2015-2016年最新审定人教A版高中数学必修三:3.2.2《古典概型及其概率计算(2)(习题课)》(优秀课件)
- 格式:ppt
- 大小:12.27 MB
- 文档页数:31
第一课时 3.2 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1.教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在"等可能性"概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4对于古典概型,任何事件的概率为:AP(A)=包含的基本事件的个数基本事件的总数P120例2:(关键:这个问题什么情况下可以看成古典概型的)P120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P127第2题,②教材P128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)①如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a到整数b的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN函数或者查看P95的随机数表. P126例6,天气预报说,在今后的三天中,每一天下雨的概率均为040。
河北省武邑中学高中数学古典概型(二)教案新人教A版必修3 备课人授课时间课题 3.2.1 古典概型(二)课标要求进一步加深对古典概型的两个特点的理解教学目标知识目标理解古典概型的定义及概率的计算公式技能目标会用列举法计算一些随机事件所含的基本事件数及事件发生的概率情感态度价值观体会化归思想,培养学生用随机的观点来理性地理解世界,使得学生体会概率意义重点利用古典概型求解随机事件的概率.难点分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数教学过程及方法问题与情境及教师活动学生活动一、导入新课:古典概型的教学让学生通过实例理解古典概型的特征:实验结果的有限性和每一个实验结果出现的等可能性。
让学生初步会把一些实际问题化为古典概型。
这一节课让学生进一步理解古典概型的定义及概率的计算公式。
二、新课讲解:1、提出问题(1)什么是古典概型?请举例说明.(2)古典概型的两个特点?(2)概率的计算公式?2、例题讲解:例4:假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型。
事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码构成。
所以P(“试一次密码就能取到钱”)=100001.教问题与情境及教师活动学生活动2。