平行四边形的性质2 (2)
- 格式:ppt
- 大小:809.00 KB
- 文档页数:19
伙牌镇高效生态课堂 数学 (学科)导学案编号:2019S-SX 014 课型:新授 主备人:张向华 审核人:数学组 班级: 小组: 姓名: 评价: 课题:课题:平行四边形的性质(2)一、学习目标: 1.理解并掌握平行四边形对角线互相平分的性质. 2.能综合运用平行四边形的性质解决平行四边形的有关计算和证明. 3.培养学生的推理论证能力和逻辑思维能力. 二、重点、难点: 重点:平行四边形对角线互相平分的性质,以及性质的应用. 难点:综合运用平行四边形的性质进行有关的论证和计算. (一),温故知新:(独学) 1.复习提问: (1)什么样的四边形是平行四边形。
四边形与平行四边形的关系是什么? (2)平行四边形的性质: ①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等.(二)、自主探索:(对学)(探索平行四边形的性质及其证明)动手做一做:在纸上画两个全等的ABCD 和EFGH ,并连接对角线AC 、BD 和EG 、 ,设它们分别交于点O .把这两个平行四边形重叠在一起,在点O 处钉一个图钉,将ABCD 绕点O 旋转︒180,观察它还和EFGH 重合吗(填重合 或不重合)进一步,我们还能发现平行四边形的对角线有性质是 (用文字说明)结论:平行四边形的对角线互相平分.用符号语言表示为:如图在ABCD 中AC 、BD 交与O 点∴OA= ,OB= .性质的验证:已知:如图: ABCD 的对角线AC 、BD 相交于点O. 求证:OA=OC ,OB=OD.总结:由此得到平行四边形的性质有: (1)边:___________(2)角:____________ (3)对角线:________(三)、例题分析:(群学) 例1已知四边形ABCD 是平行四边形,AB =10,AD =8,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积. 针对练习: 1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______. 2.□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则边AB 长的取值范围是 。
平行四边形与矩形的性质平行四边形和矩形都是几何学中常见的形状,它们有一些相似的性质,但也存在一些不同之处。
本文将介绍平行四边形和矩形的性质,并对其进行比较。
一、平行四边形的性质1.所有的对边都是平行的。
平行四边形的定义就是具有两组平行的边。
2.对角线互相等长。
平行四边形的对角线互相等长,并且将平行四边形分为两个全等的三角形。
3.对角线互相平分。
平行四边形的对角线互相平分,并且交点是对角线的中点。
4.相邻角补角为180度。
平行四边形的相邻角补角相加等于180度,即内角之和为360度。
5.对边相等且对角线垂直。
平行四边形的对边长度相等,且对角线互相垂直。
6.面积计算公式。
平行四边形的面积可以通过底边长度和高的乘积来计算,即S = 底边 ×高。
二、矩形的性质1.所有的对边都是平行且相等的。
矩形的定义就是具有两组平行并且长度相等的边。
2.内角均为直角。
矩形的内角都是90度,因此矩形也是一个正交四边形。
3.对角线相等。
矩形的对角线互相等长,且交点是对角线的中点。
4.面积计算公式。
矩形的面积可以通过底边长度和高的乘积来计算,即S = 底边 ×高。
同样,也可以通过对角线长度之积的一半来计算,即S = (对角线1 ×对角线2) / 2。
5.周长计算公式。
矩形的周长可以通过将两个底边长度和两个高的长度相加,即C = 2 × (底边 + 高)。
三、平行四边形和矩形的比较1.对边性质:平行四边形的对边平行且相等,矩形的对边平行且相等。
2.角性质:平行四边形的相邻角补角为180度,矩形的内角为90度。
3.对角线性质:平行四边形和矩形的对角线都互相等长,但对角线是否垂直则不同。
平行四边形的对角线相互垂直,而矩形的对角线则不相互垂直。
4.面积计算:平行四边形和矩形的面积计算公式相同,都可以通过底边长度和高的乘积来计算。
5.周长计算:平行四边形的周长计算公式与矩形不同。
综上所述,平行四边形和矩形在一些性质上相似,例如对边的性质和面积计算公式。
特殊的四边形及三角形的定义、性质、判定、相关计算公式平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形是中心对称图形,对称中心是两条对角线的交点,不是轴对称图形。
(关于对称性的)(2)平行四边形的对角相等;(关于角的)(3)平行四边形的邻角互补;(关于角的)(4)平行四边形的对边相等;(推论:夹在两条平行线间的平行线段。
)(关于边的)(5)平行四边形的对边平行;(关于边的)(6)平行四边形的对角线互相平分。
(关于对角线的)(7)连接平行四边形各边的中点所得图形是平行四边形。
(关于中点四边形的)3.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(定义判定法)(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形。
4. 相关计算公式:平行四边形的面积公式:底×高;如用“h”表示高,“a”表示底,“s”表示平行四边形面积,则S=ah平行四边形周长:2×(底1+底2);如用“a"表示底1,“b”表示底2,“c“表示平行四边形周长,则C=2(a+b)5.平行四边形中常用辅助线的添法:(1)连结对角线或平移对角线;(2)过顶点作对边的垂线构成直角三角形;(3)连结对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线;(4)连结顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
矩形1.矩形的定义:有一个角是直角的平行四边形是矩形。
2.矩形的性质:(1)矩形是中心对称图形,也是轴对称图形,对称轴是通过对边中点的直线,对称轴共有两条;(关于对称性的)(2)矩形的对角相等;(关于角的)(3)矩形的邻角互补;(关于角的)(4)矩形的对边相等;(关于边的)(5)矩形的对边平行;(关于边的)(6)矩形的对角线互相平分;(关于对角线的)(7)矩形的四个角都是直角;(关于角的)(8)矩形的对角线相等。
第六章平行四边形1. 平行四边形的性质(二)一、学生起点分析学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用,所以对平行四边形具有了一定的观察分析的水平和合情推理水平,具备了自行得出平行四边形对角线的性质的基础。
二、学习任务分析本节的学习任务主要是进一步掌握平行四边形的性质,所以教学目标为:1.进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质;2.在应用中进一步发展学会合情推理水平,增强学生逻辑推理水平,使学生掌握说理的基本方法。
3.通过解决问题,探究并归纳:“平行线间的距离处处相等”这个性质。
教学重点:平行四边形性质的应用教学难点:发展合情推理及逻辑推理水平教学方法:启发诱导法,探索分析法三、教学过程设计本节课分5个环节第一环节回顾思考,引入新课第二环节探索发现,灵活使用第三环节观察分析,理性升华第四环节巩固反馈,总结提升第五环节评价反思,目标回顾第一环节回顾思考,引入新课活动内容:以问题串形式回顾平行四边形的概念和平行四这形的性质。
温故知新。
1.平行四边形都有哪些性质?2.回顾思考选择题(1)平行四边形ABCD中,∠A比∠B大20°,则∠C的度数为()A.60°B.80°C.100°D.120°(2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为()A.5cm B.15cm C.6cm D.16cm(3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有参考答案:1.C.2.A.3.4对.活动目的:1.通过(1)~(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。
活动效果:能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。
第二环节探索发现,灵活使用活动内容:一、探索问题1在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?A.(学生思考、交流)得出:平行四边形的对角线互相平分。
初中数学平行四边形有哪些全等性质平行四边形是一种特殊的四边形,具有一些全等性质。
以下是关于平行四边形全等性质的详细解释:1. 边边边(SSS)全等性质:如果两个平行四边形的对应边分别相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的边长等于平行四边形EFGH的边长,即AB = EF,BC = FG,CD = GH,DA = HE,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的对应边长相等,那么它们满足SSS全等性质,可以判断它们全等。
2. 边角边(SAS)全等性质:如果两个平行四边形的一对对边和夹角分别相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的边长AB = EF,AD = EH,且∠BAD = ∠FEH,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的一对对边和夹角相等,那么它们满足SAS全等性质,可以判断它们全等。
3. 对角全等性质:如果两个平行四边形的对角线互相相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的对角线AC = EG,BD = FH,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的对角线相等,那么它们满足对角全等性质,可以判断它们全等。
根据上述全等性质,我们可以根据给定的条件来逐一比较平行四边形的对应边长、夹角和对角线长度是否满足全等性质。
如果这些条件都满足,就可以断定这两个平行四边形全等。
需要注意的是,判断两个平行四边形全等时,要确保给定的条件准确无误,并且提供了足够的信息。
有时候可能需要使用多个全等性质来判断全等关系。
同时,绘制图形可以帮助我们更好地理解和比较平行四边形的各个部分。
总结起来,我们可以根据平行四边形的边长、夹角和对角线长度来判断两个平行四边形是否全等。
根据边边边全等性质、边角边全等性质和对角全等性质,我们可以逐一比较平行四边形的对应边长、夹角和对角线长度是否相等,从而判断两个平行四边形是否全等。