C、O、D在一条直线上,则∠2的度数等于______.【答案】43°25′【分析】根据平角定义先求出∠AOD的度数,再根据垂直定义求出∠AOB=90°,从而求出∠2的度数.【详解】解:∵∠1=133°25′,∴∠AOD=180°-∠1=46°35′,∵AO⊥OB,∴∠AOB=90°,∴∠2=∠AOB-∠AOD=43°25′,故答案为:43°25′.【点睛】本题考查了垂线,度分秒的换算,根据题目的已知条件并结合图形分析是解题的关键.8.如图,O是直线上一点,,则___.【答案】##148度【分析】依据邻补角进行计算,即可得到∠1的度数.【详解】解:∵O是直线上一点,,∴,故答案为:.【点睛】本题主要考查了邻补角的概念,只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.邻补角互补,即和为.9.如图,直线、、相交于点,若,则______【答案】30【分析】根据平角的定义可以求出,再根据对顶角的性质求出即可.【详解】解:,.故答案为:.【点睛】本题考查了对顶角的性质,对顶角的性质:对顶角相等.邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.10.(2018·北京·统考中考真题)用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1【分析】根据不等式的性质3,举出例子即可.【详解】解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为,3,.【点睛】考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=________.【答案】135°##135度【分析】接利用平行线的性质结合邻补角的性质得出答案.【详解】解:如图,∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°-45°=135°.故答案为:135°.【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.12.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.三、解答题(每小题6分,共30分)13.如图,直线AB、CD被直线EF所截,GH是∠EGC的平分线,∠EGH=56°,∠EIB=68°,说明AB∥CD 的理由.解:因为GH是∠EGC的角平分线()所以∠EGH=∠HGC=56°()因为CD是条直线(已知)所以∠HGC+∠EGH+∠IGD=180°()所以∠IGD=68°因为∠EIB=68°(已知)所以__________=__________()所以AB∥CD()【答案】角平分线的意义,平角的意义,∠IGD,∠EIB,等量代换,同位角相等,两直线平行【分析】根据题意和图形,可以写出解答过程中空格中需要填写的内容,本题得以解决.【详解】解:因为GH是∠EGC的角平分线(已知)所以∠EGH=∠HGC=56°(角平分线的意义)因为CD是条直线所以∠HGC+∠EGH+∠IGD=180°(平角的意义)所以∠IGD=68°因为∠EIB=68°所以__∠IGD __=__∠EIB __(等量代换)所以AB∥CD(同位角相等,两直线平行)【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知,直线AB、CD相交于点O,过点O作,,若.求的度数.【答案】148°【分析】先根据垂直定义得到∠COE=∠AOF=90°,再根据周角是360°求解即可.【详解】解:∵,,∴∠COE=∠AOF=90°,∴∠EOF=360°-∠AOC-∠COE-∠AOF=360°-32°-90°-90°=148°.【点睛】本题考查垂直定义、周角,理解垂直定义,熟知周角等于360°是解答的关键.15.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,AB CD 吗?说明理由.现请你补充完下面的说理过程:答:AB CD理由如下:∵∠2=∠3(已知)且()∴∠1=∠2∴AB CD()【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB CD(同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.16.如图,在边长为个单位的正方形网格中,经过平移后得到,点的对应点为,根据下列条件,利用网格点和无刻度的直尺画图并解答,保留痕迹:(1)画出,线段扫过的图形的面积为______;(2)在的右侧确定格点,使的面积和的面积相等,请问这样的点有______个?【答案】(1)10(2)4【分析】(1)根据平移的性质得出,线段扫过的面积用矩形面积减去周围个直角三角形面积即可;(2)根据平行线之间的距离处处相等可得答案.【详解】(1)解:如图,即为所求,线段扫过的面积为,故答案为:;(2)解:如图,作,则点即为所求,共有个,故答案为:.【点睛】本题主要考查了作图——平移变换,平行四边形的面积,平行线的性质等知识,准确画出图形是解题的关键.17.(2022秋·河北保定·七年级统考期末)如图,平面内有两条直线l1,l2点A在直线l1上,按要求画图并填空:(1)过点A画l2的垂线段AB,垂足为点B;(2)过点A画直线AC⊥l1,交直线l2于点C;(3)过点A画直线AD∥l2;(4)若AB=12,AC=13,则点A到直线l2的距离等于 .【答案】(1)见解析;(2)见解析;(3)见解析;(4)12.【分析】(1)根据垂线段的定义画出即可;(2)根据垂线的定义画出即可;(3)根据平行线的定义画出即可;(4)根据点到直线间的距离求解即可得到答案.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)点到直线间的距离,即垂线段的长度,所以,点A到直线l2的距离等于12,故答案为:12.【点睛】本题考查作图-复杂作图,垂线,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四、解答题(每小题8分,共24分)18.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.19.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.【答案】(1)(2)【分析】(1)依据,即可得到∠DOB=∠AOC=70°,再根据角平分线的定义,即可得出∠DOE=∠DOB,即可得到;(2)依据OF⊥OE,可得∠EOF=90°,进而得到,再根据进行计算即可.【详解】(1)解:∵,∴∠AOC=,∴∠DOB=∠AOC=70°,又∵OE平分∠BOD,∴,∴,(2)∵,∴,∴,∴.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,垂直的定义,几何图形中角度的计算,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.20.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;【答案】(1)∠BOF=33°(2)∠AOC=72°【分析】(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出,进而表示出各角求出答案.【详解】(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°∴∠COE=142°,∵OF平分∠COE.∴∠EOF=∠COE=71°,又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴,∴设,则,故,,则,解得,故∠AOC=72°.【点睛】本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).五、解答题(每小题9分,共18分)21.已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,()__________.().(__________,____________)【答案】;对顶角相等;;等量代换;同位角相等,两直线平行.【分析】根据等量代换和同位角相等,两直线平行即可得出结果.【详解】分析:如图,欲证,只要证.证明:,(已知)又,(对顶角相等).(等量代换).(同位角相等,两直线平行)【点睛】本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.22.已知:如图,点D、E、F、G都在的边上,,且(1)求证:;(2)若EF平分,,求的度数.【答案】(1)见解析(2)70°【分析】(1)根据,得出∠1=∠CAE,又∠1+∠2=180°,得出∠2+∠CAE=180°,利用同旁内角互补即可推出;(2)根据,∠C=35°,得出∠BEF=∠C=35°,又因为EF平分∠AEB,得出∠AEB=70°,再根据两直线平行的性质即可得出.【详解】(1)解:证明:∵,∴∠1=∠CAE,∵∠1+∠2=180°,∴∠2+∠CAE=180°,∴;(2)解:∵,∠C=35°,∴∠BEF=∠C=35°,∵EF平分∠AEB,∴∠1=∠BEF=35°,∴∠AEB=70°,由(1)知,∴∠BDG=∠AEB=70°.【点睛】本题考查了两直线平行的判定及性质,角平分线的性质,解题的关键是掌握相应的判定定理及性质.六、解答题(本大题共12分)23.将一副三角板中的两块直角三角尺顶点C按照如图①方式叠放在一起(其中,,,)设.(1)若,说明;(2)将三角形CDE绕点C顺时针转动,若,求的度数.【答案】(1)见解析(2)或【分析】(1)根据内错角相等,两直线平行证明即可;(2)分两种情形:如图②中,当时,如图③中,当时,分别求解即可.【详解】(1)解:如图①中,∵∠,,∴∠ACE=∠A,∴;(2)解:如图②中,当时,则,;如图③中,当时,则,.综上所述,的值为15°或165°.【点睛】本题考查旋转的性质,平行线的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.。
基础测试
(一)判断题(每小题2分,共10分)
1.把一个角的一边反向延长,则可得到这个角的邻补角……………………………()【提示】根据叙述,画出相应的图形即可判断.
【答案】√.
2.对顶角相等,但不互补;邻补角互补,但不相等…………………………………()【提示】两直线互相垂直时,对顶角相等且互补,邻补角互补且相等.
【答案】×.
3.如果直线a⊥b,且b⊥c,那么a⊥c……………………………………………()【提示】画图,a⊥b,则∠1=90°,b⊥c,则∠2=90°.
∴∠1=∠2.
∴a∥c.
【答案】×.
【点评】由此题可知平面内垂直于同一直线的两直线互相平行,垂直关系没有传递性.4.平面内两条不平行的线段
..必相交…………………………………………………()【提示】仔细读题,想想线段的特征,线段有两个端点,有一定的长度,它们可以延长后相交,但本身可以既不平行,也不相交.
【答案】×.
【点评】平面内两条不平行的线段可以相交,也可以不相交,但平面内两条不平行的线段的延长线一定相交.
【答案】×.
(二)填空题(每小题3分,共27分)
6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.
【提示】注意补角和邻补角的区别,前者只要求满足数量关系,即两角和为180°,而后者既要求满足数量关系又要求满足位置关系,即互补相邻.
【答案】∠1;∠1和∠3;∠BOE或∠4.
7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.
【提示】根据“对顶角相等”和“角平分线的定义”来求.
【答案】38°.
8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.
【提示】由OA⊥OB,OC⊥OD,可得∠AOB=∠COD=90°,一周角为360°.【答案】36°.
9.如图,∠1的内错角是,它们是直线、被直线所截得的.
【答案】∠AEC和∠B,DF、DC(DF、BC)、AB.
10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.
【提示】先证∠DCF=∠1=100°,再用“角平分线家义”来求∠2.
【答案】50°.
11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.
【提示】先判定AC∥BD.再利用平行线的性质求∠4的度数.
【答案】80°.
12.如图,直线AB∥CD∥EF,则∠α+∠β-∠γ=.
【提示】∵AB∥CD,
∴∠ADC=∠α.
∵∠ACD+∠CDF+∠β=360°,
∴∠α+∠β +∠CDF=360°.
∴∠α+∠β =360°-∠CDF.
∵CD∥EF,
∴∠CDF+∠γ=180°.
∴∠α+∠β-∠γ =360°-∠CDF-∠γ =360°-(∠CDF+∠γ).
∴∠α+∠β-∠γ =180°.
【答案】180°.
【提示】“如果”开始的部分是题设,“那么”开始的部分是结论.
【答案】n是整数,2n是偶数,真.
【答案】如果几个角是直角,那么这几个角都相等.
(三)选择题(每题3分,共18分)
(A)相等的两个角是对顶角.
(B)有公共顶点的两个角是对顶角.
(C)一条直线只有一条垂线.
(D)过直线外一点有且只有一条直线垂直于已知直线.
【答案】D.
16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于…………()(A)150°(B)160°(C)170°(D)180°
【提示】延长BO到E.
∵OA⊥OB,
∴OA⊥OE.
又OC⊥O(D)
∴∠AOC+∠COE=∠AOC+∠AOD=90°.
由同角的余角相等知:∠COE=∠AOD.
∴∠BOC+∠AOD=∠BOC+∠COE=180°.
【答案】D.
17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④
【提示】可将涉及的一对角从整个图形中分离出来,单独观察.如
①②③④
这样可排除图中其它线的干扰,便于确定两角的相对位置.易知①、②、③正确.
【答案】A.
18.如图,图中的同位角共有……………………………………………………………()(A)6对(B)8对(C)10对(D)12对
【提示】可采用17题的方法.
两条直线被第三条直线所截,同位角有四对,图中有三组两条直线被第三条直线所截,均共有同位角4×3=12对.
【答案】D.
19.如图,下列推理正确的是…………………………………………………………()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD
(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC
【答案】C.
20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于……………………………()(A)60°(B)90°(C)120°(D)150°
【提示】由AB∥CD,可得∠3+∠2=180°.
∵∠1=∠3,
∴∠1+∠2=180°.
∵∠2=2∠1,
∴3∠1=180°.
∴∠1=60°.
∴∠2=2×60°=120°.
【答案】D.
(四)画图(本题6分)
21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则OA、OB、OC 的关系是.
【答案】18,18,18.OA=OB=OC.
(五)完成下列推理,并填写理由(每小题8分,共16分)
22.如图,∵∠ACE=∠D(已知),
∴∥().
∴∠ACE=∠FEC(已知),
∴∥().
∵∠AEC=∠BOC(已知),
∴∥().
∵∠BFD+∠FOC=180°(已知),
∴∥().
【答案】CE,DF,同位角相等,两直线平行;
EF,AD,内错角相等,两直线平行;
AE、BF,同位角相等,两直线平行;
EC,DF,同旁内角互补,两直线平行.
23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.
【证明】∵∠1=∠2(已知),
∴∥(),
∴∠DAB+∠=180°().
∵∠B=∠D(已知),
∴∠DAB+∠=180°(),
∴AB∥CD().
【答案】AD,BC,内错角相等两直线平行;
B,两直线平行,同旁内角互补;
D,等量代换,
同旁内角互补,两直线平行.
(六)计算或证明(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.
【提示】由a∥b,∠1=113°,可求∠2.由c∥d和求出的∠2的度数可求∠4.然而求出∠3.
【答案】∠2=113°.∠3=67°.
∵a∥b(已知).
∴∠2=∠1=113°(两直线平行,内错角相等).
∵c∥d(已知).
∴∠4=∠2=113°(两直线平行,同位角相等).
∵∠3+∠4=180°(邻补角定义),
∴∠3=67°(等式性质).
25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.
【提示】证明∠BAD=∠2.
【证明】∵AD∥EF(已知),
∴∠1=∠BAD(两直线平行,同位角相等).
∵∠1=∠2(已知),
∴∠BAD=∠2(等量代换).
∴AB∥DG(内错角相等,两直线平行).
26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.
求证:∠A+∠B+∠C=180°.
【提示】由DE∥AC,DF∥AB,先证:∠A=∠EDF,再证∠A+∠B+∠C=180°.【证明】∵DE∥AC(已知),
∴∠BED=∠A,∠BDE=∠C(两直线平行,同位角相等).
∵DF∥AB(已知),
∴∠BED=∠EDF(两直线平行,内错角相等),
∠FDC=∠B(两直线平行,同位角相等).
∴∠EDF=∠A(等量代换).
∵∠BDE+∠EDF+∠FDC=180°(平角定义),
∴∠C+∠A+∠B=180°(等量代换).
即∠A+∠B+∠C=180°.
27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).
【提示】B、C两点的直线AD的距离,是点到直线的距离.即相应的“垂线段”的长度.可用三角尺画出图形.
【答案】图形如图所示,
已知:BD=CD,且BE⊥AD,CF⊥AD,垂足分别为E、F.
求证:BE=CF.。