1
1.亥姆霍兹方程的波束解
波束场强在横截面上的分布形式是由具体激发条件确 定的.现在我们研究一种比较简单和常见的形式.这 种波束能量分布具有轴对称性,在中部场强最大,靠 近边缘处强度迅速减弱.设波束对称轴为z轴,在横 截面上具有这种分布性质的最简单的函数是高斯函数
e−
x
2+y w2
2
2
x2 + y2
(6.2)
ψ(x,y,z)是z的缓变函数.所谓缓变是相对于eikz而言的 .因 子eikz当z≤λ时已有显著变化,我们假设ψ(x,y,z),当z~λ时
变化很小,因此在它对z的展开式中可以忽略高次项5 .
电磁场的任一直角分量u(x,y)满足亥姆霍兹方程
∇2u + k 2u = 0
把
µ(x, y, z) = ψ (x, y, z)eikz
2
2
e −iφ
= µ0
w0 w
e−iφ
φ = arc tg 2z kw02
(6.14) (6.15)
11
把(6 .13)和(6 .14)代人(6 .2)和(6. 4)式 得光束场强函数
( ) µ
x, y, z
µ =
w0
−
x
2+y ω2
2
iΦ
w e e 0
( ) Φ
=
kz
+
§6 高斯光束
第一节所讨论的平面电磁波是具有确定传播方向, 但却广延于全空间中的波动 . 实际上应用的定向电磁 波除了要求它具有大致确定的传播方向外,一般还要 求它在空间中形成比较狭窄的射束,即场强在空间中 的分布具有有限的宽度 . 特别是在近年发展激光技术 中,从激光器发射出来的光束一般是很狭窄的光束 . 研究这种有限宽度的波束在自由空间中传播的特点对 于激光技术和定向电磁波传播问题都具有重要意义 . 本节我们从电磁场基本方程研究波束传播的特性 .