初中数学冀教版八年级下册第二十二章 四边形22.1 平行四边形的性质-章节测试习题(6)
- 格式:doc
- 大小:152.00 KB
- 文档页数:12
八年级数学下册第二十二章四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、正方形具有而矩形不一定具有的性质是()A.四个角相等B.对角线互相垂直C.对角互补D.对角线相等2、如图,DE是ABC的中位线,若4DE ,则BC的长为()A.8 B.7 C.6 D.7.53、如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为()A.22.5°B.27.5°C.30°D.35°4、菱形周长为20,其中一条对角线长为6,则菱形面积是()A.48 B.40 C.24 D.125、如图,将边长为6个单位的正方形ABCD沿其对角线BD剪开,再把△ABD沿着DC方向平移,得到△A′B′D′,当两个三角形重叠部分的面积为4个平方单位时,它移动的距离DD′等于()A.2 B.3±C.3D.6、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF 沿EF折叠,点B′恰好落在AD边上,则BE的长度为()A.1 B C D.27、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变8、下列命题错误的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9、十边形中过其中一个顶点有()条对角线.A.7 B.8 C.9 D.1010、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平行四边形的对角线________.几何语言:∵四边形ABCD是平行四边形,∴AO=________,BO=________(平行四边形的对角线互相平分).2、如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,则AC的长为__________.3、如图,四边形ABFE、AJKC、BCIH分别是以Rt△ABC的三边为一边的正方形,过点C作AB的垂线,交AB于点D,交FE于点G,连接HA、CF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH≌△FBC;②正方形BCIH的面积=2△ABH的面积;③矩形BFGD的面积=2△ABH的面积;④BD2+AD2+CD2=BF2.正确的有______.(填序号)4、添加一个条件,使矩形ABCD 是正方形,这个条件可能是 _____.5、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O ,在正方形外有一点P ,6OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的最大值为______.三、解答题(5小题,每小题10分,共计50分)1、已知正方形ABCD 与正方形EFGH ,AB a ,()EF b b a =<.(1)如图1,若点C和点H重合,点E在线段CB上,点G在线段DC的延长线上,连接AC、AG、CG,将阴影部分三角形ACG的面积记作S,则S=(用含有a、b的代数式表示).(2)如图2,若点B与点E重合,点H在线段BC上,点F在线段AB的延长线上,连接AC、AG、CG,将阴影部分三角形ACG的面积记作S,则S=(用含有a、b的代数式表示).(3)如图3,若将正方形EFGH沿正方形ABCD的边BC所在直线平移,使得点E、H在线段BC上=,将阴影部分三角形(点H不与点C重合、点E不与点B重合),连接AC、AG、CG,设CH xACG的面积记作S,则S=(用含有a、b、x的代数式表示).(4)如图4,若将正方形EFGH沿正方形ABCD的边BC所在直线平移,使得点H、E在BC的延长线=,将阴影部分三角形ACG的面积记作S,则S=(用上,连接AC、AG、CG,设CH x含有a、b、x的代数式表示).2、如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.(1)若∠BAE =50°,求∠DGF 的度数;(2)求证:DF =DC .3、如图,直线12l l ∥,线段AD 分别与直线1l 、2l 交于点C 、点B ,满足AB CD =.(1)使用尺规完成基本作图:作线段BC 的垂直平分线交1l 于点E ,交2l 于点F ,交线段BC 于点O ,连接ED 、DF 、FA 、AE .(保留作图痕迹,不写做法,不下结论)(2)求证:四边形AEDF 为菱形.(请补全下面的证明过程)证明:12l l ∥1∴∠=____①____ EF 垂直平分BCOB OC ∴=,90EOC FOB ︒∠=∠=∴____②____FOB ∆≌OE ∴=____③____AB CD =OB AB OC DC +=+∴OA OD ∴=∴四边形AEDF 是___④_____EF AD ⊥∴四边形AEDF 是菱形(______⑤__________)(填推理的依据).4、尺规作图并回答问题:(保留作图痕迹)已知:如图,四边形ABCD 是平行四边形.求作:菱形AECF ,使点E ,F 分别在BC ,AD 上.请回答:在你的作法中,判定四边形AECF 是菱形的依据是 .5、如图,在ABCD 中,AE BC ⊥于点E ,延长BC 至点F ,使CF BE =,连接AF ,DE ,DF .(1)求证:四边形AEFD 为矩形;(2)若3AB =,4DE =,5BF =,求DF 的长.-参考答案-一、单选题1、B【解析】略2、A【解析】【分析】已知DE是ABC的中位线,4DE=,根据中位线定理即可求得BC的长.【详解】DE=,DE是ABC的中位线,4∴==,BC DE28故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.3、A【解析】【分析】利用正方形的性质证明∠DBC=45°和BE=BC,进而证明∠BEC=67.5°.【详解】解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE =BC ,∴∠BEC =∠BCE =(180°﹣45°)÷2=67.5°,∵AC ⊥BD ,∴∠COE =90°,∴∠ACE =90°﹣∠BEC =90°﹣67.5°=22.5°,故选:A .【点睛】本题考查正方形的性质,以及等腰三角形的性质,掌握正方形的性质并加以利用是解决本题的关键.4、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得4OA =,继而解得AC 的长,最后根据菱形的面积公式解题.【详解】解:如图,6BD =,菱形的周长为20,5AB ∴=,四边形ABCD 是菱形,132OB DB ∴==,OA OC =,AC BD ⊥,由勾股定理得4OA =,则8AC =, 所以菱形的面积11682422AC BD =⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.5、B【解析】【分析】先判断重叠部分的形状,然后设DD '=x ,进而表示D 'C 等相关的线段,最后通过重叠部分的面积列出方程求出x 的值即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴△ABD 和△BCD 是等腰直角三角形,如图,记A 'D '与BD 的交点为点E ,B 'D '与BC 的交点为F ,由平移的性质得,△DD 'E 和△D 'CF 为等腰直角三角形,∴重叠部分的四边形D 'EBF 为平行四边形,设DD '=x ,则D 'C =6-x ,D 'E =x ,∴S ▱D 'EBF =D 'E •D 'C =(6-x )x =4,解得:x x故选:B.【点睛】本题考查了正方形的性质、等腰直角三角形的性质、平移的性质,通过平移的性质得到重叠部分四边形的形状是解题的关键.6、D【解析】【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3-x,由直角三角形的性质可得:2(3-x)=x,解方程求出x即可得出答案.【详解】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°-∠BEF-∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3-x,∴2(3-x)=x,解得x=2.故选:D.【点睛】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.7、D【解析】【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S=矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键. 8、C【解析】【分析】根据平行四边形的判定逐项分析即可得.【详解】解:A 、两组对边分别平行的四边形是平行四边形,正确,则此项不符合题意;B 、两组对边分别相等的四边形是平行四边形,正确,则此项不符合题意;C 、一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,此项符合题意;D 、对角线互相平分的四边形是平行四边形,正确,则此项不符合题意,故选:C .【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定是解题关键.9、A【解析】【分析】根据多边形对角线公式解答.【详解】解:十边形中过其中一个顶点有10-3=7条对角线,故选:A .【点睛】此题考查了多边形对角线公式()32n n -,理解公式的得来方法是解题的关键.10、D【解析】【分析】当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误.【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,, ∴四边形EFGH 是平行四边形A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形;正确,不符合题意;B 中AC ⊥BD ,则EF FG ,平行四边形EFGH 为矩形;正确,不符合题意;C 中E ,F ,G ,H 不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形;正确,不符合题意;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形;错误,符合题意;故选D .【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.二、填空题1、 互相平分 CO DO【解析】略2、16 【解析】略3、①②③【解析】【分析】由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得S△ABH=S△BCH=12S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.【详解】解:∵四边形ABFE和四边形CBHI是正方形,∴AB=FB,HB=CB,∠ABF=∠CBH=90°,∴∠CBF=∠HBA,∴△ABH≌△FBC(SAS),故①正确;如图,连接HC,∵AI ∥BH ,∴S △ABH =S △BCH =12S 正方形BCIH ,∴正方形BCIH 的面积=2△ABH 的面积,故②正确;∵CG ∥BF ,∴S △CBF =12×BF ×BD =12S 矩形BDGF ,∴矩形BFGD 的面积=2△ABH 的面积,故③正确;∵BC 2=CD 2+DB 2,AC 2=CD 2+AD 2,BC 2+AC 2=AB 2,∴BD 2+CD 2+CD 2+AD 2=AB 2=BF 2,∴BD 2+AD 2+2CD 2=BF 2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.4、AB BC =或AB AD =或CD BC =或CD AD =或AC BD ⊥【解析】【分析】根据有一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形即可得出答案.【详解】解:根据有一组邻边相等的矩形是正方形得:这个条件可能是AB BC =或AB AD =或CD BC =或CD AD =, 根据对角线互相垂直的矩形是正方形得:这个条件可能是AC BD ⊥,故答案为:AB BC =或AB AD =或CD BC =或CD AD =或AC BD ⊥.【点睛】本题考查了正方形的判定,熟练掌握正方形与矩形之间的关系是解题关键.5、3【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案【详解】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.三、解答题1、 (1)12ab (2)212a (3)1()2a b x + (4)1()2a xb -2、 (1)∠DGF =25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB =AE ,AD =AG ,∠BAD =∠EAG =∠AGF =90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF 是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB =AE ,AD =AG ,∠BAD =∠EAG =∠AGF =90°,∴∠BAE =∠DAG =50°,∴∠AGD =∠ADG =180502︒-︒=65°, ∴∠DGF =90°-65°=25°;(2)证明:连接AF ,由旋转得矩形AEFG ≌矩形△ABCD ,∴AF =BD ,∠FAE =∠ABE =∠AEB ,∴AF ∥BD ,∴四边形ABDF 是平行四边形,∴DF =AB =DC .【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.3、 (1)见解析(2)①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形【解析】【分析】(1)分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;(2):根据12l l ∥,内错角相等得出1∠=∠2①,根据EF 垂直平分BC ,得出OB OC =,90EOC FOB ︒∠=∠=,可证②△EOC FOB ∆≌,根据全等三角形性质得出OE =OF ③,再证OA OD =,根据对角线互相平分的四边形是平行四边形判定四边形AEDF 是平行四边形④,根据对角线互相垂直EF AD ⊥即可得出四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤). (1)解:分别以A 、D 为圆心,大于AD 的一半长为半径,画弧,两弧交于两点,然后过这两点作直线交l 1于E ,交l 2于F ,直线EF 为线段AD 的垂直平分线,连接ED 、DF 、FA 、AE 即可;如图所示(2)证明:12l l ∥,1∴∠=∠2①, EF 垂直平分BC ,OB OC ∴=,90EOC FOB ︒∠=∠=,∴②△EOC FOB ∆≌,OE ∴=OF ③,AB CD =,OB AB OC DC +=+∴,OA OD ∴=,∴四边形AEDF 是平行四边形④,EF AD ⊥,∴四边形AEDF 是菱形(对角线互相垂直的平行四边形是菱形⑤),故答案为:①2∠;②EOC ∆;③OF ;④平行四边形;⑤对角线互相垂直的平行四边形是菱形.【点睛】本题考查尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定,掌握尺规作图,垂直平分线性质,三角形全等判定与性质,菱形的判定是解题关键.4、证明见解析;邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【解析】【分析】根据邻边相等的平行四边形是菱形或对角线垂直的平行四边形是菱形证明即可.【详解】解:如图,四边形AECF 即为所求作.理由:四边形ABCD 是平行四边形,∴AE ∥CF ,∴∠EAO =∠FCO ,∵EF 垂直平分线段AC ,∴OA =OC ,在△AEO 和△CFO 中,EAO FCO AO OCAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEO ≌△CFO (ASA ),∴AE=CF,∴四边形AECF是平行四边形,∵EA=EC或AC⊥EF,∴四边形AECF是菱形.故答案为:邻边相等的平行四边形是菱形,对角线垂直的平行四边形是菱形.【点睛】本题考查作图-复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、 (1)见解析(2)12 5【解析】【分析】(1)根据线段的和差关系可得BC=EF,根据平行四边形的性质可得AD∥BC,AD=BC,即可得出AD =EF,可证明四边形AEFD为平行四边形,根据AE⊥BC即可得结论;(2)根据矩形的性质可得AF=DE,可得△BAF为直角三角形,利用“面积法”可求出AE的长,即可得答案.(1)∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=EF,∵AD∥EF,∴四边形AEFD 为平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴四边形AEFD 为矩形.(2)∵四边形AEFD 为矩形,∴AF =DE =4,DF =AE ,∵3AB =,4DE =,5BF =,∴AB 2+AF 2=BF 2,∴△BAF 为直角三角形,∠BAF =90°, ∴1122ABFS AB AF BF AE =⨯=⨯, ∴AE =125, ∴125DF AE ==. 【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.。
冀教版八年级数学下册第22章测试题及答案22.1 平行四边形的性质一、选择题1.平行四边形不一定具有的性质是()A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等2.如图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对(第2题图)(第3题图)3.如图,在平行四边形ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.84.已知平行四边形ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和185.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()A.1种B.2种C.3种D.无数种6.在平行四边形ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.B.C.8 D.167.在平行四边形ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图,在平行四边形ABCD中,若∠A=45°,,则AB与CD之间的距离为()A B C D.3(第8题图)(第9题图)(第10题图)9.如图,在平行四边形ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()A.8 B.C.D.24二、填空题11.平行四边形的对角线_________.12.如图,在平行四边形ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=______,BD=________.(第12题图)(第13题图)(第14题图)13.如图,在平行四边形ABCD中,两条对角线交于点O,有△AOB≌△_______,△AOD≌△_______.14.如图,在平行四边形ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则平行四边形ABCD的周长为______cm.15.在平行四边形ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则平行四边形ABCD的面积为______.16.平行四边形的两组对边分别_________.17.夹在两平行线的平行线段_______,夹在两平行线间_______相等.18.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.19.已知平行四边形ABCD的周长为26,若AB=5,则BC=________.20.在平行四边形ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.三、解答题21.如图,在平行四边形ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出Y ABCD 的面积.(第21题图)22.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.(第22题图)参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.C 8.B 9.B 10.B二、11.互相平分12.4,8 13.COD,COB 14.18 15.12 16.相等17.相等,的垂线段18.14 19.8 20.6,9三、21.(1)(2)2422.提示:证△ABM≌△CDN,得∠BMA=∠DNC,于是∠BMN=∠DNM,所以BM∥DN.22.2 平行四边形的判定一.选择题(共6小题)1.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()(第1题图)A.6 B.12 C.20 D.242.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()(第2题图)A.0个B.1个C.2个D.3个3.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()(第4题图)A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC5.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°二.填空题(共6小题)7.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第7题图)8.如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第8题图)9.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据.(第9题图)10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形:④图中共有四对全等三角形.其中正确结论是(填序号)(第10题图)11.如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)(第11题图)12.如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是.(只添加一个条件)(第12题图)三.解答题(共12小题)13.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF.求证:四边形ACFD为平行四边形.(第13题图)14.在▱ABCD中,∠DAB与∠DCB的角平分线AE,CF分别与对角线BD交于点E与点F,连接AF,CE.求证:四边形AECF是平行四边形.(第14题图)15.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.(第15题图)参考答案一.1.D 2.B 3.B 4.C 5.C 6.D二.7.BO=DO.(答案不唯一)8.AB∥CD或AD=BC(答案不唯一)9.两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)10.①②③11.AD=BC或AB∥CD 12.BF=DE 三.13.证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.14.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠DAB=∠DCB,∴∠ADB=∠DBC.∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∵∠DAE=∠DCF,∠ADB=∠DBC,AD=BC. ∴△DEB≌△BFC,∴AE=CF,∠DEA=∠CFB,∴∠AEF=∠CFE,∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.15.证明:(1)∵AB∥DC,∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=40.22.3 三角形的中位线一.选择题1.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()(第1题图)A.B.2 C.D.32.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()(第2题图)A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=CD3.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()(第3题图)A.6 B.12 C.18 D.244.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()(第4题图)A.5 B.7 C.9 D.11二.填空题5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.(第5题图)6.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.(第6题图)7.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是.(第7题图)8.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.(第8题图)9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.(第9题图)10.如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE 的面积是.(第10题图)三.解答题(共12小题)11.如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(第11题图)12.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).(第12题图)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.(第13题图)14.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.(第14题图)15.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:(第15题图)当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?16.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(第16题图)参考答案一.1.C 2.C 3.B 4.B二.5.3 6.18 7.8.D是BC的中点9.40°10.6三.11.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(第11题答图)(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.12.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵EM∥CG,∴=,∵BM=CM,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).(第12题答图)13.(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.14.解:(1)如答图.(第14题答图)(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5.15.(1)证明:连接BD,如答图.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.(第15题答图)16.解:(1)FH与FC的数量关系是FH=FC.证明如下:延长DF交AB于点G.由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.(第16题答图)22.4 矩形一.选择题1.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为()(第1题图)A.25°B.30°C.35°D.40°2.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是()(第2题图)A.6 B.8 C.6D.43.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角4.如图,在矩形ABCD中,M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为()(第4题图)A.1 B.C.D.5.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角6.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半7.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()(第7题图)A.B.C.D.不确定8.如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC 的度数是()(第8题图)A.30°B.45°C.50°D.55°9.检查一个门框(已知两组对边分别相等)是不是矩形,可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.用曲尺测量两条对角线是否互相垂直10.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()(第10题图)A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.511.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()(第11题图)A.3 B.C.D.4二.解答题12.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.(第12题图)13.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.(第13题图)14.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?(第14题图)参考答案一.1.B 2.D 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.C11.C二.12.证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.13.证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与△DFC中,,∴△BEC≌△DFC(SAS),∴CE=AF,同理可得AE=CF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;(第13题答图)理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EDF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm14.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.(第14题答图)22.5 菱形一.选择题(共6小题)1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()(第1题图)A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()(第2题图)A.24 B.18 C.12 D.93.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()(第3题图)A.20 B.24 C.40 D.484.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()(第4题图)A.52 B.48 C.40 D.205.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二.填空题6.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.(第6题图)7.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.(第7题图)8.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.(第8题图)9.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.(第9题图)10.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.三.解答题(共11小题)11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.(第11题图)12.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.(第12题图)13.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.(第13题图)14.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(第14题图)15.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.(第15题图)参考答案一.1.A 2.A 3.A 4.A 5.B二.6.7.3 8.27 9.(2,﹣3)10.2.三.11.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=212.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.13.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.14.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.15.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.22.6 正方形一.选择题(共5小题)1.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()(第1题图)A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)2.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等4.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()(第4题图)A.B.2C.2 D.15.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()(第5题图)A.16 B.17 C.18 D.19二.填空题(共3小题)6.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.(第6题图)7.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).(第8题图)三.解答题(共4小题)9.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(第9题图)10.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.(第10题图)11.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.(第11题图)12.如图,E是正方形ABCD对角线BD上的一点,求证:AE=CE.(第12题图)参考答案一.1.B 2.C 3.D 4.B 5.B二.6.(﹣1,)7.①③④8.①②④三.9.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.10.(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.11.解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.12.证明:∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.22.7 多边形的内角和与外角和一.选择题1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6 B.8 C.9 D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()(第2题图)A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()(第3题图)A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()(第4题图)A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对二.11.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?(第11题图)12.一个正多边形的每个内角等于108°,则它的边数是.13.在图中,x的值为.(第13题图)14.如图,∠1+∠2+∠3+∠4+∠5+∠6=.(第14题图15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.(第15题图)三.解答题(共3小题)16.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?(第16题图)17.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.(第17题图)18.解答题:(第18题图)(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE 的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)参考答案一.1.D 2.A 3.D 4.C 5.A 6.B 7.A 8.C 9.B 10.B 二.11.120;3960 12.五13.135 14.360°15.10三.16.解:如答图.由三角形的外角性质,得∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.(第16题答图)17.解:(1)如答图.(第17题答图)∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.18.解:(1)如答图1中,结论:2∠P=∠A.(第18题答图)理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如答图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于点F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知,∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β。
冀教版八年级数学下册第22章测试题及答案22.1 平行四边形的性质一、选择题1.平行四边形不一定具有的性质是()A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等2.如图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对(第2题图)(第3题图)3.如图,在平行四边形ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.84.已知平行四边形ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和185.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()A.1种B.2种C.3种D.无数种6.在平行四边形ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.B.C.8 D.167.在平行四边形ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图,在平行四边形ABCD中,若∠A=45°,,则AB与CD之间的距离为()A B C D.3(第8题图)(第9题图)(第10题图)9.如图,在平行四边形ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()A.8 B.C.D.24二、填空题11.平行四边形的对角线_________.12.如图,在平行四边形ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=______,BD=________.(第12题图)(第13题图)(第14题图)13.如图,在平行四边形ABCD中,两条对角线交于点O,有△AOB≌△_______,△AOD≌△_______.14.如图,在平行四边形ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则平行四边形ABCD的周长为______cm.15.在平行四边形ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则平行四边形ABCD的面积为______.16.平行四边形的两组对边分别_________.17.夹在两平行线的平行线段_______,夹在两平行线间_______相等.18.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.19.已知平行四边形ABCD的周长为26,若AB=5,则BC=________.20.在平行四边形ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.三、解答题21.如图,在平行四边形ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出Y ABCD 的面积.(第21题图)22.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.(第22题图)参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.C 8.B 9.B 10.B二、11.互相平分12.4,8 13.COD,COB 14.18 15.12 16.相等17.相等,的垂线段18.14 19.8 20.6,9三、21.(1)(2)2422.提示:证△ABM≌△CDN,得∠BMA=∠DNC,于是∠BMN=∠DNM,所以BM∥DN.22.2 平行四边形的判定一.选择题(共6小题)1.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()(第1题图)A.6 B.12 C.20 D.242.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()(第2题图)A.0个B.1个C.2个D.3个3.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()(第4题图)A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC5.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°二.填空题(共6小题)7.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第7题图)8.如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第8题图)9.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据.(第9题图)10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形:④图中共有四对全等三角形.其中正确结论是(填序号)(第10题图)11.如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)(第11题图)12.如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是.(只添加一个条件)(第12题图)三.解答题(共12小题)13.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF.求证:四边形ACFD为平行四边形.(第13题图)14.在▱ABCD中,∠DAB与∠DCB的角平分线AE,CF分别与对角线BD交于点E与点F,连接AF,CE.求证:四边形AECF是平行四边形.(第14题图)15.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.(第15题图)参考答案一.1.D 2.B 3.B 4.C 5.C 6.D二.7.BO=DO.(答案不唯一)8.AB∥CD或AD=BC(答案不唯一)9.两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)10.①②③11.AD=BC或AB∥CD 12.BF=DE 三.13.证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.14.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠DAB=∠DCB,∴∠ADB=∠DBC.∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∵∠DAE=∠DCF,∠ADB=∠DBC,AD=BC. ∴△DEB≌△BFC,∴AE=CF,∠DEA=∠CFB,∴∠AEF=∠CFE,∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.15.证明:(1)∵AB∥DC,∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=40.22.3 三角形的中位线一.选择题1.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()(第1题图)A.B.2 C.D.32.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()(第2题图)A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=CD3.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()(第3题图)A.6 B.12 C.18 D.244.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()(第4题图)A.5 B.7 C.9 D.11二.填空题5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.(第5题图)6.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.(第6题图)7.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是.(第7题图)8.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.(第8题图)9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.(第9题图)10.如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE 的面积是.(第10题图)三.解答题(共12小题)11.如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(第11题图)12.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).(第12题图)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.(第13题图)14.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.(第14题图)15.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:(第15题图)当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?16.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(第16题图)参考答案一.1.C 2.C 3.B 4.B二.5.3 6.18 7.8.D是BC的中点9.40°10.6三.11.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(第11题答图)(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.12.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵EM∥CG,∴=,∵BM=CM,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).(第12题答图)13.(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.14.解:(1)如答图.(第14题答图)(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5.15.(1)证明:连接BD,如答图.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.(第15题答图)16.解:(1)FH与FC的数量关系是FH=FC.证明如下:延长DF交AB于点G.由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.(第16题答图)22.4 矩形一.选择题1.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为()(第1题图)A.25°B.30°C.35°D.40°2.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是()(第2题图)A.6 B.8 C.6D.43.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角4.如图,在矩形ABCD中,M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为()(第4题图)A.1 B.C.D.5.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角6.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半7.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()(第7题图)A.B.C.D.不确定8.如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC 的度数是()(第8题图)A.30°B.45°C.50°D.55°9.检查一个门框(已知两组对边分别相等)是不是矩形,可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.用曲尺测量两条对角线是否互相垂直10.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()(第10题图)A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.511.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()(第11题图)A.3 B.C.D.4二.解答题12.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.(第12题图)13.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.(第13题图)14.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?(第14题图)参考答案一.1.B 2.D 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.C11.C二.12.证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.13.证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与△DFC中,,∴△BEC≌△DFC(SAS),∴CE=AF,同理可得AE=CF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;(第13题答图)理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EDF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm14.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.(第14题答图)22.5 菱形一.选择题(共6小题)1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()(第1题图)A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()(第2题图)A.24 B.18 C.12 D.93.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()(第3题图)A.20 B.24 C.40 D.484.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()(第4题图)A.52 B.48 C.40 D.205.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二.填空题6.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.(第6题图)7.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.(第7题图)8.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.(第8题图)9.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.(第9题图)10.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.三.解答题(共11小题)11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.(第11题图)12.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.(第12题图)13.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.(第13题图)14.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(第14题图)15.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.(第15题图)参考答案一.1.A 2.A 3.A 4.A 5.B二.6.7.3 8.27 9.(2,﹣3)10.2.三.11.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=212.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.13.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.14.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.15.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.22.6 正方形一.选择题(共5小题)1.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()(第1题图)A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)2.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等4.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()(第4题图)A.B.2C.2 D.15.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()(第5题图)A.16 B.17 C.18 D.19二.填空题(共3小题)6.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.(第6题图)7.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).(第8题图)三.解答题(共4小题)9.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(第9题图)10.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.(第10题图)11.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.(第11题图)12.如图,E是正方形ABCD对角线BD上的一点,求证:AE=CE.(第12题图)参考答案一.1.B 2.C 3.D 4.B 5.B二.6.(﹣1,)7.①③④8.①②④三.9.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.10.(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.11.解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.12.证明:∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.22.7 多边形的内角和与外角和一.选择题1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6 B.8 C.9 D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()(第2题图)A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()(第3题图)A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()(第4题图)A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对二.11.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?(第11题图)12.一个正多边形的每个内角等于108°,则它的边数是.13.在图中,x的值为.(第13题图)14.如图,∠1+∠2+∠3+∠4+∠5+∠6=.(第14题图15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.(第15题图)三.解答题(共3小题)16.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?(第16题图)17.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.(第17题图)18.解答题:(第18题图)(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE 的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)参考答案一.1.D 2.A 3.D 4.C 5.A 6.B 7.A 8.C 9.B 10.B 二.11.120;3960 12.五13.135 14.360°15.10三.16.解:如答图.由三角形的外角性质,得∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.(第16题答图)17.解:(1)如答图.(第17题答图)∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.18.解:(1)如答图1中,结论:2∠P=∠A.(第18题答图)理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如答图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于点F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知,∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β。
冀教版初中数学八年级下册第二十二章一元一次不等式和一元不等式组22.1《平行四边形的性质》【教材分析】平行四边形是空间与图形领域中研究的主要对象之一,不仅是平行线的性质、全等三角形等知识的延续和深化,而且平行四边形与后续学习矩形、菱形、正方形之间体现了“一般与特殊”的研究问题的思想。
发现命题是数学活动“再创造”的产物,发现真理的过程和方法一脉相承,而平行四边形正是学生优化思维程序、提升思维品质的良好素材。
学生在学习和掌握了旋转、中心对称的概念的基础上学习平行四边形的性质,用中心对称作为工具可以比较自然地得出平行四边形的性质,同时研究平行四边形的性质也可以加深对中心对称图形的认识。
一、【教学目标】知识与技能探索并掌握平行四边形的相关概念和性质及其简单应用。
数学思考(1)在观察、实验、猜想、证明等数学活动中,初步发展合情推理和初步的演绎推理能力,能有条理、清晰地阐述自己的观点。
(2)初步体会抽象、推理的数学思想方法。
(3)初步感悟证明的意义。
解决问题(1)初步体会建立数学概念、研究数学命题的基本策略,并逐步应用这一过程解决其他同类问题。
(2)初步体会解决问题方法的多样性。
(3)初步形成反思的意识。
情感态度与价值观(1)初步形成严谨求实的科学态度。
(2)逐步养成独立思考、合作交流的习惯。
(3)体会获得成功的乐趣。
二、【教学重点】理解并掌握平行四边形的概念及其性质。
【教学难点】初步体会概念建立和命题研究的一般方法,初步感悟合情推理和演绎推理的辩证关系。
三、教学过程环节意图建立概念1.前面我们从定义、性质和判定三个角度研究了三角形,从今天开始我们用类比的方法也从这三个角度学习四边形。
下面请同学们观察这几幅图片,看看包含哪些基本图形?学生认真观察,并从图片中抽象出几何图形从图片中抽象出四边形,使得概念学习比较生动和贴近生活,体会数学与日常生活的密切联系。
2.观察抽象出的四边形,交流它们的共同特性和不同特性,并交流。
课时作业(二十六)[22.1 第2课时平行四边形的性质(2)]一、选择题1.平行四边形的对角线一定具有的性质是( )A.相等 B.互相平分C.互相垂直 D.互相垂直且相等2.2017·石家庄二中月考如图K-26-1,▱ABCD的对角线AC和BD相交于点O,与△OBC面积相等的三角形(不包括自身)的个数是链接听课例2归纳总结( )图K-26-1A.1 B.2C.3 D.43.如图K-26-2,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )图K-26-2A.8 B.9 C.10 D.114.如图K-26-3,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )图K-26-3A.10 B.14 C.20 D.225.如图K-26-4,在▱ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )图K-26-4A.2 cm<OA<5 cm B.2 cm<OA<8 cmC.1 cm<OA<4 cm D.3 cm<OA<8 cm6.2016·定州期末如图K-26-5所示,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为( )图K-26-5A.3 B.6 C.12 D.24二、填空题7.如图K-26-6所示,在▱ABCD中,对角线AC,BD相交于点O.若AC=14,BD=8,AB=10,则△OAB的周长为________.链接听课例1归纳总结图K-26-68.如图K-26-7,在▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是________.图K-26-79.如图K-26-8,设O是▱ABCD对角线的交点,如果▱ABCD的面积为20 cm2,那么△ABC的面积为________,△AOB的面积为________.图K-26-810.如图K-26-9,在▱ABCD中,AB=2 13 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC 的周长长________cm.11.如图K-26-10,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC 于点E.若△CDE的周长为10,则▱ABCD的周长为________.图K-26-1012.如图K-26-11,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为________.图K-26-11三、解答题13.2018·淮安已知:如图K-26-12,▱ABCD的对角线AC,BD相交于点O,过点O的直线分别与AD,BC相交于点E,F.求证:AE=CF.链接听课例3归纳总结图K-26-1214.如图K-26-13,在▱ABCD中,对角线AC,BD相交于点O,∠ADB=90°,且BD=AD=2.(1)求▱ABCD的周长;(2)求对角线AC的长.图K-26-1315.如图K-26-14,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC,CD,AC,BD,OC的长及▱ABCD的面积.图K-26-14条件开放题如图K-26-15①,已知▱ABCD的周长为6,AB=1,对角线AC与BD相交于点O.(1)求这个平行四边形其余各边的长;(2)若AB⊥AC,求OC的长;(3)将射线OA绕点O顺时针旋转,交AD于点E(如图②),当旋转角为多少度时,CA平分∠BCE?并说明理由.图K-26-15详解详析[课堂达标] 1.B2.C [解析] ∵▱ABCD 的对角线AC 和BD 相交于点O ,∴AO =CO ,∴△ADO 与△CDO 等底同高,故△ADO 与△CDO 的面积相等.同理可得S △ADO =S △CDO =S △BCO =S △ABO ,与△OBC 面积相等的三角形有3个.故选C .3.C4.B [解析] ∵四边形ABCD 是平行四边形,∴AO =CO ,BO =DO ,DC =AB =6.∵AC +BD =16,∴AO +BO =8,∴△ABO 的周长是14.故选B .5.C [解析] ∵AB =3 cm ,BC =5 cm , ∴2 cm <AC<8 cm .∵平行四边形的对角线互相平分,∴OA =12AC ,∴1 cm <OA<4 cm .故选C .6.C7.21 [解析] △OAB 的周长=AO +BO +AB ,只要求得AO 和BO 的长即可.根据平行四边形的对角线互相平分的性质,在▱ABCD 中,OA =OC =12AC ,OB =OD =12BD.∵AC =14,BD =8,∴OA =7,OB =4.∵AB =10,∴△OAB 的周长=7+4+10=21.8.1<a <7 [解析] ∵四边形ABCD 是平行四边形,∴OA =12AC =4,OD =12BD =3.在△AOD 中,由三角形的三边关系得4-3<AD <4+3.即1<a <7.9.10 cm 2 5 cm 210.411.20 [解析] ∵▱ABCD 的对角线相交于点O ,∴BO =DO.∵OE ⊥BD ,∴BE =DE ,∴△CDE 的周长=DE +EC +DC =BE +EC +DC =BC +DC =10,∴▱ABCD 的周长=2(BC +DC)=20.12. 213.证明:∵▱ABCD 的对角线AC ,BD 交于点O , ∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO. 在△AOE 和△COF 中,⎩⎪⎨⎪⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ),∴AE =CF.14.解:(1)∵在△ADB 中,∠ADB =90°,且BD =AD =2,∴AB =AD 2+BD 2=2 2,∴▱ABCD 的周长=2(AD +AB)=4+4 2. (2)∵四边形ABCD 是平行四边形, ∴OD =12BD =1,AC =2AO.在Rt △ADO 中,AO =AD 2+OD 2=5, ∴AC =2AO =2 5.15.[解析] 根据平行四边形的性质得到AD =BC =8,CD =AB =10,OA =OC =12AC ,根据勾股定理求出AC 的长,从而可求OB 的长,即可得BD 的长,根据平行四边形的面积公式即可求出▱ABCD 的面积.解:∵AC ⊥BC ,∴∠ACB =90°. ∵四边形ABCD 是平行四边形,∴AD =BC =8,AB =CD =10,OA =OC =12AC.∵AB =10,BC =8,由勾股定理,得AC =AB 2-BC 2=6, ∴OC =3,▱ABCD 的面积是BC·AC=8×6=48. ∴OB =BC 2+OC 2=73, ∴BD =2OB =2 73. [素养提升]解:(1)由题意,得AB =CD =1. 又∵▱ABCD 的周长为6, ∴AD =BC =2.(2)∵AB =1,BC =2, ∴AC =BC 2-AB 2=3, ∴OC =32. (3)当旋转角为90°时,CA 平分∠BCE. 理由:∵∠AOE =90°,且AO =CO , ∴EA =EC ,∴∠EAC =∠ECA.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠EAC =∠ACB ,∴∠ACB =∠ECA ,即CA 平分∠BCE.。
章节测试题
1.【答题】如图,在□ABCD中,连接对角线AC,BD,图中的全等三角形有()
A. 1对
B. 2对
C. 3对
D. 4对
【答案】D
【分析】
【解答】
2.【答题】如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD 相交于点O,则OA的取值范围是()
A. 2cm<OA<5cm
B. 2cm<OA<8cm
C. 1cm<OA<4cm
D. 3cm<OA<8cm
【答案】C
【分析】
【解答】
3.【答题】在□ABCD中,对角线AC,BD相交于点O,AC=20,BD=16,则AD的取值范围是______.
【答案】2<AD<18
【分析】
【解答】
4.【答题】(泰州中考)如图,□ABCD中,AC,BD相交于点O,若AD=6,
AC+BD=16,则△BOC的周长为______.
【答案】14
【分析】
【解答】
5.【题文】如图,在□ABCD中,E,F分别是对角线BD上的两点,且四边形AECF是平行四边形.求证:BE=DF.
【答案】证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD
∴∠ABD=∠CDB.
又∵四边形AECF是平行四边形,
∴AE∥CF
∴∠AEF=∠CFE
∴180-∠AEF=180°-∠CFE,
即∠AEB=∠CFD.
在△ABE和△CDF中,
∴△ABE≌△CDF.
∴BE=DF
【分析】
【解答】
6.【题文】如图,在□ABCD中,对角线AC,BD相交于点O,EO⊥AC.(1)若△ABE的周长为10cm,求平行四边形ABCD的周长;
(2)若∠ABC=78°,AE平分∠BAC,试求∠DAc的度数.
【答案】解:(1)∵四边形ABCD是平行四边形,
∴OA=OC.
∵OE⊥AC,∴AE=CE.
故△ABE的周长为AB+BC=10(cm).
根据平行四边形的对边相等,得
□ABCD的周长为2×10=20(cm).
(2)∵AE=CE,∴∠EAC=∠ECA.
∵∠ABC=78°,AE平分∠BAC,
∴∠BAE=∠EAC=∠ECA.∴3∠ACE+78°=180°.
∴∠ACE=34°.
∵AD∥BC,∠DAC=∠ECA=34°.
【分析】
【解答】
7.【题文】如图,已知点A(-4,2),B(-1,-2),□ABCD的对角线交于坐标原点O.
(1)请直接写出点C,D的坐标;
(2)写出从线段AB到线段CD的变换过程;
(3)直接写出□ABCD的面积.
【答案】解:(1)C点坐标为(4,-2),D点坐标为(1,2).
(2)AB绕点O旋转180°与CD重合.(答案不唯一,合理即可)
(3).
【分析】
【解答】
8.【题文】分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,即△ABE,△CDG,△ADF.
(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF,请判断GF与EF的关系(只写结论,不需证明);
(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.
【答案】解:(1)GF⊥EF,GF=EF.
(2)GF⊥EF,GF=EF成立.
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥DC.
∠DAB+∠ADC=180°
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°.
∵.∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°.
∴∠EAF+∠CDF=45°.
∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF.
∴△GDF≌△EAF(SAS)
∴EF=FG,∠EFA=∠DFG.
∴∠GFD+∠GFA=∠EFA+∠GFA=90°.
∴∠GFE=90°∴GF⊥EF,GF=EF.
【分析】
【解答】
9.【答题】如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()
A. AB=CD
B. CE=FG
C. A,B两点间的距离就是线段AB的长度
D. l1与l2两平行线间的距离就是线段CD的长度
【答案】D
【分析】
【解答】
10.【答题】如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()
A. 变大
B. 变小
C. 不变
D. 变大变小要看点P向左还是向右移动【答案】C
【分析】
【解答】
11.【答题】如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=4cm,那么平行线a,b之间的距离为()
A. 5cm
B. 4cm
C. 3cm
D. 不能确定
【答案】C
【分析】
【解答】
12.【答题】已知直线a∥b∥c,直线a与直线b的距离是5cm,直线b与直线c的距离是3cm,则直线a与直线c之间的距离是______.
【答案】8cm或2cm
【分析】
【解答】
13.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB,CD 之间的距离是______.
【答案】3
【分析】
【解答】
14.【答题】如图,已知点E,F分别在长方形ABCD的边AB,CD上,且
AF∥CE,AB=3,AD=5,那么AE与CF的距离是______.
【答案】5
【分析】
【解答】
15.【答题】如图,AD∥BC,AC,BD交于点E,S△ABC=5,S△EDC=2,则
S△BEC=______.
【答案】3
【分析】
【解答】
16.【答题】如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=______.
【答案】2
【分析】
【解答】
17.【答题】平行四边形两邻边分别为20和16,若两较长边之间的距离为8,则两较短边之间的距离为______.
【答案】10
【分析】
【解答】
18.【答题】如图,直线a∥b,点A,B在直线a上,点C,D在直线b上,且AB:CD=1:2,若△ABC的面积为6,则△BCD的面积为______.
【答案】12
【分析】
【解答】
19.【题文】如图,已知l1∥l2,点C1在直线l1上,并且C1A⊥l2,点A为垂足,点C2,C3是l1上任意两点,点B在直线l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3.小颖认为S1=S2=S3,请帮小颖说明理由.
【答案】解:直线l1∥l2,
∴△ABC1,△ABC2,△ABC3的底边AB上的高相等
∴△ABC1,△ABC2,△ABC3同底且等高
∴△ABC1,△ABC2,△ABC3的面积相等,
即.
【分析】
【解答】
20.【答题】如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为
______.
【答案】4
【分析】
【解答】。