管道阴极保护基本知识(终审稿)
- 格式:docx
- 大小:111.70 KB
- 文档页数:9
陰極保護的基本知識陰極保護是基於電化學腐蝕原理的一種防腐蝕手段。
陰極保護是基於電化學腐蝕原理的一種防腐蝕手段。
美國腐蝕工程師協會(NA CE)對陰極保護的定義是:通過施加外加的電動勢把電極的腐蝕電位移向氧化性較低的電位而使腐蝕速率降低。
犧牲陽極陰極保護就是在金屬構築物上連接或焊接電位較負的金屬,如鋁、鋅或鎂。
陽極材料不斷消耗,釋放出的電流供給被保護金屬構築物而陰極極化,從而實現保護。
外加電流陰極保護是通過外加直流電源向被保護金屬通以陰極電流,使之陰極極化。
該方式主要用於保護大型或處於高土壤電阻率土壤中的金屬結構。
保護電位是指陰極保護時使金屬腐蝕停止(或可忽略)時所需的電位。
實踐中,鋼鐵的保護電位常取-0.85V(CSE),也就是說,當金屬處於比-0.85V(CSE)更負的電位時,該金屬就受到了保護,腐蝕可以忽略。
陰極保護是一種控制鋼質儲罐和管道腐蝕的有效方法,它有效彌補了塗層缺陷而引起的腐蝕,能大大延長儲罐和管道的使用壽命。
根據美國一家陰極保護工程公司提供的資料,從經濟上考慮,陰極保護是鋼質儲罐防腐蝕的最經濟的手段之一。
網狀陽極陰極保護方法網狀陽極陰極保護方法是目前國際上流行且成熟的針對新建儲罐罐底外壁的一種有效的陰極保護新方法,在國際和國內都得到了廣泛應用。
網狀陽極是混合金屬氧化物帶狀陽極與鈦金屬連接片交叉焊接組成的外加電流陰極保護輔助陽極。
陽極網預鋪設在儲罐基礎中,為儲罐底板提供保護電流。
網狀陽極保護系統較其他陰極保護方法具有如下優點:1) 電流分佈均勻,輸出可調,保證儲罐充分保護。
2) 基本不產生雜散電流,不會對其他結構造成腐蝕干擾。
3) 不需回填料,安裝簡單,品質容易保證。
4) 儲罐與管道之間不需要絕緣,不需對電氣以及防雷接地系統作任何改造。
5) 不易受今後工程施工的損壞,使用壽命長。
6) 埋設深度淺,尤其適宜回填層比較薄的建在岩石上的儲罐。
7) 性價比高,造價僅為目前鎂帶犧牲陽極的1倍;雖然長期由恒電位儀提供電流,但其可靠性,壽命和綜合經濟效益遠高於犧牲陽極;深井陽極陰極保護深井陽極陰極保護是近年來興起的一種陰極保護方法,採用的陽極與淺埋基本相同,但施工較淺埋陽極複雜得多,且一次性投資比較高,調試比較麻煩。
阴极保护的基本知识阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。
阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。
美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。
牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。
阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。
外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。
该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。
保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。
实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。
阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。
根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。
网状阳极阴极保护方法网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。
网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。
阳极网预铺设在储罐基础中,为储罐底板提供保护电流。
网状阳极保护系统较其它阴极保护方法具有如下优点:1) 电流分布均匀,输出可调,保证储罐充分保护。
2) 基本不产生杂散电流,不会对其它结构造成腐蚀干扰。
3) 不需回填料,安装简单,质量容易保证。
4) 储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。
5) 不易受今后工程施工的损坏,使用寿命长。
6) 埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。
7) 性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供电流,但其可靠性,寿命和综合经济效益远高于牺牲阳极;深井阳极阴极保护深井阳极阴极保护是近年来兴起的一种阴极保护方法,采用的阳极与浅埋基本相同,但施工较浅埋阳极复杂得多,且一次性投资比较高,调试比较麻烦。
长输管道外加电流阴极保护及阴极保护站维护基础知识河南汇龙合金材料有限公司1.目的:随着国内长输管道的大规模建设,我国的天然气管网已初具规模,长输管道外加电流阴极保护技术也被大量广泛应用,为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。
一.防腐蚀的重要意义自然界中,大多数金属是以化合状态存在的。
通过炼制,被赋予能量,才从离子状态转变成原子状态。
然而,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。
二.防腐蚀工程发展概况六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。
我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。
2.阴极保护原理2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。
)。
通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。
2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。
阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是:(a)两电极电位不同的两电极;(b)两电极必须在同一电解质溶液里;(c)两电极间必须有导线连接。
管道阴极保护基本知识内容提要:◆阴极保护系统管理知识一、阴保护系统管理知识一阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性.我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀.每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位自然电位,腐蚀电位可表示金属失去电子的相对难易.腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区.阳极区由于失去电子如铁原子失去电子而变成铁离子溶入土壤受到腐蚀,而阴极区得到电子受到保护.阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液.有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护.1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金即牺牲阳极相连,使被保护体极化以降低腐蚀速率的方法.在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3.牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V相对于饱和硫酸铜参比电极.2、强制电流法外加电流法将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法.其方式有:恒电位、恒电流、恒电压、整流器等.如图1-4示.图1-4恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制.而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗.阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流.两种方法的差别只在于产生保护电流的方式和“源”不同.一种是利用电位更负的金属或合金,另一种则利用直流电源.强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道.牺牲阳极阴极保护不需外部电源,维护管理经济,简单,对邻近地下金属构筑物干扰影响小,适用于短距离、小口径、分散的管道.二外加电流阴极保护系统的组成1、恒电位仪:珠三角管道采用的是IHF系列数控高频开关恒电位仪,它的主要作用是向管道输出保护电流.2、阳极地床:由若干支辅助阳极高硅铸铁组成,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化防止电化学腐蚀,电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道在回路中为负极处于还原环境中,防止腐蚀,而辅助阳极进行氧化反应遭受腐蚀,或是周围电解质被氧化.阴保站的电能60%消耗在阳极接地电阻上,故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的.珠三角管道的阳极地床辅助阳极一般为40支,阳极地床的接地电阻小于3Ω设计要求,阳极地床与管道的垂直距离要大于50米.3、参比电极:为了对各种金属的电极电位进行比较,必须有一个公共的参比电极,其电极电位具有良好的重复性和稳定性,构造简单,通常由饱和硫酸铜参比电极、锌电极等.4、绝缘接头:阴极保护系统保护的是输油站外的长输管道,绝缘接头的作用是将阴极保护电流限制在两个阴极保护站之间的管道上.5、检查片:由与管道同材质的金属制成50×100mm的挂片,检查片有两组,一组与输油管道相连,处于阴极保护状态,一组不与管道相连,处于自然腐蚀状态.经过一定时间后将两组检查片的失重量进行比较,可分析管道的阴极保护效果.6、测试桩:为了检测维护管道的阴极保护系统,在管道沿线设置电流及电位测试桩,电位测试桩每公里设置一个;电流测试桩每5公里设一个;套管电位测试桩每个套管处设置一个;绝缘接头电位测试桩每一绝缘处设一个.三阴极保护的基本参数1最小保护电流密度阴极保护时,使腐蚀停止,或达到允许程度时所需的电流密度值称为最小保护电流密度.最小保护电流密度的大小取决于被保护金属的种类、表面状况、腐蚀介质的性质、组成、浓度、温度和金属表面绝缘层质量等.防腐绝缘层种类不同,所需要的保护电流密度也不同.防腐绝缘层的电阻值越高,所需的保护电流密度值越小.2最小保护电位为使腐蚀过程停止,金属经阴极极化后所必须达到的绝对值最小的负电位值,称之为最小保护电位.最小保护电位也与金属的种类、腐蚀介质的组成、温度、浓度等有关.最小保护电位值常常是用来判断阴极保护是否充分的基准.因此该电位值是监控阴极保护的重要参数.实验测定在土壤中的最小保护电位为-0.85V相对饱和硫酸铜参比电极.3最大保护电位在阴极保护中,所允许施加的阴极极化的绝对值最大的负电位值,在此电位下管道的防腐层不受到破坏.此电位值就是最大保护电位.最大保护电位值的大小通过试验确定.一般取-1.5VCSE.阴极保护电位越大,防腐程度越高,单站保护距离也越长,但是过大的电位将使被保护管道的防腐绝缘层与管道金属表面的粘接力受到破坏,产生阴极剥离,严重时可以出现金属“氢破裂”.同时太大的电位将消耗过多的保护电流,形成能量浪费.四阴极保护投入前的准备和验收1、阴极保护投入前对被保护管道的检查管道对地绝缘的检查:从阴极保护的原理介绍,已得知没有绝缘就没有保护.为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误.应检查管道的绝缘接头的绝缘性能是否正常;管道沿线的阀门应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施,管道在地下不应与其它金属构筑物有"短接"等故障;管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤均应在施工验收时使用埋地检漏仪检测,修补后回填.2、对阴极保护施工质量的验收1对阴极保护间内所有电气设备的安装是否符合电气设备安装规程的要求,各种接地设施是否完成,并符合图纸设计要求.2对阴极保护的站外设施的选材、施工是否与设计一致.对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求,尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反.3图纸、设计资料齐全完备.五阴极保护投入运行的调试1、组织人员测定全线管道自然电位、土壤电阻率、阳极地床接地电阻,同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用.2、阴极保护站投入运行按照恒电位仪的操作程序给管道送电,使电位保持在-1.20伏左右,待管道阴极极化一段时间四小时以上开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等.然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化通常在24小时以上.再重复第一次测试工作,并做好记录.若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止.3、保护电位的控制各站通电点电位的控制数值,应能保证相邻两站间的管段保护电位达到-0.85伏,同时各站通电点最负电位不允许超过规定数值.调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡.4、当管道全线达到最小阴极保护电位指标后,投运操作完毕,各阴极保护站进入正常连续工作阶段.六阴极保护站的日常维护管理1、恒电位仪的巡检和维护.1日常巡检:每天9:00和21:00对恒电位仪巡检一次,并记录输出电压、电流、保护电位数值,与前次记录或值班记录对照是否有变化,若不相同应查找原因,采取相应措施使管道全线达到阴极保护.2每月维护:每月1日对恒电位仪进行切换使用.改用备用的仪器时,应即时进行一次观测和维修,发现仪器故障应及时检修,保证供电.维护内容:观察全部零件是否正常,元件有无腐蚀、脱焊、虚焊、损坏,各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换.检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固.定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷.搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热.2、参比电极的维护.作为恒定电位仪信号源的埋地参比电极,在使用过程中需注意观察恒电位仪的输出数值,发现异常可检查参比电极井是否干涸,影响仪器正常工作.3、阳极地床的维护.阳极地床接地电阻每月测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻.4、测试桩的维护.1检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有则需更换或维修.2测试桩应每年定期刷漆和编号.3防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作.5、绝缘接头的维护.每月检测绝缘接头两侧管地电位,若与原始记录有差异时,应对其性能好坏作鉴别.如有漏电情况应采取相应措施.。
何为阴极保护阴极保护的方法分为牺牲阳极法和强制阴极保护两种,主要取决于一下三方面因素:1、保护对象和对周围建筑物的干扰影响;2、电源的可利用性;3、土壤电阻率。
长输管道阴极保护原则上是以流强制阴极保护为主,牺牲阳极为辅,在强制阴极保护欠保护的地方采用牺牲阳极加以补充,使电位都达到保护电位。
牺牲阳极法是利用比铁更活泼的金属或金属制品做阳极,把长输管道做阴极,从而保护管道免遭腐蚀的方法;常见的牺牲阳极材料有镁阳极、锌阳极和铝阳极,镁阳极适用高电阻率土壤和淡水,锌阳极适用低电阻率土壤和海水系统,铝阳适用海水中。
牺牲阳极保护的优点是构造简单,施工、管理方便,不需要外加电源,适用于无电源或需要局部保护的地方(如杂散电流干扰严重区域、对强制阴极保护存在屏蔽的区域等)。
强制阴极保护是利用外加直流电源,将长输管道与直流电源的负极相连,使长输管道变成阴极而进行阴极极化,以减轻或防止管道腐蚀,强制阴极保护也叫外加电流阴极保护。
强制阴极保护可提供较大的保护电流,保护距离长,不消耗有色金属;但需要外加电源和经常维护管理。
目前强制阴极保护电源多采用恒电位仪,辅助阳极通常用高硅铸铁、柔性阳极、混合金属氧化物、石墨等材料。
管道在通电保护前本身的对地电位,称为自然电位;保护电位是管道进入保护范围必须达到的腐蚀电位的临界值。
强制阴极保护的最小保护电位一般为-0.85V,但负电位太负,会造成H+在管道上的还原,不仅造成管道氢脆,还破坏防腐层的粘结力,所以最大保护电位为-1.50V,一般控制为-1.20V。
通电点是用电缆将恒电位负极连接到管道上的接入点,一座强制阴极保护站只有一处通电点,距离强制阴极保护站一般保持在10米左右,通电点一般设置通电点测试桩。
为了检测管道强制阴极保护效果,在管道上每个一段距离设置一处测试桩,在埋地管道上焊接测试导线引出地面,测试阴极保护电位和电流,一般每公里设置一处电位测试桩,每5-8公里设置一处电流测试桩,管道和其他设施穿跨越处应设置穿跨越测试桩,用于定期测试穿跨越段强制阴极保护的效果。
管道阴极保护1. 管道阴极保护的背景与概述在现代工业中,管道的使用非常普遍,尤其是在石油、天然气等行业中,管道起到了非常关键的作用。
然而,由于管道在使用过程中常常接触到水、土壤等导电介质,导致管道表面出现腐蚀的问题。
为了解决这一问题,管道阴极保护技术应运而生。
管道阴极保护通过施加电流使管道的金属表面成为阴极,从而抑制腐蚀的发生。
2. 管道阴极保护的原理管道阴极保护的原理是利用外加电源产生直接电流,通过作用于管道金属表面,使之成为阴极,从而抑制自腐蚀的发生。
具体原理如下:•管道金属表面通常会存在一些腐蚀点,这些点通常是金属的阴极位置。
•通过施加外加电流,使管道表面成为电流的路径,从而将自腐蚀的位置转变为阴极位置。
•通过向管道输送电流,并通过阳极来提供电子,实现对管道的阴极保护。
3. 管道阴极保护的实施步骤3.1 管道表面处理在实施管道阴极保护之前,需要对管道的表面进行处理。
处理步骤如下:1.清洁管道表面:通过高压水枪等工具将管道表面的污物、油漆等清除干净,以提供良好的阴极保护条件。
2.去除锈蚀:对于已经存在的锈蚀处,需要使用刷子、砂纸等工具进行去除,并用除锈剂进行清洗。
3.涂覆绝缘涂层:为了增强管道表面的绝缘性能,需要对管道进行绝缘涂层的涂覆,如使用油漆、聚乙烯等材料进行涂覆。
3.2 安装阴极保护设备在管道表面处理完毕后,需要安装阴极保护设备。
设备安装包括以下步骤:1.安装阴极:在管道的一段或多段位置,安装阴极,通常选择带有金属物质的材料作为阴极,如铁或铝。
2.安装阳极:将长条状的阳极埋入土壤中,以便提供电子并供给阴极保护系统所需的电流。
3.连接电缆:通过电缆将阴极和阳极与阴极保护设备连接起来,以便实现电流的传输。
3.3 测试与监测在阴极保护设备安装完毕后,需要进行测试与监测,以确保阴极保护系统的正常运行。
测试与监测包括以下内容:1.阳极地深度测试:使用测试设备,测试阳极埋入土壤中的深度,以确保其与土壤的良好接触。
关于长输管道的阴极保护及故障分析长输管道是国家能源和基础设施的重要组成部分,用于输送石油、天然气和其他液体或气体。
长输管道在长期运行过程中会面临腐蚀和损坏的风险,因此需要采取阴极保护来延长其使用寿命并保证其安全运行。
阴极保护是一种常用的管道保护措施,通过使管道表面处于负电位,使其成为阴极,以减少或防止管道的腐蚀。
阴极保护包括两种主要方法:外部阴极保护和内部阴极保护。
外部阴极保护是指在管道表面施加电流以形成负电位,通常采用在管道周围埋设的阳极来提供电流。
常用的的阳极包括铅合金阳极、镁合金阳极和铝合金阳极等。
外部阴极保护的关键是确保阳极与管道之间的电阻低。
常用的外部阴极保护系统包括串联系统和平行系统。
串联系统适用于管道长度较短的情况,而平行系统适用于管道长度较长、电流分布不均匀的情况。
内部阴极保护是指在管道内部注入一种阴极保护剂,使其在管道内部形成保护膜,从而抑制腐蚀。
常用的阴极保护剂有铜阳极剂、锌阳极剂和铝阳极剂等。
内部阴极保护的关键是保持阴极保护剂的浓度和一致性,并确保其能够覆盖整个管道内部表面。
尽管采取了阴极保护的措施,长输管道仍然可能出现故障。
常见的管道故障包括阳极故障、缺陷电流产生、外电源干扰和电阻变化等。
阳极故障是指阳极与管道之间的电阻增加或阳极失效。
阳极故障可能导致管道表面处于阳极状态,从而加速腐蚀。
阳极故障的检测方法包括原子吸收法、电化学法和电流-电位法等。
缺陷电流产生是指管道或管道涂层的缺陷引起的局部腐蚀,产生电流。
缺陷电流的大小和分布对管道的腐蚀速率有很大影响。
常用的检测方法包括电化学腐蚀测量和超声波检测等。
外电源干扰是指外部电源(如真正阴保电位、铁路电流和直流输电架空线路)对管道的干扰,使其电位偏离设计要求。
外电源干扰可能导致管道腐蚀加剧或产生其它安全隐患。
常用的解决方法包括隔离干扰源和增加阴极保护措施。
电阻变化是指管道的电阻发生变化,可能是由于管道锈蚀、磨损、温度变化或应力变化引起的。
管道阴极保护基本知识文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-管道阴极保护基本知识内容提要:◆阴极保护系统管理知识一、阴保护系统管理知识(一)阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。
阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。
有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。
1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。
在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。
牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。
2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。
其方式有:恒电位、恒电流、恒电压、整流器等。
如图1-4示。
图1-4恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。
而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。
阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。
两种方法的差别只在于产生保护电流的方式和“源”不同。
一种是利用电位更负的金属或合金,另一种则利用直流电源。
强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。
牺牲阳极阴极保护不需外部电源,维护管理经济,简单,对邻近地下金属构筑物干扰影响小,适用于短距离、小口径、分散的管道。
(二)外加电流阴极保护系统的组成1、恒电位仪:珠三角管道采用的是IHF系列数控高频开关恒电位仪,它的主要作用是向管道输出保护电流。
2、阳极地床:由若干支辅助阳极(高硅铸铁)组成,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化(防止电化学腐蚀),电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道在回路中为负极处于还原环境中,防止腐蚀,而辅助阳极进行氧化反应遭受腐蚀,或是周围电解质被氧化。
阴保站的电能60%消耗在阳极接地电阻上,故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。
珠三角管道的阳极地床辅助阳极一般为40支,阳极地床的接地电阻小于3Ω(设计要求),阳极地床与管道的垂直距离要大于50米。
3、参比电极:为了对各种金属的电极电位进行比较,必须有一个公共的参比电极,其电极电位具有良好的重复性和稳定性,构造简单,通常由饱和硫酸铜参比电极、锌电极等。
4、绝缘接头:阴极保护系统保护的是输油站外的长输管道,绝缘接头的作用是将阴极保护电流限制在两个阴极保护站之间的管道上。
5、检查片:由与管道同材质的金属制成50×100mm的挂片,检查片有两组,一组与输油管道相连,处于阴极保护状态,一组不与管道相连,处于自然腐蚀状态。
经过一定时间后将两组检查片的失重量进行比较,可分析管道的阴极保护效果。
6、测试桩:为了检测维护管道的阴极保护系统,在管道沿线设置电流及电位测试桩,电位测试桩每公里设置一个;电流测试桩每5公里设一个;套管电位测试桩每个套管处设置一个;绝缘接头电位测试桩每一绝缘处设一个。
(三)阴极保护的基本参数(1)最小保护电流密度阴极保护时,使腐蚀停止,或达到允许程度时所需的电流密度值称为最小保护电流密度。
最小保护电流密度的大小取决于被保护金属的种类、表面状况、腐蚀介质的性质、组成、浓度、温度和金属表面绝缘层质量等。
防腐绝缘层种类不同,所需要的保护电流密度也不同。
防腐绝缘层的电阻值越高,所需的保护电流密度值越小。
(2)最小保护电位为使腐蚀过程停止,金属经阴极极化后所必须达到的绝对值最小的负电位值,称之为最小保护电位。
最小保护电位也与金属的种类、腐蚀介质的组成、温度、浓度等有关。
最小保护电位值常常是用来判断阴极保护是否充分的基准。
因此该电位值是监控阴极保护的重要参数。
实验测定在土壤中的最小保护电位为-0.85V(相对饱和硫酸铜参比电极)。
(3)最大保护电位在阴极保护中,所允许施加的阴极极化的绝对值最大的负电位值,在此电位下管道的防腐层不受到破坏。
此电位值就是最大保护电位。
最大保护电位值的大小通过试验确定。
一般取-1.5V(CSE)。
阴极保护电位越大,防腐程度越高,单站保护距离也越长,但是过大的电位将使被保护管道的防腐绝缘层与管道金属表面的粘接力受到破坏,产生阴极剥离,严重时可以出现金属“氢破裂”。
同时太大的电位将消耗过多的保护电流,形成能量浪费。
(四)阴极保护投入前的准备和验收1、阴极保护投入前对被保护管道的检查管道对地绝缘的检查:从阴极保护的原理介绍,已得知没有绝缘就没有保护。
为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。
应检查管道的绝缘接头的绝缘性能是否正常;管道沿线的阀门应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施,管道在地下不应与其它金属构筑物有"短接"等故障;管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤均应在施工验收时使用埋地检漏仪检测,修补后回填。
2、对阴极保护施工质量的验收(1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成,并符合图纸设计要求。
(2)对阴极保护的站外设施的选材、施工是否与设计一致。
对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求,尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反。
(3)图纸、设计资料齐全完备。
(五)阴极保护投入运行的调试1、组织人员测定全线管道自然电位、土壤电阻率、阳极地床接地电阻,同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。
2、阴极保护站投入运行按照恒电位仪的操作程序给管道送电,使电位保持在-1.20伏左右,待管道阴极极化一段时间(四小时以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。
然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24小时以上)。
再重复第一次测试工作,并做好记录。
若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。
3、保护电位的控制各站通电点电位的控制数值,应能保证相邻两站间的管段保护电位达到-0.85伏,同时各站通电点最负电位不允许超过规定数值。
调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。
4、当管道全线达到最小阴极保护电位指标后,投运操作完毕,各阴极保护站进入正常连续工作阶段。
(六)阴极保护站的日常维护管理1、恒电位仪的巡检和维护。
1)日常巡检:每天9:00和21:00对恒电位仪巡检一次,并记录输出电压、电流、保护电位数值,与前次记录(或值班记录)对照是否有变化,若不相同应查找原因,采取相应措施使管道全线达到阴极保护。
2)每月维护:每月1日对恒电位仪进行切换使用。
改用备用的仪器时,应即时进行一次观测和维修,发现仪器故障应及时检修,保证供电。
维护内容:观察全部零件是否正常,元件有无腐蚀、脱焊、虚焊、损坏,各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换。
检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固。
定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷。
搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热。
2、参比电极的维护。
作为恒定电位仪信号源的埋地参比电极,在使用过程中需注意观察恒电位仪的输出数值,发现异常可检查参比电极井是否干涸,影响仪器正常工作。
3、阳极地床的维护。
阳极地床接地电阻每月测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻。
4、测试桩的维护。
1)检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有则需更换或维修。
2)测试桩应每年定期刷漆和编号。
3)防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作。
5、绝缘接头的维护。
每月检测绝缘接头两侧管地电位,若与原始记录有差异时,应对其性能好坏作鉴别。
如有漏电情况应采取相应措施。