7直流调速
- 格式:ppt
- 大小:2.16 MB
- 文档页数:27
直流电机的基本工作原理直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。
在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。
直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。
在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。
虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。
直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成本高,运行中的维护检修也比较麻烦。
因此,电机制造业中正在努力改善交流电动机的调速性能,并且大量代替直流电动机。
不过,近年来在利用可控硅整流装置代替直流发电机方面,已经取得了很大进展。
包括直流电机在内的一切旋转电机,实际上都是依据我们所知道的两条基本原则制造的。
一条是:导线切割磁通产生感应电动势;另一条是:载流导体在磁场中受到电磁力的作用。
因此,从结构上来看,任何电机都包括磁场部分和电路部分。
从上述原理可见,任何电机都体现着电和磁的相互作用,是电、磁这两个矛盾着的对立面的统一。
我们在这一章里讨论直流电机的结构和工作原理,就是讨论直流电机中的“磁”和“电”如何相互作用,相互制约,以及体现两者之间相互关系的物理量和现象(电枢电动势、电磁转矩、电磁功率、电枢反应等)。
一、直流发电机的基本工作原理直流发电机和直流电动机具有相同的结构,只是直流发电机是由原动机(一般是交流电动机)拖动旋转而发电。
可见,它是把机械能变为电能的设备。
直流电动机则接在直流电源上,拖动各种工作机械(机床、泵、电车、电缆设备等)工作,它是把电能变为机械能的设备。
直流电机的调速指标(1)调速范围电动机额定负载的调速范围指的是可以运行的最高转速和最低的转速的比,用D 表示minmax n n D = ,不同的机械生产,对电动机要求的调速范围不一样,需要尽可能的降低电动机的最低转速,尽可能的提高电动机最高转速。
电动机最高转速,受到电动机的电压等级和机械强度方面的限制,低转速会被相对稳定性的限制。
(2)静差率(相对稳定性)转速的相对稳定性就是指负载变化的时候,转速变化的稳定程度。
如果转速变化不大,转速的稳定性就很好。
转速的静差率用相对稳定性来代表,电动机在机械上运动的时候,由理想空载运转到额定负载时,电动机的转速降和理想的空载转速的比值,叫做静差率,计算公式:000n n n n n -=∆=δ(3-7)电动机的机械特性曲线中,在一定的条件中,硬度与静差率成比例关系,机械特性硬,转速的稳定性就好。
静差率与调速范围两个指标是相互制约的。
若对静差率的这个要求指标要求越高,则调速范围就越小;反之,若要求条数范围越大,则静差率也越大,转速的相对稳定性越差。
机械生产对相对的静差率的要求本身是不同的,有的精度高,有的可以精度低一点,一般普通的机床要求的静差率不能大于30%,但是精度很高的造纸机床要求的静差率<0.1%,在保证一定的静差率指标的基础上,如果需要扩大调速的范围,就需要减小转动的速度,也就是提高机械的硬度。
(3)调速的平滑型在调速范围内的调速级数越多就可以说调速越平滑,相邻两级转速的比叫做平滑系数,即1-=i i n n ϕ(3-8) 值越接近1,则平滑型越好,当值为1时,称为无极调速,当调速不连续,级数有限时,称为有级调速。
(4)调速的经济型主要指设备的投资,运行效率级维修等用。
直流电机的调速的方法直流电机是一种常见的电动机,它的特性是输出电压和电流是直流的,因此将其应用在不同的机械设备中时,需要根据实际需要对其进行调速,从而满足不同的工作要求。
直流电机调速的方法主要有以下几种:1. 电压调速法电压调速法也称为励磁调速法,就是通过改变电源电压的大小来改变电机的转速。
在实际应用中,常常采用直流电阻切换或场极并联调节的方法来达到不同的调速效果。
在电压调速法中,当电源电压增加时,电机的励磁电流也随之增加,进而使得电机的转矩增大,从而实现调速的目的。
但是,这种调速方式的效率较低,因为当电压降低时,电机的励磁电流也会随之减小,从而使得电机的转矩下降,甚至达不到需要的工作要求。
2. 电流调速法电流调速法也称为串联调速法,就是通过改变电机的电阻大小来改变电机的转速。
在实际应用中,常常采用外加电阻或场极串联调节的方法来实现不同的调速效果。
在电流调速法中,当电阻增加时,电机的总电阻增大,进而使得电机的总电流减小,这时电机的转速也会相应降低,从而实现调速的目的。
但是这种调速方式也存在一定的缺陷,主要是因为电阻耗散能量较大,因此这种调速方式的效率较低。
3. 常规调速法常规调速法是根据工作负载的大小来调节电机的转速。
当工作负载增大时,需要电机输出更多的转矩,从而调高电机的转速;当工作负载减小时,需要电机输出较小的转矩,从而调降电机的转速。
常规调速法的优点是可靠性高、调节精度高,但是需要根据不同的工作负载进行反复调整,因此调节时间较长,不便于实时调节。
4. 变频调速法变频调速法是目前应用最广泛的电机调速方法,它通过改变电机供电电压频率来调节电机转速。
具体来说,变频器是将固定电压电源的输入电压通过变换器组件转换为定电压、可调频率的高压电源,通过改变这个高压电源的输出频率来调节电机的转速。
变频调速法的优点是调速范围大、调节精度高、效率高、稳定性好,因此在各种领域中都有广泛的应用,例如机械制造、电力工业、化工、交通运输等。
直流电机调速公式
直流电机调速公式是用来描述直流电机转速与电压和负载之间的关系的数学公式。
直流电机调速是指通过调节电压或改变负载来控制电机的转速。
直流电机调速公式可以用以下方式表示:
N = k * V / Φ
其中,N表示电机的转速,k是一个常数,V表示电压,Φ表示磁通量。
这个公式可以解释为:电机的转速与电压成正比,与磁通量成反比。
当电压增加时,电机转速也会增加;当磁通量增加时,电机转速会减小。
直流电机调速公式的推导基于电机的基本原理和电磁感应定律。
直流电机是通过电流在电枢线圈中产生的磁场和永磁体之间的相互作用来产生转矩的。
当电压和负载发生变化时,电机内部的磁场也会发生变化,从而影响电机的转速。
调速公式的推导过程比较复杂,需要考虑电机的内部结构、磁场分布、电流分布等因素。
在实际应用中,可以通过调节电压或改变负载来实现对电机转速的控制。
例如,通过增加电压可以提高电机的转速,而通过改变负载可以降低电机的转速。
直流电机调速公式在工业生产和科学研究中具有重要意义。
它可以
帮助工程师和研究人员设计和优化电机控制系统,实现精确的转速调节。
同时,它也为电机的故障诊断和维修提供了理论基础。
直流电机调速公式是描述电机转速与电压和负载之间关系的重要工具。
掌握和理解这个公式可以帮助人们更好地理解和应用直流电机调速技术。
通过合理地调节电压和负载,可以实现对电机转速的精确控制,满足不同应用场景的需求。
直流电机调速的基本工作原理?直流电机的调速方案常用的有3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。
最常用的是调压调速:即:改变电枢电压(特别说明:改变励磁电压一般要同时改变电枢电压,这样在负载增加的情况下能保持输出钮力矩不会有太大变化)直流电机调速器的工作原理一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。
二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器:1.需要较宽的调速范围。
2. 需要较快的动态响应过程。
3. 加、减速时需要自动平滑的过渡过程。
4. 需要低速运转时力矩大。
5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。
以上五点也是直流调速器的应用特点。
三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。
四、直流调速器工作原理简单介绍:直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。
同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。
五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。
最常用的是调压调速系统,即1(改变电枢电压).六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用pid适配器调整。