三倍频高压发生器
- 格式:docx
- 大小:67.83 KB
- 文档页数:2
电压互感器三倍频感应耐压试验详解目录一、前言 (2)1.1 试验目的 (2)1.2 试验意义 (3)1.3 试验设备简介 (4)二、试验原理 (6)2.1 电压互感器工作原理 (6)2.2 三倍频感应耐压试验原理 (7)2.3 试验设备工作原理 (8)三、试验设备 (10)3.1 试验变压器 (11)3.2 控制系统 (13)3.3 保护装置 (14)3.4 试验接线方法 (15)四、试验步骤 (16)4.1 试验前的准备工作 (17)4.2 试验过程 (18)4.3 试验结果分析 (19)4.4 试验注意事项 (20)五、试验结果评估 (21)5.1 试验结果的判断标准 (22)5.2 试验结果的记录与报告 (22)5.3 试验结果的应用 (23)六、安全注意事项 (24)6.1 人员安全 (25)6.2 设备安全 (26)6.3 试验过程中的安全措施 (27)七、试验过程中的问题及处理 (28)7.1 试验过程中的异常情况 (29)7.2 问题的分析与解决 (30)7.3 防范措施 (31)一、前言随着电力系统的不断发展,电压互感器(VT)作为其关键设备之一,在电力传输和分配过程中发挥着越来越重要的作用。
电压互感器是一种专门用于测量高电压的设备,它可以将高电压降低到可以安全测量的水平。
为了确保电压互感器的正常运行和延长其使用寿命,对其进行耐压试验是非常必要的。
在三倍频感应耐压试验中,我们将测试电压互感器在高频下的绝缘性能。
这种试验方法可以有效地模拟电压互感器在实际工作中可能遇到的高频过电压情况,从而检验其绝缘结构的可靠性和稳定性。
通过三倍频感应耐压试验,我们可以及时发现并处理潜在的安全隐患,确保电力系统的安全稳定运行。
1.1 试验目的电压互感器三倍频感应耐压试验是针对电力系统中电压互感器的一种重要检测方法,旨在评估其在实际运行中的绝缘性能和耐压能力。
通过该试验,可以发现电压互感器在设计和制造过程中可能存在的绝缘缺陷,以及在实际运行中可能出现的绝缘老化、疲劳等问题。
高压电网中的各种故障多是由于高压电气设备绝缘的损坏所导致,因此了解设备绝缘特性、掌握绝缘状况、不断提高电气设备绝缘水平是至关重要的。
高压绝缘耐压试验,是按照有关电力行业及相关技术标准或产品技术条件以及《规程》规定对电力运行设备(如:电缆、电机、发电机、变压器、互感器、高压开关、避雷器等)要求做一系列的电气或机械方面的某些特性试验。
高压电气设备在运行中必须保持良好的绝缘,为此从设备的制造开始,要进行一系列绝缘测试。
这些测试包括:在制造时对原材料的试验、制造过程的中间试验、产品的定性及出厂试验、在使用现场安装后的交接试验、使用中为维护运行而进行的绝缘预防性试验等。
其中电气设备的交接试验和预防性试验是两类最重要的试验。
高压试验设备,高压耐压试验设备主要包括:其中电力试验设备主要有:变压器容量测试仪、直流电阻快速测试仪、全自动变比组别测试仪、三倍频发生器、变压器空载负载特性测试仪、变压器有载开关测试仪、全自动绝缘油介电强度测试仪、全自动抗干扰异频介损测试仪、交流耐压调频谐振装置、交直流高压试验变压器(油浸式、充气式、干式试验变压器)、开关接触电阻测试仪(回路电阻测试仪)、真空开关真空度测试仪、高压开关机械动特性测试仪、六氟化硫气体检漏仪、六氟化硫气体微水测量仪、大电流发生器、氧化锌避雷器测试仪、氧化锌避雷器直流参数测试仪、直流高压发生器、0.1HZ超低频高压发生器、电缆故障测试仪。
输电线路故障距离测试仪、线缆高度测量仪、无线高压核相器、绝缘电阻测试仪、接地电阻测试仪、钳形接地电阻测试仪、大型地网接地电阻测试仪、互感器伏安特性综合测试仪、继电保护测试仪。
绝缘防护工具耐压试验装置、局部放点测试仪、全自动电容电桥测试仪、配电网电容电流测试仪等仪器设备。
绝缘预防性试验可分为两大类:一类是非破坏性试验或称绝缘特性试验,是在较低的电压下或用其他不会损坏绝缘的办法来测量的各种特性参数,主要包括测量绝缘电阻、泄漏电流、介质损耗角正切值等,从而判断绝缘内部有无缺陷。
变压器试验项目分为哪两类?包括哪些内容?答:变压器试验项目可分为绝缘试验和特性试验两类。
(1)绝缘试验有:绝缘电阻和吸收比试验、测量介质损耗因数、泄漏电流试验、变压器油试验及工频耐压和感应耐压试验,对220kV及以上变压器应做局部放电试验。
330kV及以上变压器应做全波及操作波冲击试验。
(2)特性试验有:变比、接线组别、直流电阻、空载、短路、温升及突然短路试验。
干式变压器容量630KVA 10KV及做耐压试验时噪音很大是什么原因导致的啊你指的噪音,我不知道是什么样子声音,做耐压试验时,由于电气距离的原因会有三种声音“噼啪噼啪”:是空气电离的声音“zi,zi”:是空气流注的声音= “啪”:又响又脆,伴随火花,是绝缘(或空气)被击穿的声音一般,空气放电分三阶段,第一阶段是电离,电场在大点,就会进入流注阶段,在大点空气就会被击穿。
如果只是像炒豆子的“劈劈啪啪”的声音,能坚持一分钟不击穿的话,原则上是符合国标要求的。
如果出现“zi zi”的声音,但是也坚持了一分钟不击穿,其实也是符合国标要求的,但是出现流注的变压器长期运行的风险较大。
耐压噪声大的主要原因是主空道(高压线圈与低压线圈)的空气距离不够。
E=U/D E电场,U电压,D电极间的距离,当D较小时,E较大,空气在标准气压,标准湿度下耐受场强大致为0.7KV/mm。
当电场大于这个值时,分子就会容易电离。
但是只要空气不被击穿,就不会导电。
顺便说一下,变压器主空道的绝缘不要只看空气,因为高低压线圈也有内外层绝缘,计算时,应以复合绝缘考虑。
干式变压器到现场后我们应该检测那些项目啊?首先应该用摇表进行高压触头与低压触头的是否良好进行检查,如果条件允许还要对它进行绝缘检测不过一般厂家拉来前都进行过检测了你可以像他们要那个检测合格证如果你是电力系统人员的话这些你要注意以为你帮别人安装完验收的时候估计他们会提出这个要求!具体的还有很多你根据现场而判定1、绝缘电阻测试(高对低、高对地、高低对地)≥2500MΩ2、绕组直流电阻(不平衡率≤2%)3、工频耐压测试(出厂值的80%/1分种)≥28KV4、温控装置模拟动作试验变压器检测方法与经验1、色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。
西安航空学院高频电子线路课程设计题目: 3倍频器电路设计专业班级:电信1431 学号: 46 学生姓名:**指导教师:教师职称:起止时间: 2012.12.29——2013.1.6 课程设计(论文)任务及评语目录第一章倍频器工作原理分析 01.1工作原理 01.2晶体管倍频原理电路、工作状态及其特点 (1)第二章丙类倍频器功效分析 (3)第三章三倍频器的主要质量指标 (6)3.1 变频增益 (6)3.2 失真和干扰 (6)3.3 选择性 (6)3.4噪声系数 (6)第四章电路设计与仿真 (7)第五章设计分析与总结 (9)参考文献 .................................................. 错误!未定义书签。
第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。
图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。
因为振荡器的频率越高,频率稳定度就越低。
一般主振频率不宜超过5MHz 。
因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。
在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。
一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。
超过这一频率,就宜在石英振荡器后面采用倍频器。
如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。
这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。
倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。
如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。
在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。
倍频器按其工作原理可分为三类。
感应耐压三倍频接线图
试验接线示意图
图1
分体式三倍频电源发生装置试验方法1. SFQ系列三倍频电源发生器分单体式和分体式两种,单体式将三倍频部分和控制部分整合在一起,如果要求三倍频额定容量较大则设计为分体式结构。
2.将试验所需的SFQ三倍频、SFQ控制箱(控制台)、互感器按示意图所示的方法连接好;仔细检查,确保输入、输出、仪表接地线准确无误后,方可通电进行操作。
此时三倍频的次级输出即为150Hz的三倍频电源。
3.接通电源,合上空开,将调压器的手轮旋至零位处,零位开关合上,此时电源指示灯及零位指示灯亮。
按下启动按钮,接触器吸合,同时工作指示灯亮,并发出声光报警。
4.顺时针缓慢均匀旋转调压器的手轮,并密切注视仪表,当升到所需电压值时、应停止旋转,按下计时按钮,耐压时间到即发出声光报警,及时反向旋转手轮,直到调压器回到零位上。
5.试验完毕后,按下停止按钮,接触器断电,工作指示灯灭,零位指示灯亮,此时调压器断电。
6.本装置设有过流保护,出厂时按额定输出电源80%整定,于小负载时,应根据负载重新整定,当升压或耐压过程中出现过流或击穿现象时,接触器断电,切断主回路,起到保护作用。
7.此套试验设备带有多抽头的电抗器,当三倍频发生器带JCCI类型高压串级式电压互感器负载时,其电流由感性为容性,功率因素很低,因此,可在。
辽宁工业大学高频电子线路课程设计题目:三倍频器电路设计院(系):电子与信息工程学院专业班级:学号:学生姓名:指导教师:(签字)起止时间课程设计(论文)任务及评语摘要倍频器使输出信号频率等于输入信号频率整数倍的电路。
输入频率为f1,则输出频率为f0=nf1,系数n为任意正整数,称倍频次数。
倍频器实质上就是一种输出信号等于输入信号频率整数倍的电路,常用的是二倍频和三倍频器。
在手持移动电话中倍频器的主要作用是为了提升载波信号的频率,使之工作于对应的信道;同时经倍频处理后,调频信号的频偏也可成倍提高,即提高了调频调制的灵敏度,这样可降低对调制信号的放大要求。
采作倍频器的另一个好处是:可以使载波主振荡器和高频放大器隔离,减小高频寄生耦合,有得于减少高频自激现象的产生,提高整机工作稳定性。
关键词:倍频器;频率;手持电话;稳定性目录第1章绪论 (1)1.1倍频器的优点 (1)1.2倍频器的要求 (1)1.3倍频器原理 (2)1.4倍频器主要质量指标 (3)第2章三倍频器电路设计 (4)2.1系统框图及分析 (4)2.2输入信号 (5)2.3倍频器的参数计算 (6)第3章电路仿真及性能分析 (7)3.1仿真结果 (7)3.2电路参数分析 (8)第4章课程设计总结 (9)参考文献 (10)附录І (11)附录II (12)第1章绪论1.1倍频器的优点倍频器有很多优点:(1)发射机主振器的频率可以降低,这对稳频是有利的。
振荡器的频率越高,频率稳定度就越低。
一般主振器频率不宜超过5MHz。
因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。
(2)在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易振碎。
一般来说,最薄的石英晶体的固有振荡频率限制在20MHz以下。
超过这一频率,就宜在石英振荡器后面采用倍频器。
(3)如果中间级既可工作于放大状态,也可工作于倍频状态,那么,就可以在不扩展主振器波段的情况下,扩展发射机的波段。
三倍频发生器的基本原理非线性元件在输入信号通过时,会产生非线性的电压-电流特性。
这种非线性特性会导致输入信号的频率倍增。
在三倍频发生器中,一般会使用晶体管、二极管、场效应管(FET)等非线性元件。
下面是三倍频发生器的基本原理及详细说明:1.输入信号:三倍频发生器的输入信号一般为正弦波,其频率为f。
输入信号的幅值和电阻分配根据具体的电路设计而确定。
2.第一级倍频电路:第一级倍频电路包括一个非线性元件,如二极管。
它的作用是将输入信号的频率提高到原始信号的两倍,即2f。
非线性元件的特性导致了输入信号的频率倍增。
3.信号放大:在第一级倍频电路后面,还需要一个信号放大电路。
这个电路用于放大第一级倍频后的信号,以确保信号强度足够大以供后续电路使用。
4.第二级倍频电路:第二级倍频电路也包括一个非线性元件,如晶体管或FET。
它的作用是将第一级倍频后的信号频率再次提高到原始信号的两倍,即4f。
5.信号放大:与第一级倍频电路类似,第二级倍频电路之后需要一个信号放大电路,以确保输出信号的强度足够。
6.第三级倍频电路:第三级倍频电路是与第一级和第二级串联的,其作用是将第二级倍频后的信号频率提高到原始信号的三倍,即3f。
7.输出信号:第三级倍频电路的输出信号即为三倍频发生器的输出信号。
它是一个频率为3f的正弦波,其幅值可以通过信号放大电路进行调节。
需要注意的是,三倍频发生器需要精确的电路设计,以确保非线性元件的特性能够实现频率倍增。
此外,在设计过程中需要考虑电路的稳定性、功耗以及输出信号的失真等因素。
总之,三倍频发生器是利用非线性元件对输入信号进行频率倍增的电路。
它是许多通信、测量和信号处理应用中的重要组成部分,例如无线电频率合成器、信号发生器等。
新建电厂系统调试运行措施及方案调试工作总体安排调试工作特点、重点及应对措施1.1施工特点(1)调试工期短,施工作业面广,涉及设备种类繁多,要求各专业技术人员齐全。
(2)调试是新机组建设的最后一道工序。
它是对主机及其配套系统的设计、制造、施工、生产准备等情况的整体检验。
也是保证机组安全、经济、稳定的实现经济效益的关键阶段。
1.2施工重点(1)电气设备单体试验及热控设备安装前的检验工作。
(2)分系统试运有五个关键节点:DCS装置复原、厂用电受电、化学制水、机组化学清洗、蒸汽吹管。
这些项目涉及面广,投入的设备、系统多,需要配合的单位多,其进度、质量、安全达到了优良标准,则整个机组调试工作的质量、安全有了基本的保证,在分系统试运中要特别重视这些节点的管理和控制,制订详细的方案和措施。
(3)整套启动试运配合。
1.3应对措施(1)成立试运组织机构,组织人员落实到位,分系统调试的计划、方案和措施已审批、交底。
(2)各专业人员配备齐全,且有多年的调试工作经验。
(3)分系统试运结束,各项指标达到设计要求,及时办理分系统试运验收签证,移交运行单位代保管。
1.4专业配合(1)调试计划的编排和实施完全依赖安装计划的落实。
试运计划是否得当,工期能否按期完成,只有在安装有保障的情况下才能通过合理的调试周期加以实现。
(2)分系统试运工作需要设计、制造、安装、调试及业主、监理单位的通力合作,由机务、电气、仪控、化学等各专业共同协作完成,需要大量的组织、协调工作,必须建立、健全完善的试运指挥体系。
施工仪表、仪器配置1.5热控仪表校验所需的仪表仪器清单1.6电气单体试验所需的仪表仪器清单质量控制重点(1)汽机真空严密性试验:<0.3KPa/min(2)汽轮发电机轴系振动:<50μm(3)电气及热控保护投入率:100%(4)程控、自动、仪表投入率:100%(5)十个一次成功:即厂用电受电、DCS受电、锅炉本体水压、锅炉酸洗、汽机扣盖、锅炉点火吹管、汽机冲转、除尘器及FGD装置投运、并网发电和满负荷试运十个一次成功。
FS系列三倍频高压发生器
1、简介
对于电力变压器、电压互感器等被试品,除了要对全绝缘变压器的主绝缘进行外施工频高压试验外,而且还要对变压器的纵绝缘以及半绝缘变压器的主绝缘进行感应高压试验。
根据国家试验标准,对电力变压器及电压互感器感应试验电压大致2~3倍最大工作相电压考虑。
众所周知,变压器在额定频率,额定电压下,铁芯接近饱和,若用工频电源在被试变压器绕组两端施加大于额定电压的试验电压,则空载励磁电流会急剧增加,达到不可允许的程度,从感应电势的关系式可以看出,为了施加大于额定电压的试验电压,而又不使铁芯饱和,可采用增加电源频率(f)的办法,必须用三倍频电源发生器。
2、技术参数
☆输入电压、频率:交流380V±5%,50Hz
☆输出电压精度:≤5%
☆输出电压:50~500V
☆输出频率:150Hz
☆输出容量:3、5、10、20、50(kV A)系列
☆空载运行时间:≤5min
☆负载运行时间:40~60s
3、使用方法
1、按试验接线图接好工作线,注意三倍频外壳必须可靠接地。
2、合上三相调压器电源,将三相调压器顺时针调至380V。
3、合上三倍频电源控制箱,控制箱电源指示灯亮(绿色),按下启动按钮,工作指示灯亮(红色),此时三倍频发生器已产生三倍频率及电压。
4、顺时针旋转单相调压器手柄,调压器升压到额定电压,如果升不到额定电压,将三相调压器电压调高直至达到被试品所需电压。
5、密切注意仪表指示以及被试品情况直至所需试验时间。
6、试验完毕后,逆时针旋转调压器手柄降压,然后按下停止按钮,并切断电源。