高考专题强化8三角函数与平面向量相结合问题-学生版
- 格式:pdf
- 大小:190.89 KB
- 文档页数:9
高考数学《三角函数与平面向量》专项训练一、单选题1.已知()1,2a =r ,()1,0b =r ,则2a b +=r r ( ) A .5 B .7 C .5 D .25 2.若3sin 122πα⎛⎫-= ⎪⎝⎭,则2sin 23πα⎛⎫-= ⎪⎝⎭( ) A .12 B .12-C .32D .3- 3.已知平面向量()()2,1,2,4a b ==r r ,则向量a r 与b r 的夹角的余弦值为( ) A .35 B .45 C .35- D .45- 4.若4sin 3cos 0αα-=,则2sin 22cos αα+=( )A .4825B .5625C .85D .43 5.将函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,则12x x -的最大值为( )A .πB .2πC .3πD .4π 6.已知042a ππβ<<<<,且5sin cos 5αα-=,4sin 45πβ⎛⎫+= ⎪⎝⎭则sin()αβ+=( ) A .31010- B .155- C .155 D .310 7.如图,已知ABC ∆中,D 为AB 的中点,13AE AC =uu u r uuu r ,若DE AB BC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .56-B .16-C .16D .568.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos cos a B b A =,则ABC ∆形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形 9.如图,在ABC V 中,1cos 4BAC ∠=,点D 在线段BC 上,且3BD DC =,15AD =,则ABC V 的面积的最大值为( )A .32B .4C 15D .2310.在ABC △中,角A B C ,,的对边分别为a b c ,,,已知25c =2sin cos sin sin a C B a A b B =-+5sin C ,点O 满足0OA OB OC ++=uu v uu u v uuu v ,3cos 8CAO ∠=,则ABC △的面积为( )A 55B .35C .52D 55二、填空题11.sin 613cos1063tan 30︒︒︒++的值为________.12.函数()21sin f x x =+的最小正周期是__________. 13.如图所示,正八边形12345678A A A A A A A A 的边长为2,若P 为该正八边形上的动点,则131A A A P⋅u u u u r u u u r 的取值范围________.14.将函数()3)13f x x π=+-的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则函数()g x 具有性质__________.(填入所有正确性质的序号) 33x π=-对称; ②图象关于y 轴对称;③最小正周期为π; ④图象关于点(,0)4π对称; ⑤在(0,)3π上单调递减 三、解答题15.若向量(3,0)(cos ,sin )(0)m x n x x ωωωω==->r r ,在函数()()f x m m n t =⋅++r r r 的图象中,对称中心到对称轴的最小距离为,4π且当[0,],()3x f x π∈时的最大值为1. (I )求函数()f x 的解析式;(II )求函数()f x 的单调递增区间.16.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin 32B m ⎛= ⎝u r ,cos ,cos 2B n B ⎛⎫= ⎪⎝⎭r ,且m n ⊥u r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,3b =,求ABC ∆的面积.17.如图所示,在ABC V 中,,A ∠,B ∠C ∠的对边分别为a ,b ,c ,已知2sin cos sin 0,b A B a B +=1a =,2c =.(1)求b 和sin C ;(2)如图,设D 为AC 边上一点,37BD CD =ABD △的面积.参考答案1.C【解析】【分析】求出向量2a b +r r 的坐标,然后利用向量模的坐标表示可求出2a b +r r 的值.【详解】()()()221,21,03,4a b +=+=r r Q,因此,25a b +==r r .故选:C.【点睛】本题考查向量模的坐标运算,考查计算能力,属于基础题.2.A【解析】【分析】 根据条件和二倍角公式,先计算出cos 26πα⎛⎫- ⎪⎝⎭的值,再将所要求的2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据诱导公式进行化简,得到答案.【详解】因为sin 122πα⎛⎫-= ⎪⎝⎭,所以2cos 21262πα⎛⎫⎛⎫-=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭12=- 2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos 26πα⎛⎫=-- ⎪⎝⎭ cos 26πα⎛⎫=-- ⎪⎝⎭ 12=.【点睛】本题考查三角函数中的给值求值,二倍角公式,诱导公式化简,属于中档题.3.B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r,得a b ==r r .设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.4.B【解析】【分析】由4sin 3cos 0αα-=,求得3tan 4α=,再由222tan 2sin 22cos tan 1αααα++=+,即可求出. 【详解】由4sin 3cos 0αα-=,求得sin 3tan cos 4ααα==, 而222222sin cos 2cos 2tan 2sin 22cos sin cos tan 1ααααααααα+++==++, 所以22322564sin 22cos 25314αα⨯++==⎛⎫+ ⎪⎝⎭. 故选:B .【点睛】本题主要考查已知正切值,齐次式求值问题的解法以及二倍角公式的应用,意在考查学生的数学运算能力,属于5.C【解析】【分析】首先利用函数图象的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.【详解】解:函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,得到226y sin x π⎛⎫=+ ⎪⎝⎭的图象,再向上平移1个单位,得到()2216g x sin x π⎛⎫=++ ⎪⎝⎭的图象, 由于若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,所以函数在1x x =和2x 时,函数()2216g x sin x π⎛⎫=++ ⎪⎝⎭都取得最大值. 所以()12262x k k Z πππ+=+∈,解得16x k ππ=+, 由于且1x ,[]22,2x ππ∈-,所以176x π=,同理2116x π=-,所以711366πππ+=. 故选:C .【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于中等题.6.D【解析】【分析】首先根据sin cos 5αα-=,求得sin 410πα⎛⎫-= ⎪⎝⎭,结合角的范围,利用平方关系,求得cos 410πα⎛⎫-= ⎪⎝⎭,利用题的条件,求得3cos 45πβ⎛⎫+= ⎪⎝⎭,之后将角进行配凑,使得()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用正弦的和角公式求得结果. 【详解】因为sin cos αα-=sin 4πα⎛⎫-= ⎪⎝⎭因为42a ππ<<,所以cos 410πα⎛⎫-= ⎪⎝⎭. 因为04πβ<<,4sin 45πβ⎛⎫+= ⎪⎝⎭,所以3cos 45πβ⎛⎫+= ⎪⎝⎭,所以()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 3455=+= 故选D.【点睛】 该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.7.C【解析】【分析】利用向量的线性运算将DE u u u r 用,AB AC u u u r u u u r表示,由此即可得到,λμ的值,从而可求λμ+的值.【详解】 因为1123DE DA AE BA AC =+=+u u u r u u u r u u u r u u u r u u u r ()111111236363BA BC BA BA BC AB BC =+-=+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以16λ=-,13μ=.故16λμ+=. 故选:C.【点睛】 本题考查向量的线性运算以及数乘运算在几何中的应用,难度一般.向量在几何中的应用可通过基底的表示形式进行分析.8.D【解析】【分析】 由cos cos a B b A=,利用正弦定理化简可得sin2A =sin2B ,由此可得结论. 【详解】∵cos cos a B b A=, ∴由正弦定理可得sin cos sin cos A B B A =, ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∴2A =2B 或2A +2B =π,∴A =B 或A +B =2π, ∴△ABC 的形状是等腰三角形或直角三角形故选:D .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.9.C【解析】【分析】设BAD θ∠=,则0BAC θ<<∠,根据三角形的面积公式求出AC ,AB ,然后由1sin 2ABC S AB AC BAC ∆=⋅∠()4213sin θϕ⎡⎤=+-⎣⎦,根据三角函数的性质求出面积的最大值. 【详解】解:设BAD θ∠=,则0BAC θ<<∠.3BD DC =Q ,AD =,34ABD ABC S S ∴=V V ,131242AB ADsin AB ACsin BAC θ∴⋅=⋅⋅∠, 83AC sin θ∴=,同理()8AB sin BAC θ=∠-,()1124ABC S AB ACsin BAC sin BAC sin θθθθθ⎫∴=⋅∠=∠-=-⎪⎪⎝⎭V()421(sin θϕ⎤=+-⎦其中tan ϕ=,0BAC θ<<∠Q ,∴当22πθϕ+=时,sin(2)1max θϕ+=,()ABC max S ∴=V故选:C .【点睛】本题考查了余弦定理和三角恒等变换,以及三角形的面积公式,考查了运算能力和转化能力,属于中档题.10.D【解析】【分析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-+,可得2222222a c b ac a b ac +-⨯=-+,即c =.又c =,所以4b =. 因为0OA OB OC ++=u u u v u u u v u u u v v ,所以点O 为ABC △的重心,所以3AB AC AO +=u u u v u u u v u u u v ,所以3AB AO AC =-u u u v u u u v u u u v, 两边平方得22|9|6cos AB AO AO AC CAO =-∠u u u v u u u v u u u v u u u v 2||AC +u u u v . 因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+u u u v u u u v u u u v u u u v u u u v , 于是29||AO -u u u v 940AO -=u u u v ,所以43AO =u u u v ,AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯u u u v u u u v =.因为ABC △的面积是AOC △面积的3倍.故ABC △【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题.11【解析】【分析】根据诱导公式,进行化简,从而得到答案.【详解】sin 613cos1063tan 30︒︒︒++()sin 253cos 17tan30︒︒︒=+-+()sin 73cos 17tan30︒︒︒=-+-+=cos17cos17tan 30︒︒︒-++=故答案为:3【点睛】 本题考查诱导公式化简,特殊角三角函数值,属于简单题.12.π【解析】【分析】利用二倍角公式化简函数的解析式,再利用余弦型函数的周期公式,即可求得函数的最小正周期.【详解】因为()21cos 2311sin 1cos 2222x f x x x -=+=+=-, 所以函数的最小正周期为22T ππ==. 故答案为:π.【点睛】本题主要考查二倍角公式的应用以及余弦型函数的周期公式的应用,属于基础题.13.⎡-+⎣【解析】【分析】由题意可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r 最小,当P 与4A 重合时,131A A A P⋅u u u u r u u u r 最大,求出即可. 【详解】由题意,正八边形12345678A A A A A A A A 的每一个内角均为135o ,且边长12182A A A A ==u u u u r u u u u r ,1317A A A A ==u u u u r u u u u r , 由正弦函数的单调性及值域可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r最小,且最小值为2cos112.5⎛⨯==-⎝⎭o当P与4A重合时,1318A A A P⋅==+u u u u r u u u r因此,131A A A P⋅u u u u r u u u r的取值范围是⎡-+⎣.故答案为:⎡-+⎣.【点睛】本题考查平面向量数量积的运算以及数形结合思想的应用,解题的关键就是找出临界位置进行分析,考查计算能力,属于中等题.14.②③④【解析】将函数()213f x xπ⎛⎫=+-⎪⎝⎭的图象向左平移3π个单位长度,得到2133y xππ⎡⎤⎛⎫=++-⎪⎢⎥⎝⎭⎣⎦()211x xπ=+-=-的图象向上平移1个单位长度,得到函数()g x x=的图象,对于函数()g x,由于当3xπ=-时,()g x=故()g x图象不关于直线3xπ=-对称,故排除①;由于该函数为偶函数,故它的图象关于y轴对称,故②正确;它的最小周期为22ππ=,故③正确;当4xπ=时,()0g x=,故函数的图象关于点,04π⎛⎫⎪⎝⎭对称,故正④确;在0,3π⎛⎫⎪⎝⎭上,()220,,3x g xπ⎛⎫∈ ⎪⎝⎭不是单调函数,故排除⑤,故答案为②③④.【方法点晴】本题主要考查三角函数的单调性、三角函数的周期性及奇偶性,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.15.3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分 【解析】解:(I )由题意得()()f x m m n t =⋅++r r r 2m m n =+⋅r r r23sin cos 33cos 222223)432x x x tx x t x t ωωωωωπω=⋅+=-++=-++L L L L 分 ∵对称中心到对称轴的最小距离为4π ()f x ∴的最小正周期为T π=2,12ππωω∴=∴=………………6分3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时 2,()333x x f x πππ∴-==即时取得最大值3t +)max (1,31,21()).832x f t t f x x π=∴+=∴=-∴=--n Q L L L L L L 分 (II )222,232k x k k Z πππππ-≤-≤+∈………………10分55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分16.(Ⅰ)23π;. 【解析】【分析】 (Ⅰ)由m n ⊥u r r 得出0m n ⋅=u r r ,利用平面向量数量积的坐标运算、二倍角公式以及同角商数关系可求得tan B =,结合B 的范围可得出角B 的值;(Ⅱ)利用余弦定理求出c 的值,然后利用三角形的面积公式即可求出ABC ∆的面积.【详解】(Ⅰ)m n ⊥u r r Q ,2sin cos sin 022B B m n B B B ∴⋅==+=u r r .化简得:tan B =,又0B Q π<<,23B π∴=;(Ⅱ)由余弦定理2222cos b a c ac B =+-得,2221122c c ⎛⎫=+-- ⎪⎝⎭,整理得220c c +-=,解之得:1c =,11sin 1122ABC S ac B ∆∴==⨯⨯=. 【点睛】 本题考查利用余弦定理解三角形、三角形面积的计算,涉及平面向量垂直的坐标表示,考查计算能力,属于基础题.17.(1)b =7;【解析】【分析】(1)通过正弦定理边化角,整理化简得到cos B 的值,再利用余弦定理,求出b ,根据正弦定理,求出sin C ;(2)根据正弦定理得到sin 1CBD ∠=,即2CBD π∠=,根据勾股定理得到BD =,根据三角形面积公式,求出ABD △的面积.【详解】(1)因为2sin cos sin 0b A B a B +=,所以在ABC V 中,由正弦定理sin sin sin a b c A B C ==,得2sin sin cos sin sin 0B A B A B +=,因为sin sin 0A B ≠,所以2cos 10B +=, 所以1cos 2B =-, 又0B π<<,所以23B π=, 由余弦定理得,2222cos b a c ac B =+-1142122⎛⎫=+-⨯⨯⨯- ⎪⎝⎭7=,所以b =,在ABC V 中,由正弦定理sin sin c b C B =, 所以sin sin c BC b=22sin π=7=; (2)在ABD △中,由正弦定理得,sin sin BD C CD CBD =∠,因为BD CD =sin sin C CBD =∠因为sin 7C =,所以sin 1CBD ∠=, 而()0,CBD π∠∈ 所以2CBD π∠=,由BD CD =,BD=CD =,所以222)1)+=,所以12t =,所以2BD =, 因为ABD ABC DBC ∠=∠-∠232ππ=-6π=,所以1sin 2ABD S AB BD ABD =⨯⨯∠V 11222=⨯4=. 【点睛】 本题考查正弦定理边角互化,正弦定理、余弦定理解三角形,属于简单题.。
平面向量与三角恒等变换相结合问题分析平面向量与三角恒等变换都是人教版高中数学必修四中的内容,这些内容在整个高中数学知识体系中占有重要地位,也是一个高考考察的热点问题。
其中平面向量是重要的数学概念和工具,它的有关知识能有效地解决数学、物理等学科中的很多问题。
三角函数是重要的基本初等函数,它的定义和性质有着十分鲜明的特征和规律性。
它们都与与代数、几何有着密切的联系。
在此我仅对平面向量与三角函数结合性问题做简要分析。
准备知识:向量加、减、数乘运算及两向量间共线、垂直,数量积、夹角关系等知识点。
三角函数中同角三角函数关系,两角和与差的正弦、余弦、正切公式,二倍角与半角的正弦、余弦、正切公式。
平面向量与三角恒等变换相结合问题如下:一:结合平面向量运算律考察三角函数的化简求值。
利用向量的运算律得到一个与三角函数有关的式子然后利用三角函数公式进行三角恒等变换进行化简求值。
例1:已知向量a ),cos x x =,()=b ,若//a b ,求sin cos x x 值。
解:由//a b ,x x = (利用向量平行公式)∴tan 2x = (利用同角三角函数关系sin tan cos x x x=) sin cos x x sin cos 1x x =22sin cos sin cos x x x x =+2tan 1tan x x== (此处用到两个技巧:①利用同角三角函数关系将1转化为22sincos x x + ②分子分母同时除以2cos x 将正弦、余弦转化为正切问题)将tan 2x =带入得到:sin cos x x 25=。
二:结合平面向量数量积与三角函数性质求特殊角利用平面向量夹角公式等问题求解三角函数中某角的值或范围。
例2:已知向量()sin ,1x =a ,()2sin x x =b ,若2⊥a b ,且角x的终边不在坐标轴上,求夹角x 。
解:由2⊥a b ,∴2∙a b 0=, (两向量垂直,则它们的数量积为0)∴()()2sin ,12sin 0x x x ∙=∴()()2sin ,22sin 0x x x ∙= (利用数乘向量)∴24sin 0x x += 即 (s i n 2s i n 30x x += (注:此处以sin x 为自变量,当成一个整体,提取公因式)∴sin 0x =或sin 2x =- 由角x 终边不在坐标轴上∴sin 2x =- ∴423x k ππ=+或523x k π=+()k z ∈ (考察知识点:向量的数乘运算,向量数量积,向量垂直公式,三角函数特殊值,三角函数周期性等问题)三:利用平面向量,结合三角函数性质求新函数周期,最值,单调性例3:设函数()f x =∙a b ,其中向量()2c o s ,c o s x x =a ,()sin ,2cos x x =b ,x R ∈。
专题:三角函数与向量的交汇题型分析及解题策略【考试要求】1.理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A,ω,φ的物理意义.5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件.7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.【考点透视】向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(wx+j)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.。
2019高考数学文科生高效提分热点解读之三角函数与平面向量作者:佚名高考是人生的一种经历,一次考验,更是一次锻炼。
不是有人说,没有历经过高考的人生是不完整的人生。
在高考中,要取得理想的成绩,其数学成绩起到关键的作用。
距离高考还有不到40天了,这个时候是冲刺的黄金阶段。
如何抓好这个时间段的复习至关重要,针对大多数文科考生来说,毋容置疑,其薄弱环节就是数学。
那么作为文科生考前数学应怎样复习?考前提分的关键又何在?热点二三角函数与平面向量三角函数与平面向量在高考中的题量大致是三小一大,分值约为28分。
从近几年的高考来看,三角函数小题的命题热点有:一是利用诱导公式、同角三角函数的基本关系及特殊角的三角函数值的求值问题(容易题);二是利用两角和与差的三角函数公式求值或化简三角函数式后求周期、单调区间、对称轴或对称中心(中档题);三是三角函数的图像和性质的综合应用(属于中档偏难题)。
平面向量的命题热点是:一为向量的坐标运算(容易题);二为向量的几何运算(中档题);三为向量与函数、三角函数、不等式的综合题(属于中档偏难题)。
在复习中要多加注意三角函数公式与正余弦定理、三角形面积公式的联系及变形技巧,重视三角函数式中角与角的差异,考虑函数名称间的差异,通过分析化异为同,要能熟练作出三角函数的图像,同时关注数形结合的思想在解题中的作用。
以及通过建立直角坐标系将向量的几何运算代数化,而利用三角形法则和平行四边形法则将平面向量的代数运算用几何形式来体现。
考点1三角函数的图像与性质三角函数的图像与性质是高考考查的重点,三角函数的图像是解决三角问题的重要工具,正确利用“五点法”(三个平衡点,两个最值点)作出三角函数的简图是解题的关键,函数f(x)=Asin(ωx+φ)、f(x)=Acos(ωx+φ)及f(x)=Atan (ωx+φ)可通过“五点法”来决定A,ω,φ的值。
考点2三角恒等变换三角恒等变换的基本公式是诱导公式、同角三角函数的基本关系、两角和与差的三角函数公式、二倍角的三角函数公式,其中同角三角函数的基本关系和二倍角的三角函数公式的变形式的运用。
平面向量与三角恒等变换相结合问题分析平面向量与三角恒等变换都是人教版高中数学必修四中的内容,这些内容在整个高中数学知识体系中占有重要地位,也是一个高考考察的热点问题。
其中平面向量是重要的数学概念和工具,它的有关知识能有效地解决数学、物理等学科中的很多问题。
三角函数是重要的基本初等函数,它的定义和性质有着十分鲜明的特征和规律性。
它们都与与代数、几何有着密切的联系。
在此我仅对平面向量与三角函数结合性问题做简要分析。
准备知识:向量加、减、数乘运算及两向量间共线、垂直,数量积、夹角关系等知识点。
三角函数中同角三角函数关系,两角和与差的正弦、余弦、正切公式,二倍角与半角的正弦、余弦、正切公式。
平面向量与三角恒等变换相结合问题如下:一:结合平面向量运算律考察三角函数的化简求值。
利用向量的运算律得到一个与三角函数有关的式子然后利用三角函数公式进行三角恒等变换进行化简求值。
例1:已知向量a ),cos x x =,()=b ,若//a b ,求sin cos x x 值。
解:由//a b ,x x = (利用向量平行公式) ∴tan 2x = (利用同角三角函数关系sin tan cos x x x=) sin cos x x sin cos 1x x =22sin cos sin cos x x x x =+2tan 1tan x x== (此处用到两个技巧:①利用同角三角函数关系将1转化为22sincos x x + ②分子分母同时除以2cosx 将正弦、余弦转化为正切问题)将tan 2x =带入得到:sin cos x x 25=。
二:结合平面向量数量积与三角函数性质求特殊角利用平面向量夹角公式等问题求解三角函数中某角的值或范围。
例2:已知向量()sin ,1x =a ,()2sin x x =b ,若2⊥a b ,且角x 的终边不在坐标轴上,求夹角x 。
解:由2⊥a b ,∴2⋅a b 0=, (两向量垂直,则它们的数量积为0)∴()()2sin ,12sin 0x x x ⋅=∴()()2sin ,22sin 0x x x ⋅= (利用数乘向量)∴24sin 0x x += 即 (sin 2sin 0x x += (注:此处以sin x 为自变量,当成一个整体,提取公因式)∴sin 0x =或sin 2x =- 由角x 终边不在坐标轴上∴sin 2x =- ∴423x k ππ=+或523x k π=+()k z ∈ (考察知识点:向量的数乘运算,向量数量积,向量垂直公式,三角函数特殊值,三角函数周期性等问题)三:利用平面向量,结合三角函数性质求新函数周期,最值,单调性 例3:设函数()f x =⋅a b ,其中向量()2c o s ,c o s x x =a ,()sin ,2cos x x =b ,x R ∈。
向量和三角函数的结合训练一.解答题(共40小题)1.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.2.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.4.在△ABC中,角A,B,C的对边分别为a,b,c,C=,b=5,△ABC的面积为10.(1)求a,c的值;(2)求sin(A+)的值.5.在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.6.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a2+b2的值.7.在锐角△ABC中,cosA=,sinB=.(1)求角C;(2)设AB=,求△ABC的面积.8.已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.9.在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)求sinA的值.10.在△ABC中,a,b,c分别是角A、B、C的对边,且a2+b2=c2+ab.(1)求C;(2)若=,求A.11.已知a,b,c分别为△ABC的三个内角A,B,C的对边,,且.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为,求b,c.12.△ABC的面积是4,角A,B,C的对边分别是a,b,c,(1)求的值;(2)分别求c,a的值.13.在△ABC中,内角A,B,C的对边分别是a,b,c.(1)A=60°,a=4,b=4,求B;(2)已知a=3,c=2,B=150°,求边b的长.14.在△ABC中,已知A=30°,B=120°,b=5,解三角形.15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,.(1)求b的值;(2)求sinA的值.16.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(I)求角B的大小;(II)若b是a和c的等比中项,求△ABC的面积.17.在△ABC中,已知A=45°,.(Ⅰ)求sinC的值;(Ⅱ)若BC=10,求△ABC的面积.18.已知△ABC中,AB=6,∠A=30°,∠B=120°,解此三角形.19.在△ABC中,角A,B,C所对的边分别为a,b,c,满足,且△ABC的面积为2.(Ⅰ)求bc的值;(Ⅱ)若b+c=6,求a的值.20.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若b=3,c=1,A=60°,求a;(2)若a=30,b=10,A=60°,求B,C,c.21.已知函数.(I)求f(x)的最小正周期及单调递减区间;(II)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=2,b=1,△ABC 的面积为,求a的值.22.在△ABC中,A=30°,C=105°,a=10,求b,c.23.在△ABC中,已知,b=2,C为锐角,△ABC的面积S=,求第三边c.24.已知△ABC的面积为,且,向量和向量是共线向量.(1)求角C;(2)求△ABC的边长c.25.在△ABC中内角A,B,C的对边分别为a,b,c,已知(1)求sinC的值(2)求b边的长.26.已知△ABC的面积其中a,b,c分别为角A,B,C所对的边(1)求角A的大小.(2)若a=2,求的最大值.27.在△ABC中,角A,B,C的对边分别为a bc且.求:(Ⅰ)的值;(Ⅱ)b的值.28.已知:△ABC中角A、B、C所对的边分别为a、b、c且.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求c边的长.29.根据下列条件,解三角形.(Ⅰ)已知b=4,c=8,B=30°,求C,A,a;(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.30.已知△ABC中,A=45°,C=30°,c=10cm,解三角形.31.在△ABC中,已知a=,b=1,∠B=45°,解此三角形.32.在△ABC中,a、b、c分别是角A、B、C的对边,已知,sinB=cosAsinC,(I)求边AC的长度;(II)若BC=4,求角B的大小.33.在△ABC中,角A、B、C的对边分别为a、b、c,若sin22C+sin2C•sinC+cos2C=1,且a+b=5,c=.(1)求角C的大小;(2)求△ABC的面积.34.(1)在△ABC中,a=3,c=2,B=60°求b(2)在△ABC中,A=60°,B=45°,a=2 求c.35.已知△ABC的周长为4(),且sinB+sinC=sinA.求边长a的值.36.在△ABC中,a=1,,B=45°,求角A、C及边c.37.在锐角△ABC中,已知,,BC=3.求△ABC的面积.38.在△ABC中,∠C=90°,CD是斜边AB上的高,已知CD=12,AD=5,求BD,AB,AC,BC的长.39.在△ABC中,a=5,B=45°,C=105°,解三角形.40.在△ABC中,A,B,C所对的边分别为a,b,c已知,c=1,B=45°,求a,A,C.参考答案与试题解析一.解答题(共40小题)1.(2016•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.2.(2015•郑州三模)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b 的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.【点评】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.3.(2011•辽宁)△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.【分析】(Ⅰ)先由正弦定理把题设等式中边转化成角的正弦,化简整理求得sinB 和sinA的关系式,进而求得a和b的关系.(Ⅱ)把题设等式代入余弦定理中求得cosB的表达式,把(Ⅰ)中a和b的关系代入求得cosB的值,进而求得B.【解答】解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinA∴sinB=sinA,=(Ⅱ)由余弦定理和C2=b2+a2,得cosB=由(Ⅰ)知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB>0,故cosB=所以B=45°【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.4.(2015•苍梧县校级一模)在△ABC中,角A,B,C的对边分别为a,b,c,C=,b=5,△ABC的面积为10.(1)求a,c的值;(2)求sin(A+)的值.【分析】(Ⅰ)利用已知条件及三角形的面积公式求得a,进而利用余弦定理求得c.(Ⅱ)利用(Ⅰ)中求得的三边及余弦定理求得cosA的值,然后通过同角三角函数的基本关系求得sinA的值,最后利用正弦的两角和公式求得答案.【解答】解:(Ⅰ)由已知,,b=5,因为,即,解得a=8.由余弦定理可得:,所以c=7.(Ⅱ)由(Ⅰ)及余弦定理有,由于A是三角形的内角,易知,所以==.【点评】本题主要考查了解三角形及正弦定理和余弦定理的应用.考查了学生利用三角函数的基本性质处理边角问题的能力.5.(2014•漳州三模)在△ABC中,a,b,c分别是内角A,B,C所对的边,,若向量=(1,sinA),=(2,sinB),且∥.(Ⅰ)求b,c的值;(Ⅱ)求角A的大小及△ABC的面积.【分析】(Ⅰ)通过向量平行,求出A,B的关系式,利用正弦定理求出b的值,通过余弦定理求出c的值;(Ⅱ)直接利用正弦定理求出A的正弦函数值,然后求角A的大小,结合C的值确定A的值,利用三角形的面积公式直接求解△ABC的面积.【解答】解:(Ⅰ)∵=(1,sinA),=(2,sinB),,∴sinB﹣2sinA=0,由正弦定理可知b=2a=2,又∵c2=a2+b2﹣2abcosC,,所以c2=()2+(2)2﹣2cos=9,∴c=3;(Ⅱ)由,得,∴sinA=,A=或,又C=,∴A=,所以△ABC的面积S===.【点评】本题是中档题,考查正弦定理与余弦定理的应用,注意向量的平行条件的应用,考查计算能力.6.(2014•蚌埠一模)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a2+b2的值.【分析】(Ⅰ)根据,利用正弦定理得,从而可求C 的大小;(Ⅱ)由面积公式得=,从而可得ab=6,由余弦定理,可得结论.【解答】解:(Ⅰ)∵,∴由正弦定理得…(2分)∴sinC=…(4分)∵△ABC是锐角三角形,∴C=…(6分)(Ⅱ)∵c=,C=,△ABC的面积为,∴由面积公式得=…(8分)∴ab=6 …(9分)由余弦定理得a2+b2﹣2abcos=7 …(11分)∴a2+b2=13 …(12分)【点评】本题考查正弦、余弦定理,考查学生的计算能力,属于基础题.7.(2016•广东模拟)在锐角△ABC中,cosA=,sinB=.(1)求角C;(2)设AB=,求△ABC的面积.【分析】(1)根据同角的三角函数关系,利用内角和定理即可求出sinC以及角C 的值;(2)由正弦定理和三角形的面积公式,即可求出△ABC的面积.【解答】解:(1)锐角△ABC中,cosA=,∴sinA==;又sinB=,∴cosB==;∴sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB=×+×=;又C∈(0,),∴C=;(2)△ABC中,由正弦定理得=,又AB=,∴AC===;∴△ABC的面积为S△ABC=•AB•AC•sinA=×××=.【点评】本题考查了同角的三角函数关系以及正弦定理的应用问题,是基础题目.8.(2001•上海)已知a、b、c是△ABC中∠A、∠B、∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.【分析】由已知a=4,b=5,S=5及S=absinC可得sinC=,于是∠C=60°,或∠C=120°,然后利用余弦定理可求c【解答】解:∵S=absinC,∴sinC=,(4分)于是∠C=60°,或∠C=120°,(6分)又c2=a2+b2﹣2abcosC(8分)当∠C=60°时,c2=a2+b2﹣ab,c=(10分)当∠C=120°时,c2=a2+b2+ab,c=.(12分)【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.9.(2011春•万州区校级期中)在△ABC中,BC=,AC=3,sinC=2sinA.(1)求AB的值;(2)求sinA的值.【分析】(1)△ABC中,由正弦定理可得,再利用SinC=2SinA,求得AB值.(2)△ABC中,由余弦定理可求得cosA 的值,利用同角三角函数的基本关系,求得SinA.【解答】解:(1)△ABC中,由正弦定理可得,=2,∴AB=2×BC=2.(2)△ABC中,由余弦定理可得BC2=AB2+AC2﹣2AB•AC•cosA,5=20+9﹣12cosA,∴cosA=,∴SinA==.【点评】本题考查正弦定理、余弦定理的应用,同角三角函数的基本关系,利用这两个定理是解题的关键.10.(2013春•西区校级期中)在△ABC中,a,b,c分别是角A、B、C的对边,且a2+b2=c2+ab.(1)求C;(2)若=,求A.【分析】(1)利用题设等式整理代入余弦定理中求得cosC的值,进而求得C.(2)利用正弦定理把题设等式中变转化为角的正弦,利用二倍角和公式和两角和公式求得cosB的值,进而求得B,最后利用三角形内角和求得A.【解答】解:(1)∵a2+b2=c2+ab,∴=,∴cosC=,∴C=45°.(2)由正弦定理可得==,∴=∴sinBcosC=2sinAcosB﹣sinCcosB,∴sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,∴sinA=2sinAcosB.∵sinA≠0,∴cosB=,∴B=60°,A=180°﹣45°﹣60°=75°.【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的理解和应用.11.(2013秋•德州校级期中)已知a,b,c分别为△ABC的三个内角A,B,C 的对边,,且.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为,求b,c.【分析】(Ⅰ)通过向量的数量积直接得到A的正切值,即可求角A的大小;(II)通过△ABC的面积为,以及余弦定理推出b、c的关系,通过解方程即可求b,c【解答】解:(Ⅰ)因为,且,所以=cosA+sinA=0,所以tanA=,∵A∈(0,π),∴A=.=,且A=,(Ⅱ)∵S△ABC,故bc=4,…①又cosA=且a=2,∴,从而b2+c2=8…②,解①②得,b=c=2.【点评】本题考查向量的数量积以及三角形的面积公式,余弦定理的应用,考查计算能力.12.(2014秋•荔湾区校级期中)△ABC的面积是4,角A,B,C的对边分别是a,b,c,(1)求的值;(2)分别求c,a的值.【分析】(1)利用二倍角公式,化简代数式,代入计算即可求得结论;(2)利用面积公式求得c的值,再利用余弦定理,可求a的值.【解答】解:(1)==∵,∴=,∴=;(2)∵,∴∵△ABC的面积是4,b=2,∴,解得c=5由余弦定理可得a===.【点评】本题考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于基础题.13.(2016春•阿拉善左旗校级期末)在△ABC中,内角A,B,C的对边分别是a,b,c.(1)A=60°,a=4,b=4,求B;(2)已知a=3,c=2,B=150°,求边b的长.【分析】(1)由正弦定理可知=,求得sinB=,a>b,可知A>B,求得B=;(2)由余弦定理可知b2=a2+c2﹣2accosB,代入即可求得边b的长.【解答】解:(1)由正弦定理可知:=,∴=,解得:sinB=,由a>b,∴A>B,∴B=;(2)由余弦定理可知:b2=a2+c2﹣2accosB=27+4﹣2×3×2×(﹣)=49,∴b=7,边b的长7.【点评】本题考查解三角形的应用,考查正弦定理及余弦定理,考查计算能力,属于基础题.14.(2015秋•雷州市校级月考)在△ABC中,已知A=30°,B=120°,b=5,解三角形.【分析】由三角形的内角和可得C,可得等腰三角形,由正弦定理可得a和c.【解答】解:∵A=30°,B=120°,∴C=180°﹣(A+B)=30°.∴A=C,∴a=c.由正弦定理可得a===,综上可知,C=30°,a=c=【点评】本题考查解三角形,涉及正余弦定理的应用,属基础题.15.(2010•广州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,.(1)求b的值;(2)求sinA的值.【分析】(1)利用余弦定理,根据题设中的a=2,c=3,求得b.(2)根据三边长利用余弦定理求得cosA的值,进而利用三角函数基本关系求得sinA.【解答】解:(1)由余弦定理,b2=a2+c2﹣2accosB,得,∴b=3.(2)由余弦定理,得=,∵A是△ABC的内角,∴=.【点评】本题主要考查了解三角形的实际应用.解题的关键是利用正弦定理和余弦定理完成了边角问题的互化.16.(2011•绍兴一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(I)求角B的大小;(II)若b是a和c的等比中项,求△ABC的面积.【分析】(I)题设利用两角和公式整理等式求得sin(B+)的值,进而求得B.(II)根据等比中项性质可求得b2=ac,代入余弦定理中求得a与c的值,进而可推断出三角形为正三角形,进而求得三角形的面积.【解答】解:(I)由,得,由B∈(0,π)得,故,得.(II)由b是a和c的等比中项得b2=ac又由余弦定理得b2=a2+c2﹣2ac•cosB=a2+c2﹣2ac•cos=a2+c2﹣ac,故ac=a2+c2﹣ac,得(a﹣c)2=0,得a=c=1,∴b==1故△ABC为正三角形故.【点评】本题主要考查了余弦定理的应用,两角和公式的化简求值.考查了学生对基础知识点综合运用.17.(2011•佛山一模)在△ABC中,已知A=45°,.(Ⅰ)求sinC的值;(Ⅱ)若BC=10,求△ABC的面积.【分析】(Ⅰ)由cosB的值和B的范围,利用同角三角函数间的基本关系求出sinB 的值,然后根据三角形的内角和定理得到所求式子中C等于180°﹣A﹣B,而A=45°,得到C=135°﹣B,把所求的式子利用两角差的正弦函数公式及特殊角的三角函数值化简后,把sinB和cosB的值代入即可求出值;(Ⅱ)根据正弦定理,由BC,sinA和(Ⅰ)中求得的sinC,即可求出AB的长度,然后利用三角形的面积公式,由sinB,AB和BC的值即可求出三角形ABC的面积.【解答】解:(Ⅰ)∵,且B∈(0°,180°),∴.sinC=sin(180°﹣A﹣B)=sin(135°﹣B)=;(Ⅱ)由正弦定理得,即,解得AB=14.则△ABC的面积.【点评】此题考查学生灵活运用同角三角函数间的基本关系、正弦定理及三角形的面积公式化简求值,是一道基础题.18.(2014秋•阿勒泰市校级期中)已知△ABC中,AB=6,∠A=30°,∠B=120°,解此三角形.【分析】利用条件,结合余弦定理,即可得出结论.【解答】解:∵AB=6,∠A=30°,∠B=120°,∴∠C=30°,BC=6,AC==6.【点评】本题考查解三角形,考查学生的计算能力,比较基础.19.(2010•南海区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足,且△ABC的面积为2.(Ⅰ)求bc的值;(Ⅱ)若b+c=6,求a的值.【分析】(Ⅰ)根据同角三角函数的基本关系利用sin的值求得cos的值,进而利用二倍角公式求得sinA的值,最后利用三角形面积公式求得bc的值.(Ⅱ)利用二倍角公式和sin的值求得cosA的值,进而把bc和b+c的值代入余弦定理求得a的值.【解答】解:(Ⅰ)∵,0<A<π∴.∴.∵,∴bc=5.(Ⅱ)∵,∴.∵bc=5,b+c=6,∴a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA)=20∴.【点评】本题主要考查了解三角形问题,余弦定理的应用,二倍角公式的化简求值.考查了学生综合运用所学知识和基本的运算能力.20.在△ABC中,角A,B,C的对边分别为a,b,c.(1)若b=3,c=1,A=60°,求a;(2)若a=30,b=10,A=60°,求B,C,c.【分析】(1)使用余弦定理解出;(2)使用正弦定理解出.【解答】解:(1)由余弦定理得a2=b2+c2﹣2bccosA=9+1﹣2×=7,∴a=.(2)由正弦定理得,即,解得sinB=,∴B=150°(舍)或B=30°.∴C=180°﹣A﹣B=90°.∴c==20.【点评】本题考查了正余弦定理在解三角形中的应用,属于基础题.21.(2011•安徽模拟)已知函数.(I)求f(x)的最小正周期及单调递减区间;(II)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=2,b=1,△ABC 的面积为,求a的值.【分析】(I)利用两角和正弦公式化简f(x)=sin(2x+)+3,最小正周期T==π,令2kπ+≤2x+≤2kπ+,k∈z,解出x的范围,即得单调递减区间.(II)由f(A)=2 求出sin(2A+)=,由<2A+<,求得A 值,余弦定理求得a 值.【解答】解:(I)函数==sin (2x+)+.故最小正周期T==π,令2kπ+≤2x+≤2kπ+,k∈z,解得kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈z.(II)由f(A)=2,可得sin(2A+)+=2,∴sin(2A+)=,又0<A<π,∴<2A+<,∴2A+=,A=.∵b=1,△ABC的面积为=,∴c=2.又a2=b2+c2﹣2bc•cosA=3,∴a=.【点评】本题考查两角和正弦公式,正弦函数的单调性,奇偶性,根据三角函数的值求角,求出角A的值是解题的难点.22.(2014秋•清河区校级月考)在△ABC中,A=30°,C=105°,a=10,求b,c.【分析】由A与C的度数求出B的度数,再由正弦定理即可求出b,c的值.【解答】解:∵A=30°,C=105°,∴B=45°,∵,∴b==10,c==5+5.【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.23.(2014秋•思明区校级期中)在△ABC中,已知,b=2,C为锐角,△ABC的面积S=,求第三边c.【分析】根据三角形的面积公式,可求,结合C为锐角可求C,再由由余弦定理c2=a2+b2﹣2abcosC可求【解答】解:根据三角形的面积公式可得,∴∴∵C为锐角∴C=30°由余弦定理可得,c2=a2+b2﹣2abcosC=∴c=2【点评】本题主要考查了三角形的面积公式及正弦定理、余弦定理等公式在解题中的应用,属于基础试题.24.(2012•荆州模拟)已知△ABC的面积为,且,向量和向量是共线向量.(1)求角C;(2)求△ABC的边长c.【分析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C;(2)由得:,进而利用△ABC的面积为,及余弦定理可求△ABC的边长c.【解答】解:(1)∵,∴(tanA+tanB)cosAcosB=sin2C,即sinAcosB+cosAsinB=sin2C,∴sin(A+B)=sin2C,∴sinC=2sinCcosC∵sinC≠0,∴,∵C∈(0,π)∴…(6分)(2)由得:,∴,∴,∴c2=a2+b2﹣2abcosC=54,∴…(12分)【点评】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.25.(2015秋•北京校级月考)在△ABC中内角A,B,C的对边分别为a,b,c,已知(1)求sinC的值(2)求b边的长.【分析】(1)利用正弦定理可得sinC;(2)由条件可得△ABC是等边三角形,即可求b边的长.【解答】解:(1)由正弦定理可得sinC==;(2)由条件可得△ABC是等边三角形,∴b=2.【点评】本题考查利用正弦定理解三角形,考查学生的计算能力,属于容易题.26.(2011秋•九江县校级月考)已知△ABC的面积其中a,b,c分别为角A,B,C所对的边(1)求角A的大小.(2)若a=2,求的最大值.【分析】(1)用三角形面积公式表示出S,利用题设等式建立等式,进而利用余弦定理求得2bccosA=b2+c2﹣a2,进而整理求得sinA和cosA的关系进而求得A.(2)由余弦定理可知2bccosA=b2+c2﹣a2,结合a=2,A=45°,及基本不等式可以求出bc的范围,结合=bc求出答案.【解答】解:(1)由三角形面积公式可知S=bcsinA,∵,∴bcsinA=由余弦定理可知2bccosA=b2+c2﹣a2∴sinA=cosA,即tana=1,又由A是三角形内角∴A=45°(2)∵由余弦定理可知2bccosA=b2+c2﹣a2,a=2,即bc=b2+c2﹣4≥2bc﹣4∴(2﹣)bc≤4∴bc≤=4+2∴=cosA=bc≤2+2故的最大值为2+2【点评】本题考查的知识点是解三角形,平面向量的综合题,本题的突破点是利用三角形的面积公式表示出S,与已知的S相等,化简得到tanC的值.要求学生熟练掌握三角形的面积公式以及余弦定理,牢记特殊角的三角函数值.27.(2012•迎泽区校级模拟)在△ABC中,角A,B,C的对边分别为a bc且.求:(Ⅰ)的值;(Ⅱ)b的值.【分析】(Ⅰ)由正弦定理可得,==2cosA,代入即可求解(Ⅱ)由a+c=10及可求a,c然后由余弦定理可知,cosA=即可求解b【解答】解:(Ⅰ)由正弦定理可得,==2cosA=(Ⅱ)由a+c=10及可得a=4,c=6由余弦定理可知,cosA==∴b2﹣9b+20=0∴b=4或b=5当b=4时,a=4,c=6,此时B=A,C=2A∴A=45°,与cosA=矛盾∴b=5【点评】本题主要考查了正弦定理及余弦定理在求解三角形中的应用,属于基础试题28.(2009秋•揭阳期末)已知:△ABC中角A、B、C所对的边分别为a、b、c且.(1)求角C的大小;(2)若sinA,sinC,sinB成等差数列,且,求c边的长.【分析】(1)利用两角和公式和诱导公式整理题设等式求得sin(A+B)=sin2C,进而整理求得cosC的值,进而求得C.(2)利用sinA,sinC,sinB成等差数列求得三者的关系式,利用正弦定理转化成边的关系式,利用求得ab的值,进而分别代入余弦定理求得c.【解答】解:(1)由cos(﹣A)•cosB+sinB•sin(+A)=sin(π﹣2C)得sinA•cosB+sinB•cosA=sin2C∴sin(A+B)=sin2C,∵A+B=π﹣C,∴sin(A+B)sinC∴sinC=sin2C=2sinCcosC,∵0<C<π∴sinC>0∴cosC=∴C=(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,由正弦定理得2c=a+b∵,即abcosC=18,ab=36由余弦弦定理c2=a2+b2﹣2abcosC=(a+b)2﹣3ab,∴c2=4c2﹣3×36,c2=36,∴c=6【点评】本题主要考查了解三角形问题,三角函数恒等变换及化简求值.考查了考生分析问题的能力和基本的运算能力.29.(2016秋•兖州区校级期中)根据下列条件,解三角形.(Ⅰ)已知b=4,c=8,B=30°,求C,A,a;(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.【分析】(Ⅰ)由条件利用正弦定理求得sinC的值,可得C为直角,求得A,再由勾股定理求得a的值.(Ⅱ)由条件利用三角形内角和公式求得A的值,再利用正弦定理求得a的值.【解答】解:(Ⅰ)已知△ABC中,∵已知b=4,c=8,B=30°,由正弦定理可,得sinC=1,可得C=90°,A=60°∴a=,(Ⅱ)∵已知△ABC中,B=45°,C=75°,b=2,由三角形内角和公式可得A=60°,由正弦定理可得=,得a=,c=【点评】本题主要考查了三角形内角和公式、正弦定理的应用,属于基础题.30.已知△ABC中,A=45°,C=30°,c=10cm,解三角形.【分析】由三角形内角和定理,直接计算可得B=180°﹣A﹣C=105°;根据三角形的三个角的大小和边c长,结合正弦定理加以计算即可得到a和b的大小.【解答】解:∵△ABC中,A=45°,C=30°,∴根据三角形内角和定理,得B=180°﹣A﹣C=105°;由正弦定理,得,解之得a=10cm,b=5(+)cm【点评】本题给出三角形的两个角和一条边,解此三角形.着重考查了三角形内角和定理、特殊角的三角函数和正弦定理等知识,属于基础题.31.在△ABC中,已知a=,b=1,∠B=45°,解此三角形.【分析】利用正弦定理,可求得A,从而由三角形的内角和定理可求得C,由三角形特点求c.【解答】解:由正弦定理得,即,所以sinA=1,所以A=90°,所以C=180°﹣A﹣B=45°,所以△ABC是等腰直角三角形,所以c=b=1.【点评】本题考查正弦定理的运用,考查运算能力.属于基础题.32.(2010春•沙坪坝区校级期末)在△ABC中,a、b、c分别是角A、B、C的对边,已知,sinB=cosAsinC,(I)求边AC的长度;(II)若BC=4,求角B的大小.【分析】(I)联立,sinB=cosAsinC,可知cbcosA=9,cosA•c=b,从而可求边AC的长度;(II)由(I),结合BC=4=a,b=3代入即得AB=5,从而三角形为直角三角形,由此可求角B的大小.【解答】解:(I),又sinB=cosAsinC⇒cosA•c=b代入得b=3,(II),将BC=4=a,b=3代入即得AB=5⇒【点评】本题以三角形为载体,考查向量的数量积,考查正余弦定理的运用,属于基础题.33.(2011•江西校级模拟)在△ABC中,角A、B、C的对边分别为a、b、c,若sin22C+sin2C•sinC+cos2C=1,且a+b=5,c=.(1)求角C的大小;(2)求△ABC的面积.【分析】(1)通过二倍角公式化简已知表达式,求出cosC的值,然后在三角形中求角C的大小;(2)结合(1)通过余弦定理,求出ab的值,然后直接求△ABC的面积.【解答】解:(1)因为sin22C+sin2C×sinC+cos2C=1,所以4sin2Ccos2C+2sin2CcosC+1﹣2sin2C=1,则2cos2C+cosC﹣1=0.得出cosC=所以C=60°…(6分)(2)由余弦定理可知:∴…(12分)【点评】本题是基础题,借助三角形考查二倍角公式的应用,余弦定理是解答(2)的关键,考查计算能力.34.(2016秋•陕西期中)(1)在△ABC中,a=3,c=2,B=60°求b(2)在△ABC中,A=60°,B=45°,a=2 求c.【分析】(1)利用余弦定理即可求出b的值;(2)利用三角形内角和求出C的值,再由正弦定理求出c的值.【解答】解:(1)在△ABC中,a=3,c=2,B=60°,由余弦定理可得b2=a2+c2﹣2accosB=32+22﹣2×3×2×cos60°=7,∴b=;(2)在△ABC中,A=60°,B=45°,∴C=75°,∴sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=;又a=2,由正弦定理得=,∴c=×sin75°=×=+.【点评】本题考查了正弦、余弦定理的应用问题,也考查了三角形内角和定理与三角恒等变换问题,是基础题.35.(2010•沈丘县校级模拟)已知△ABC的周长为4(),且sinB+sinC=sinA.求边长a的值.【分析】先根据正弦定理用角的正弦值和外接圆半径表示出边长,再由sinB+sinC=sinA可得到b+c=a,结合△ABC的周长为4(),可求得a 的值.【解答】解:设三角形的外接圆半径为R,根据正弦定理有a=2R×sinA,b=2R×sinB,c=2R×sinC因为sinB+sinC=sinA,两边同时乘以2R得:2R×sinB+2R×sinC=×2RsinA 即:b+c= a ①又由题意有:a+b+c=4(+1)②;解①②得:a=4即边长a的值为4.【点评】本题主要考查正弦定理的应用.正弦定理和余弦定理在解三角形中应用比较广泛,对于定理的内容一定要熟练掌握并能够熟练应用.36.(2013春•仙桃校级期中)在△ABC中,a=1,,B=45°,求角A、C及边c.【分析】由已知中a=1,,B=45°°,代入正弦定理可得A的正弦值,结合已知中a<b,可得A值,进而根据内角和定理求出C,再由正弦定理求出c.【解答】解:由正弦定理∴sinA=,∵a<b,∴A=30°,C=105°,∵=2,∴c=.【点评】本题考查的知识点是正弦定理,考查学生的计算能力,比较基础.37.在锐角△ABC中,已知,,BC=3.求△ABC的面积.【分析】先利用同角三角函数基本关系求得sinA和sinC的值,进而利用正弦定理求得AB,根据sinB=sin(A+C)利用两角和公式求得sinB的值,最后利用三角形面积公式求得答案.【解答】解:sinA==,sinC==由正弦定理可知=∴AB=×=2sinB=sin(A+C)=×+×=∴△ABC的面积为AB•BC•sinB=×2×3×=3【点评】本题主要考查了解三角形的实际应用.解题的关键是利用正弦定理完成边角问题的互化.38.在△ABC中,∠C=90°,CD是斜边AB上的高,已知CD=12,AD=5,求BD,AB,AC,BC的长.【分析】利用射影定理,即可求BD,AB,AC,BC的长.【解答】解:∵△ABC中,∠C=90°,CD是斜边AB上的高,∴CD2=AD•BD,∵CD=12,AD=5,∴BD=,∴AB=,∵AC2=AD•AB,BC2=BD•AB,∴AC=13,BC=.【点评】本题考查射影定理,考查学生的计算能力,正确运用射影定理是关键.39.(2016春•西秀区校级月考)在△ABC中,a=5,B=45°,C=105°,解三角形.【分析】由B与C的度数求出A的度数,利用正弦定理求出b与c的值即可.【解答】解:∵在△ABC中,a=5,B=45°,C=105°,∴A=30°,sinC=sin(45°+60°)=,由正弦定理得:b==5,c==.【点评】此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.40.(2015秋•邯郸校级月考)在△ABC中,A,B,C所对的边分别为a,b,c 已知,c=1,B=45°,求a,A,C.【分析】利用正弦定理,即可求解.【解答】解:由正弦定理可得,∴sinC=,∵c<b,∴C<B,∴C=30°,∴A=′180°﹣45°﹣35°=105°,∴,∴a=.【点评】本题考查正弦定理,考查学生的计算能力,比较基础.。
备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第一篇三角函数与解三角形专题08 三角形与平面向量结合问题【典例1】【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】 在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且有()2cos cos cos sin sin A A C B B C +-=(Ⅰ)求角A ;(Ⅰ)若ABC ∆的内切圆面积为π,当AB AC ⋅u u u v u u u v的值最小时,求ABC ∆的面积.【思路引导】(Ⅰ)利用两角和差余弦公式可将已知等式化简为2cos sin sin sin sin A B C C B =,从而求得1cos 2A =;结合()0,A π∈可求得结果;(Ⅰ)根据内切圆面积可知内切圆半径为1,由内切圆特点及切线长相等的性质可得到b c a +-=入余弦定理中可得到b c +与bc 的关系,利用基本不等式可构造不等式求得12bc ≥,从而得到当b c =时,AB AC ⋅u u u v u u u v取得最小值,将12bc =代入三角形面积公式即可求得结果.解:(Ⅰ)()()()2cos cos cos cos cos cos A A C B A B C C B +-=-++-⎡⎤⎣⎦Q()cos cos cos sin sin cos cos sin sin 2cos sin sin A B C B C C B C B A B C =-+++=2cos sin sin sin sin A B C C B ∴=(),0,B C π∈Q ,sin sin 0C B ∴≠ ,1cos 2A ∴=,()0,A π∈Q ,3A π∴=。
(Ⅰ)由余弦定理得:222222cos a b c bc A b c bc =+-=+- 由题意可知:ABC ∆的内切圆半径为1如图,设圆I 为三角形ABC 的内切圆,D ,E 为切点可得:2AI =,AD AE == b c a ∴+-=(222b c b c bc ∴+-=+-,化简得()4b c =+≥b c =时取等号)12bc ∴≥或43bc ≤又b c +> 12bc ∴≥,即[)1cos 6,2AB AC bc A bc ⋅==∈+∞u u u v u u u v ,当且仅当b c =时,AB AC ⋅u u u v u u u v的最小值为6此时三角形ABC 的面积:11sin 12sin 223bc S A π==⨯⨯=【典例2】【浙江省杭州市西湖区杭州学军中学2019-2020学年高三上学期期中】 已知在ABC V 中,1AB =,2AC =.(1)若BAC ∠的平分线与边BC 交于点D ,求()2AD AB AC ⋅-u u u r u u u r u u u r;(2)若点E 为BC 的中点,求2211AE BC+u u u r u u u r 的最小值. 【思路引导】(1)根据AD 是角平分线,从而得到12BD AB CD AC ==,然后得到2133AD AB AC =+u u u r u u u r u u u r ,代入到()2AD AB AC ⋅-u u u r u u u r u u u r中,进行整理化简,得到答案;(2)根据E 为BC 的中点,在ABE ∆和ACE ∆中用余弦定理,从而得到224AE BC +u u u r u u u r ()22210AB AC =+=u u u r u u u r ,然后利用基本不等式,求出2211AE BC+u u u r u u u r 的最小值,得到答案.解:(1)因为AD 是角平分线,从而得到12BD AB CD AC ==u u u r u u u ru u u r u u u r 所以可得2133AD AB AC =+u u u r u u u r u u u r,所以()21233AD AB AC AB AC ⎛⎫⋅-=+ ⎪⎝⎭u u u r u u u r u u u r u u ur u u u r ()20AB AC ⋅-=u u u r u u u r ;(2)在ABE ∆和ACE ∆由用余弦定理可得222cos 2AE BE AB AEB AE BE +-∠=u u u r u u u r u u u r u u u r u u u r ,222cos 2AE CE ACAEC AE CE+-∠=u u u r u u u r u u u r u u u r u u u r, 而BE CE =u u u r u u u r,cos cos AEB AEC ∠=-∠,所以得到22222222AE BE AB AE CE ACAE BE AE CE+-+-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r整理得:224AE BC +u u u r u u u r ()22210AB AC =+=u u u r u u u r22221111110AE BC AE BC ⎛⎫ ⎪∴+=+ ⎪ ⎪⎝⎭u u u r u u u r u u u r u u u r ()224AE BC +u u ur u u u r2222414110BC AEAE BC ⎡⎤⎢⎥=+++⎢⎥⎢⎥⎣⎦u u u r u u u r u u u r u u u r1951010⎛+= ⎝≥ 当且仅当2BC AE =u u u r u u u r时,等号成立.【典例3】【2019届四川省雅安中学高三开学考试】在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若()2cos cos a c B b C -=.(1)求角B 的大小;(2)若3a =, ABC ∆,求BA AC ⋅u u u r u u u r 的值.【思路引导】(1)由正弦定理得: ()2sin sin cos sin cos A C B B C -=,化为2sin cos sin A B A =,由于sin 0A >,所以1cos 2B =,最后得3B π=; (2)先由3a =且1sin 232ac π⨯=得2c =,再由余弦定理得b =,cos 14A =,进而得()cos 2114BA AC bc A π⎛⎫⋅=-=-=- ⎪ ⎪⎝⎭u u u r u u u r . 解:(1)∵()2cos cos a c B b C -=,由正弦定理得: ()2sin sin cos sin cos A C B B C -=, ∴()2sin cos sin cos cos sin sin sin A B C B C B B C A =+=+= ∵0A π<<,∴sin 0A >∴2cos 1B =, 1cos 2B =又0B π<<∴3B π=. (2)∵3a =, ABC ∆,∴13sin 23c π⨯=2c =,22223223cos73b π=+-⨯⨯=,即b =22223cos A +-==,∴()cos 21BA AC bc A π⎛⋅=-==- ⎝⎭u u u r u u u r【典例4】【陕西省安康市2019-2020学年高三上学期12月阶段性考试】在平面直角坐标系xOy 中,设ABC V 的内角,,A B C 所对的边分别为,,a b c ,且a b +=,22sin 3sin sin C A B =.(1)求C ;(2)设()1,cos P A -,()cos ,1Q A -,且A C ≤,OP uuu r 与OQ uuur 的夹角为θ,求cos θ的值.【思路引导】 (1)利用正弦定理得232cab =.再由a b +=平方与余弦定理求得cos C 进而求得C 即可.(2)将(1)所得的3C π=代入条件即可求得30A =︒,90B =︒.再利用平面向量的公式求解cos θ即可.解:(1)∵22sin 3sin sin C A B =∴23sin sin sin 2C A B = ∴由正弦定理得232c ab =∵a b +=∴22223a b ab c ++= 根据余弦定理得:2222221cos 2222a b c c ab ab C ab ab ab +--====∴3C π=(2)由(1)知3C π=,代入已知,并结合正弦定理得3sin sin 21sin sin 2A B A B ⎧+=⎪⎪⎨⎪=⎪⎩,解得1sin 2A =或sin 1A =(舍去) 所以30A =︒,90B =︒∴2cos OP OQ A ⋅==u u u r u u u r而27||||1cos 4OP OQ A ⋅==+=u u u r u u u r∴22cos cos 1cos 4A A θ===+. 【典例5】【2019届重庆市巴蜀中学高三上学期第三次月考】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A ,a =1,b =2. (1)求∠C 和边c ;(2)若BM 4=,=且点P 为△BMN+的最值. 【思路引导】(1)利用倍角公式和三角函数的诱导公式将12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A 进行化简可得,一个关于C cos 的一元二次方程,进而可求解出C cos ,即可求出∠C 的大小;然后应用余弦定理即可求出边长c ;(2)建立坐标系,由已知向量的关系BM 4=,=可得,N M ,点的坐标,即可求出△BMN的内切圆方程,运用参数方程[)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x ,+中并化简整理得)sin(324643211ϕθ+-+-,再由三角函数的值域为]1,1[-,故所求式子的最大值即可求出. 解:(1)因为12cos 2sin 22=+⎪⎭⎫⎝⎛+C B A , 所以CB A B AC cos )cos(2sin 212cos 2-=+=⎪⎭⎫⎝⎛+-=,所以01cos cos 22=-+C C ,所以1cos -=C 或21cos =C ,又因为),0(π∈C ,所以21cos =C ,所以3π=C .由余弦定理可得,3cos 222=-+=C ab b a c .建立坐标系,由(1)A()())1,0(,0,0,0,3C B ,由4=,=知()0,3),4,0(N M ,△BMN 的内切圆方程为:()()11122=-+-y x ,设),(y x P ,则令 [)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x()()22222213-+++++-=++y x y x y x ()θθcos 326sin 4321142323322-++-=+--+=y x y x ()324643211sin 324643211-+-≤+-+-=ϕθ【典例6】【河北衡水金卷2019届高三高考模拟一理科数学试题】已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.【思路引导】(1)由2cos cos cos 0b A a C c A ++=及正弦定理化简可得即()2sin cos sin sin B A A C B -=+=,从而得1cos 2A =-.又()0,A π∈,所以23A π=,由余弦定理得a =(2)由1233AD AB AC =+u u u v u u u v u u u v ,得221233AD AB AC ⎛⎫=+ ⎪⎝⎭u u u v u u u v u u u v 444142199929⎛⎫=++⨯⨯⨯-= ⎪⎝⎭,所以23AD =u u u v .解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+, 即()2sin cos sin sin B A A C B -=+=, 在ABC ∆中,sin 0B >,所以1cos 2A =-. 又()0,A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u v u u u v u u u v ,得221233AD AB AC ⎛⎫=+ ⎪⎝⎭u u u v u u u v u u u v 444142199929⎛⎫=++⨯⨯⨯-= ⎪⎝⎭,所以23AD =u u u v .【典例7】【广东省珠海市2019-2020学年高三上学期期末】已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+u r,()sin sin ,sin sin n B A C B =--r ,且m n ⊥u r r .(1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【思路引导】(1)由m n ⊥u r r得出()()()sin sin sin sin 0a b B A c C B +-+-=,利用正弦定理边角互化思想以及余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的大小;(2)利用余弦定理结合基本不等式可求出bc 的最大值,再利用三角形的面积公式可得出答案.解:(1)(),m a b c =+u r Q ,()sin sin ,sin sin n B A C B =--r ,m n ⊥u r r,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<Q ,3A π∴=; (2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆1. 【2020届河北省冀州中学高三年级模拟考试】△ABC 中,角A 、B 、C 对边分别是a 、b 、c ,满足222()AB AC a b c ⋅=-+u u u r u u u r.(Ⅰ)求角A 的大小;(Ⅰ)求24sin()23C B π--的最大值,并求取得最大值时角B 、C 的大小. 解:(Ⅰ)由222()AB AC a b c ⋅=-+u u u r u u u r已知2222cos 2bc A a b c bc =---,·由余弦定理2222cos a b c bc A =+-得4cos 2bc A bc =-,∴1cos 2A =-,∵0A π<<,∴23A π=. (Ⅰ)∵23A π=,∴3B C π=-,03C π<<.241cos sin()sin()2323C C B B ππ+--=+-2sin()3C π=+.∵03C π<<,∴2333C πππ<+<,∴当32C ππ+=,24sin()23C B π--2,解得6B C π==. 2. 【四川省德阳市2018届高三三校联合测试数学】在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,且()cos 3cos a B c b A =-. (1)求cos A 的值;(2)若3b =,点M 在线段BC 上, 2AB AC AM +=u u u r u u u r u u u u r, AM =u u u u r 求ABC ∆的面积.解:因为()cos 3cos a B c b A =- ,由正弦定理得: ()sin cos 3sin sin cos A B C B A =- 即sin cos sin cos 3sin cos A B B A C A +=, sin 3sin cos C C A =在ABC ∆中, sin 0C ≠,所以1cos 3A =2AB AC AM +=u u u r u u u r u u u u r ,两边平方得: 22224AB AC AB AC AM ++⋅=u u u r u u u r u u u r u u u u r u u u u r由3b =,AM =u u u u r 1cos 3A =得219234183c c ++⨯⨯⨯=⨯解得:79c c ==-或(舍);所以ABC ∆的面积17323S =⨯⨯⨯=3. 【山西省运城市2019-2020学年高三上学期期末】在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,且8a =,cos cos 2sin cos cos c A B a C B c C =-. (1)求tan B 的值;(2)若16AB CB =u u u r u u u rg ,求b 的值.【思路引导】(1)由正弦定理知:2sin a R A =,2sin c R C =化简cos cos 2sin cos cos c A B a C B c C =-得2sin cos sin sin A B A B =,即tan 2B =.(2)由tan 2B =得到cos 5B =,因为16AB CB =u u u r u u u r g ,8a =,解得c =代入2222cos b a c ac B =+-即可.解:(1)∵cos cos 2sin cos cos c A B a C B c C =- 由正弦定理知:2sin a R A =,2sin c R C =∴sin cos cos 2sin sin cos sin cos C A B A C B C C =- 又∵sin 0C ≠∴cos cos 2sin cos cos A B A B C =- ∴()cos cos 2sin cos cos A B A B A B =++∴cos cos 2sin cos cos cos sin sin A B A B A B A B =+- ∴2sin cos sin sin A B A B = 又∵sin 0A ≠∴tan 2B =(2)∵tan 2B =∴cos B =又∵16AB CB =u u u r u u u r g ∴cos 16ac B =又∵8a =∴c =∴由余弦定理知,22222cos 8202852b a c ac B =+-=+-⨯⨯=∴b =4. 【江苏省盐城市盐城中学2019-2020学年高三11月月考】如图,在ABC ∆中,120BAC ∠=︒,2AB =,1AC =,D 是边BC 上一点,2DC BD =u u u r u u u r.(1)求AD BC ⋅u u u r u u u r的值;(2)若()0AB tCD CD -⋅=u u u r u u u r u u u r,求实数t 的值.【思路引导】(1)将,AD BC u u u r u u u r 都转化为用,AB AC u u u r u u u r为基底表示,根据向量数量积的运算,求得AD BC ⋅u u u r u u u r的值.(2)将原方程()0AB tCD CD -⋅=u u u r u u u r u u u r 转化为2AB CD t CD⋅=u u u r u u u ru u u r ,同(1)的方法,将CD uuu r 转化为用,AB AC u u u r u u u r 为基底表示,根据向量数量积和模的运算,求出t 的值.解:(1)D Q 是边BC 上一点,2DC BD =u u u r u u u r()1133BD BC AC AB ∴==-u u u r u u u r u u u r u u u r()121333AD AB AC AB AB AC =+-=+u u u r u u u r u u u r u u u r u u ur u u u r()2133AD BC AB AC AC AB ⎛⎫∴⋅=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 22121333AC AB AB AC =-+⋅u u ur u u u r u u u r u u u r18112cos120333=-+⨯⨯⨯︒18183333=--=-,故83AD BC ⋅=-u u u r u u u r(2)()0AB tCD CD -⋅=u u u r u u u r u u u r Q ,2AB CDt CD⋅∴=u u u r u u u ru u u r ()2233CD CB AB AC ==-u u u r u u u r u u u r u u u r Q ,214212cos1207BC =+-⨯⨯⨯︒=u u u r2222839CD CB ⎛⎫== ⎪⎝∴⎭u u u r u u u r 2233AB CD AB AB AC ⎛⎫⋅=⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r Q 22233AB AC AB =-⋅u u u r u u u r u u u r 821012cos120333=-⨯⨯⨯︒=1514t ∴=5. 【湖南省张家界市2018届高三第三次模拟考】 已知ABC ∆中,3B π=.(Ⅰ)若12AB AC ==,求ABC ∆的面积;(II)若4,,AB BM MN NC AN ====u u u u v u u u u v u u u v,求AM 的长.【思路引导】(1)由余弦定理得到BC =,进而得到三角形ABC 是直角三角形,根据公式求得面积;(2)设BM x =,则2BN x =,AN =,由余弦公式得到1BM =,AM=. 解析:(Ⅰ)由题意知,22212cos BC B +-=12=,解得BC = ∴222AC BC AB+=,∴1122ABC S ∆=⨯=(Ⅰ)设BM x =,则2BN x =,AN =. 在ABN ∆中,()()22242x =+ 242cos3x π-⋅⋅⋅,解得1x =或2x =-(舍去),∴1BM =. 在ABM∆中,AM ==.6. 【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】设函数()2sin()cos 3f x x x π=+-(Ⅰ) 求()f x 的单调增区间;(Ⅰ) 已知ABC ∆的内角分别为,,A B C ,若()2Af =,且ABC ∆能够盖住的最大圆面积为π,求AB AC ⋅uu u r uuu r 的最小值.【思路引导】(Ⅰ)由三角形两角和的正弦展开利用二倍角公式化简可得()sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222,232k x k k Z πππππ-+≤+≤+∈,求解增区间即可;(Ⅰ)由22A f ⎛⎫=⎪⎝⎭,得3A π=,由题意可知:ABC ∆的内切圆半径为1,根据切线长相等结合图象得b c a +-=()4b c =+,利用均值不等式求最值即可.解:(Ⅰ) ()112sin cos 2sin23222222f x x x sinx cosx x x π⎛⎫⎛⎫=+-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭sin 23x π⎛⎫=+ ⎪⎝⎭.5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈. ()f x 的单调增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(Ⅰ) sin 23A f A π⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭ ()0,A π∈,所以3A π=.由余弦定理可知:222a b c bc =+-. 由题意可知:ABC ∆的内切圆半径为1.ABC ∆的内角,,A B C 的对边分别为,,a b c ,如图所示可得:b c a +-=(222b c b c bc +-=+-.()412b c bc ⇒=+≥⇒≥或43bc ≤(舍)[)16,2AB AC bc ⋅=∈+∞u u u v u u u v ,当且仅当b c =时,AB AC u u u v u u u v⋅的最小值为6.令也可以这样转化:1r a b c =⇔++=代入222b c b c bc ⎛⎫+=+- ⎪ ⎪⎝⎭; ()412b c bc ⇒=+≥⇒≥或43bc ≤(舍); [)16,2AB AC bc ⋅=∈+∞u u u v u u u v ,当且仅当b c =时,AB AC u u u v u u u v⋅的最小值为6.7. 【辽宁省沈阳市交联体2018届高三上学期期中考试】已知函数2()cos 2cos 1f x x x x =--,()x R ∈ (1)当[0,]2x π∈时,求函数()f x 的最小值和最大值;(2)设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且c =()0f C =,若向量(1,sin )m A =u r与向量(2,sin )n B =r共线,求,a b 的值.【思路引导】(1)利用二倍角公式及化一公式,化简()f x 的表达式,再结合正弦函数的图象,在给定区域上求最值;(2)由()0f C =,解得C 角,利用共线条件及正弦定理得到b=2a ,再利用余弦定理解得,a b 的值. 解:(1)当 ,即时,有最小值为当,即时,有最大值为(2)与向量共线由正弦定理得①,由余弦定理可得②①②联立可得8. 在ABC ∆中,CA CB CA CB +=-u u u r u u u r u u u r u u u r.(1) 求角C 的大小;(2)若CD AB ⊥,垂足为D ,且4CD =,求ABC ∆面积的最小值.【思路引导】(1)由CA CB CA CB +=-u u u v u u u v u u u v u u u v ,两边平方22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,整理可得0CA CB ⋅=u u u v u u u v ,即CA CB ⊥u u u v u u u v ,从而可得2C π∠=;(2)在直角ADC ∆与直角BDC ∆中中, 4sin sin CD AC A A== ,4sin sin CD BC B B == ,从而可得114481622sin sin sin cos sin2ABC S CA CB A B A A A∆=⋅=⋅⋅==,根据三角函数的有界性可得 ABC ∆面积的最小值.解:(1)由CA CB CA CB +=-u u u v u u u v u u u v u u u v ,两边平方22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,即()()22CA CB CA CB +=-u u u v u u u v u u u v u u u v ,得到20CA CB ⋅=u u u v u u u v ,即CA CB ⊥u u u v u u u v.所以2C π∠=.(2)在直角ADC ∆中, 4sin sin CD AC A A == , 在直角BDC ∆中, 4sin sin CD BC B B== ,又0,2A π⎛⎫∈ ⎪⎝⎭,所以sin sin cos 2B A A π⎛⎫=-=⎪⎝⎭, 所以114481622sin sin sin cos sin2ABC S CA CB A B A A A∆=⋅=⋅⋅==, 由+2A B π=得,()20,A π∈,故(]sin20,1A ∈,当且仅当4A π=时,()max sin21A =,从而()min 16ABC S ∆= .9. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =u u u r u u u u r ,求a 的最小值.【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值. (Ⅰ)利用余弦定理及基本不等式求得a 的最小值.解:(1) ∵ABC V 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =u u u r u u u r得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--=…当且仅当b c =时取等号,所以a 10. 【2019届河北省武邑中学高三上学期期末考试】已知ABC ∆的面积为S ,且AB AC S ⋅=u u u r u u u r.(1)求A 2tan 的值;(2)若4π=B ,3CB CA -=u u u r u u u r,求ABC ∆的面积S .【思路引导】(1)利用平面向量的数量积运算法则及面积公式化简已知等式,求出tan A 的值即可;(2)由tan A 与tan B 的值,利用两角和与差的正切函数公式求出tan C 的值,进而求出sin C 的值,利用正弦定理求出b 的值,再利用三角形面积公式即可求出S . 解:(1)设ABC ∆的角C B A ,,所对应的边分别为c b a ,,,∵AB AC S ⋅=u u u r u u u r ,∴A bc A bc sin 21cos =,∴A A sin 21cos =,∴2tan =A .∴34tan 1tan 22tan 2-=-=A A A . (2)3CB CA -=u u u r u u u r ,即3AB c ==u u u r,∵2tan =A ,20π<<A ,∴552sin =A ,55cos =A . ∴10103225522552sin cos cos sin )sin(sin =⋅+⋅=+=+=B A B A B A C . 由正弦定理知:5sin sin sin sin =⋅=⇒=B Ccb B b Cc , 35523521sin 21=⋅⋅==A bc S .。
用平面向量解决三角函数问题
平面向量是重要的数学概念和工具,与代数、几何有着密切的联系,使得它成为了高中数学知识网络的一个交汇点. 三角函数是重要的基本初等函数,它的定义和性质有着十分鲜明的特征和规律性,与代数、几何密不可分. 因此,三角函数与平面向量的综合题近几年备受高考命题者的垂青,它也是近几年高考的热点. 此类问题常以向量为知识背景,更多是以载体形式出现的,考查向量的工具作用,将三角函数作为考查的重点,在掌握三角函数的公式和性质的同时,如何理解以平面向量为载体的知识背景,如何将平面向量的知识背景转化为三角函数之间的关系式,如何用平面向量解决与三角函数有关的问题,这些都是解决这类问题的关键所在. 本文结合实例,通过以下几个不同的命题方向来探究一下如何利用平面向量解决与三角函数有关的问题.。