12正弦定理习题课
- 格式:docx
- 大小:13.43 KB
- 文档页数:3
n•••么=3.故ZB= 30 或 150 °课时作业 1正弦定理时间:45分钟 满分:100分课堂训练1. (2013湖南理,3)在锐角△ ABC 中,角 为a, b.若2asinB = V 3b,则角A 等于( )A, B 所对的边长分别 A.12 L n B.6 c nC.4r nD .3【答案】 D【解析】 本题考查了正弦定理由 asinA —sinB ,得 SinA= 2, a—Z 3,b — 1,则c 等于( ) A. 1 B. 2C.V 3-1D.V 3【答案】 B【解析】由正弦定理silb"si nB ,1 . 12.在△ ABC 中,角 A 、B 、 2n =3:.n sinB sin3C 的对边分别为 a 、b 、c,已知/ A由 a>b,得ZA> ZB./.zB= 30 ° 故ZC = 90 °由勾股定理得c= 2,故选B.1 53.在△ ABC 中,若 tanA=3, C^gn, BC= 1,贝J AB =【答案】•••tanA= 3,且 A 为/△ABC 的内角,「.sinA=¥10由【解析】正弦.5定理得AB—BCsinC-仆二6[血疋理得AB— sinA —血—2 .104.在△ ABC 中,若Z B= 30° AB= 2&, AC = 2,求^ ABC 的周长.【分析】本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边 BC,但BC的对角Z A未知,只知道Z B,可结合条件由正弦定理先求出Z C,再由三角形内角和定理求出Z A.【解析】由正弦定理,得sinC = A B S CB=¥3.••AB>AC,.・.ZC>/B,又TO <ZC<180 ; AzC= 60 或120°(1)如图(1),当ZC = 60°时,ZA= 90° BC = 4,^ABC 的周长为 6(2)如图⑵,当ZC= 120°时,/A= 30°, ZA=ZB, BC = AC= 2, △ABC 的周长为4+ 2^3.综上,AABC 的周长为6+厶/3或4 + 2/3.【规律方法】 已知三角形两边和其中一边的对角时,应先由正 弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分 别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业、选择题(每小题5分,共40分)1.在△ ABC 中,sinA= si 门(3,贝卩厶 ABC 是( )2.已知△ ABC 的三个内角之比为 A:B:C= 1:2:3,那么a b c=B. 1:2:V 3D. 1:V 3 :2A .直角三角形 B. 等腰三角形 C. 锐角三角形 D .钝角三角形【答案】【解析】 ••SinA= sinC,「.由正弦定理得a= c,「.ZABC 为等腰三角形,故选 B.A. 1:2:3 C. 1:V 2 弋 4(2)【答案】 D【解析】设/A= k,ZB = 2k,ZC= 3k,由/A+/B+ ZC= 180°得,k+2k+ 3k= 180 ° Ak= 30° 故ZA= 30° ZB= 60; ZC= 90°由正弦定理得 a:b:c = sinA:sinB:sinC = sin30 :sin60 :sin90 =°1:萌:2.3.在△ ABC 中,已知 a= 8,Z B= 60; / C= 75;则( )A. b = 4眾B. b=师f 3ID. b= 3C. b=4^6【答案】 C【解析】2低」60。
正弦定理练习题典型题(含答案)正弦定理⼀1、在ABC ?中,060A ∠=,6a =,3b =,则ABC ?解的情况()A .⽆解B .有⼀解C .有两解D .不能确定2、在△ABC 中,若b=2,A=120°,三⾓形的⾯积S=,则三⾓形外接圆的半径为( ) A .B .2C .2D .43、在ABC △中,,,a b c 分别是⾓A,B,C 的对边,已知1,2a b ==,3cos 2A =,求⾓C .4、在△ABC 中,内⾓A ,B ,C 所对的边分别为a ,b ,c .已知acosC +ccosA =2bcosA .(1)求⾓A 的值;(2)求sinB +sinC 的取值范围.5、在锐⾓△ABC 中,内⾓A ,B ,C 所对的边分别为a ,b ,c ,已知a=2csinA .(1)求⾓C 的值;(2)若c=,且S △ABC =,求a+b 的值.参考答案1、【答案】A2、【答案】B3、【答案】解:在ABC △中,3cos 2A =,得6A π=,⼜1,2a b ==,由正弦定理得sin sin a b A B=,∴sin 2sin 2b A B a ==,⼜b a >,得4B π=或4B 3π=,当4B π=时,6412C ππ7π=π--=;当4B 3π=时,6412C π3ππ=π--=,∴⾓C 为127π或12π. 4、【答案】(1)A =;(2)(,].试题分析:(1)要求解,已知条件中有⾓有边,⼀般情况下我们可以利⽤正弦定理把边化为⾓的关系,本题acosC +ccosA =2bcosA ,由正弦定理可化为sin cos sin cos 2sin cos A C C A B A +=,于是有sin()2sin cos A C B A +=,即sin 2sin cos B B A =,⽽sin 0B ≠,于是1cos 2A =,3A π=;(2)由(1)23CB π=-,且203B π<<,2sin sin sin sin()3B C B B π+=+-,由两⾓和与差的正弦公式可转化为3sin()6B π+,再由正弦函数的性质可得取值范围. 试题解析:(1)因为acosC +ccosA =2bcosA ,所以sinAcosC +sinCcosA =2sinBcosA ,即sin(A +C)=2sinBcosA .因为A +B +C =π,所以sin(A +C)=sinB .从⽽sinB =2sinBcosA .因为sinB ≠0,所以cosA =.因为0<A <π,所以A =.(2)sinB +sinC =sinB +sin(-B)=sinB +sincosB -cos sinB =sinB +cosB =sin(B +).因为0<B <,所以<B +<.所以sinB +sinC 的取值范围为(,].考点:正弦定理,两⾓和与差的正(余)弦公式,正弦函数的性质.5、【答案】试题分析:(1)由a=2csinA 及正弦定理得sinA=2sinCsinA ,⼜sinA≠0,可sinC=.⼜△ABC 是锐⾓三⾓形,即可求C .(2)由⾯积公式,可解得ab=6,由余弦定理,可解得a 2+b 2﹣ab=7,联⽴⽅程即可解得a+b 的值的值.试题解析:解:(1)由a=2csinA 及正弦定理,得sinA=2sinCsinA ,∵sinA≠0,∴sinC=.⼜∵△ABC 是锐⾓三⾓形,∴C=.(2)∵c=,C=,∴由⾯积公式,得absin =,即ab=6.①由余弦定理,得a 2+b 2﹣2abcos=7,即a 2+b 2﹣ab=7.②由②变形得(a+b )2=3ab+7.③将①代⼊③得(a+b )2=25,故a+b=5.考点:正弦定理.点评:本题主要考查了正弦定理,余弦定理,三⾓形⾯积公式的应⽤,考查了转化思想和计算能⼒,属于中档题.正弦定理⼆1、在ABC ?中,o 60A =,3a =2b =B 等于 ( )A. o 45B.o 135C. o 45或o 135D. 以上答案都不对2、在ABC ?中,若ab c b a 2222+=+,则C =()A .030B .0150C .045D .01353、在△ABC 中,若30A =o ,8a =,b =ABC S ?等于()A ....4、设ABC ?的内⾓A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC ?的形状为()A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .不确定5、已知,,a b c 是ABC ?的三边长,且222a b c ab +-=(1)求⾓C(2)若3a c ==,求⾓A 的⼤⼩。
(完整版)正弦定理练习题(经典)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)正弦定理练习题(经典))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)正弦定理练习题(经典)的全部内容。
(完整版)正弦定理练习题(经典)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)正弦定理练习题(经典)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)正弦定理练习题(经典)〉这篇文档的全部内容.正弦定理练习题1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( )A 。
6 B.错误! C.错误! D .2错误!2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4错误!C .4错误! D.错误!3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =错误!,则c =( )A .1 B.错误! C .2 D 。
错误!4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4错误!,b =4错误!,则角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =错误!,b =错误!,B =120°,则a 等于( )A 。
课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π.5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0,得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC 中,已知sin A =sin B +sin Ccos B +cos C,判断△ABC 的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.∴cos A=0,∴∠A=π2,∴△ABC为直角三角形.。
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32 = 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1 ,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. =3A.3 B.3C.3或3 D.3或3 D.=,求出=3,∵1AB =2,6A.6 C.3 D.2 由正弦定理得6=2, =1. = 2. 3,π,则A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43,∴a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得,得2R sin A =2·2·22R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C . 答案:等腰三角形答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.,∴此三角形无解.答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?=BC ·sin ∠ABCsin A =20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. =π4. 3π4,∴=2A =b sin B =c sin C 得5a =10b =2c ,即a =2b ,c =5b ∵a -b =2-1,∴2b -b =2-1,∴=2,c = 5. ABC 中,ab =603,153,求边=1153=1603×3×sin =12,∴∠603,a sin A =b sin B ,∴215. 215. 2. :a sin 。
习题课 正弦定理和余弦定理学习目标 1.进一步熟练掌握正弦、余弦定理在解各类三角形中的应用;2.提高对正弦、余弦定理应用范围的认识;3.初步应用正弦、余弦定理解决一些和三角函数、向量有关的综合问题.1.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为( ) A.13 B.-23 C.14D.-14解析 ∵在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3, ∴a ∶b ∶c =3∶2∶3,设a =3k ,b =2k ,c =3k , 则cos C =a 2+b 2-c 22ab =9k 2+4k 2-9k 212k 2=13,故选A.答案 A2.已知△ABC 的面积S =a 2-(b 2+c 2),则cos A 等于( ) A.-4 B.1717C.±1717D.-1717解析 ∵cos A =b 2+c 2-a 22bc ,面积S =12bc sin A =a 2-(b 2+c 2),∴12bc sin A =-2bc cos A ,∴sin A =-4cos A ,又sin 2A +cos 2A =1,联立解得cos A =-1717.故选D. 答案 D3.在△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.解析 由c 2=(a -b )2+6,可得c 2=a 2+b 2-2ab +6,由余弦定理:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,所以:a 2+b 2-2ab +6=a 2+b 2-ab ,所以ab =6;所以S △ABC =12ab sin C =12×6×32=332.答案 3324.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析 由正弦定理,得sin B =b sin C c =6×323=22,结合b <c 可得B =45°,则A =180°-B -C =75°. 答案 75°类型一 利用正弦、余弦定理证明边角恒等式【例1】 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos A c .由正弦定理得a c =sin A sin C ,b c =sin Bsin C ,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.规律方法 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化.【训练1】 在△ABC 中,若a cos 2C 2+c cos 2A 2=3b2,求证:a +c =2b . 证明 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b , ∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.类型二 利用正弦、余弦定理解三角形【例2】 在△ABC 中,若c ·cos B =b ·cos C ,且cos A =23,求sin B 的值. 解 由c ·cos B =b ·cos C ,结合正弦定理得, sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c . ∵cos A =23,∴由余弦定理得3a 2=2b 2, 再由余弦定理得cos B =66,又0°<B <180°,故sin B =306.规律方法 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.(2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用.【训练2】在锐角△ABC中,b2-a2-c2ac=cos(A+C)sin A cos A.(1)求角A;(2)若a=2,求bc的取值范围.解(1)由余弦定理可得:a2+c2-b2=2ac cos B,⇒-2ac cos Bac=cos(π-B)sin A cos A,∴sin 2A=1且0°<A<90°⇒A=45°,(2)⎩⎪⎨⎪⎧B+C=135°,0°<B<90°,0°<C<90°⇒45°<C<90°,又bsin B=csin C=asin A=2,∴b=2sin B,c=2sin C,bc=2sin(135°-C)·2sin C=2sin(2C-45°)+2,45°<2C-45°<135°⇒22<sin(2C-45°)≤1,∴bc∈(22,2+2].方向1 与三角恒等变换的综合【例3-1】设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sin A=5sin B,则C=()A.π3B.2π3C.3π4D.5π6解析 根据正弦定理可将3sin A =5sin B 化为3a =5b , 所以a =53b ,代入b +c =2a 可得c =73b ,结合余弦定理可得cos C =a 2+b 2-c 22ab =-12, 因为0<C <π,所以C =2π3. 答案 B方向2 在复杂图形中的应用【例3-2】 如图所示,在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 在△ABD 中,AD =10,AB =14,∠BDA =60°,设BD =x , 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos ∠BDA ,∴142=102+x 2-2×10x cos 60°,即x 2-10x -96=0, 解得x 1=16,x 2=-6(舍去), ∴BD =16.∵AD ⊥CD ,∠BDA =60°,∴∠CDB =30°. 在△BCD 中,由正弦定理得BC sin ∠CDB =BDsin ∠BCD,∴BC =16sin 30°sin 135°=8 2. 方向3 与向量的综合应用【例3-3】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos(A -B )cos B -sin(A -B )sin(A +C )=-35. (1)求sin A 的值;(2)若a =42,b =5,求向量BA→在BC →方向上的投影.解 (1)由cos(A -B )cos B -sin(A -B )sin(A +C )= -35,得cos(A -B )cos B -sin(A -B )sin B =-35,则cos(A -B +B )=-35,即cos A =-35.又0<A <π,则sin A =45.(2)由正弦定理,有a sin A =bsin B ,所以sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1或c =-7(负值舍去).故向量BA→在BC →方向上的投影为|BA →|cos B =22.规律方法 求解正、余弦定理综合应用问题的注意点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理. (2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角函数公式列式化简的习惯.1.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解,同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.2.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正弦、余弦定理求解.基础过关1.在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( ) A.-15 B.-16 C.-17D.-18解析 c 2=a 2+b 2-2ab cos C =9,c =3,B 为最大角,cos B =a 2+c 2-b 22ac =49+9-642×7×3=-17.答案 C2.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形解析 假设能作出△ABC ,不妨设高113,111,15对应的边分别为a =26S ,b =22S ,c =10S ,cos A =b 2+c 2-a 22bc =(22S )2+(10S )2-(26S )22×22S ×10S =-23110<0,∴A 为钝角. 答案 D3.已知△ABC 的三边长分别为AB =7,BC =5,AC =6.则AB →·BC →的值为( )A.19B.14C.-18D.-19解析 由余弦定理的推论知: cos B =AB 2+BC 2-AC 22AB ·BC =1935.所以AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×⎝ ⎛⎭⎪⎫-1935=-19,故选D.答案 D4.在△ABC 中,B =60°,a =1,S △ABC =32,则csin C =________.解析 S △ABC =12ac sin B =12×1×c ×32=32, ∴c =2,∴b 2=a 2+c 2-2ac cos B =1+4-2×1×2×⎝ ⎛⎭⎪⎫12=3,∴b =3,∴c sin C =b sin B =332=2.答案 25.在△ABC 中,若a cos A =b cos B =ccos C ,则△ABC 是________三角形. 解析 ∵a cos A =bcos B ,∴sin A cos B -sin B cos A =0,∴sin(A -B )=0, ∵A ,B ∈(0,π),∴A -B ∈(-π,π), ∴A -B =0,∴A =B . 同理B =C ,∴A =B =C , ∴△ABC 为等边三角形. 答案 等边6.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin ⎝ ⎛⎭⎪⎫2A -π4.解 (1)在△ABC 中,根据正弦定理AB sin C =BCsin A , 于是AB =sin Csin A ·BC =2BC =2 5. (2)在△ABC 中,根据余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =55, 由倍角公式得sin 2A =2sin A cos A =45,cos 2A =2cos 2A -1=35,所以sin ⎝ ⎛⎭⎪⎫2A -π4=sin 2A cos π4-cos 2A sin π4=210.7.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.解 (1)由2a sin B =3b 及正弦定理a sin A =bsin B , 得sin A =32.因为A 是锐角,所以A =π3. (2)因为a =6,cos A =12,所以由余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =36. 又因为b +c =8,所以bc =283. 由三角形面积公式S =12bc sin A , 得△ABC 的面积为12×283×32=733.能力提升8.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆半径为( )A.922B.924C.928D.229解析 不妨设c =2,b =3,则cos A =13,sin A =223. ∵a 2=b 2+c 2-2bc cos A ,∴a 2=32+22-2×3×2×13=9,∴a =3. ∵a sin A =2R ,∴R =a sin A =32×223=928. 答案 C9.已知△ABC 中,三边与面积的关系为S △ABC =a 2+b 2-c 243,则cos C 的值为( )A.12B.22C.32D.0解析 S △ABC =12ab sin C =a 2+b 2-c 243=2ab cos C 43,∴tan C =33,C ∈(0,π),∴C =π6,∴cos C =32. 答案 C10.在△ABC 中,若a 2-b 2=3bc ,sin C =23sin B ,则A =________. 解析 由sin C =23sin B ,根据正弦定理,得c =23b , 代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32. 又∵0°<A <180°,∴A =30°. 答案 30°11.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =12a ,2sin B=3sin C ,则cos A 的值为________.解析 由2sin B =3sin C 及正弦定理可得:2b =3c ,由b -c =12a 可得:a =c ,b=32c ,由余弦定理可得cos A =b 2+c 2-a 22bc =34.答案 3412.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b 2=ac ,且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值. 解 (1)由cos B =34及0<B <π,得sin B =1-(34)2=74,由b 2=ac 及正弦定理,得sin 2 B =sin A sin C ,于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B=sin B sin 2B =1sin B =477.(2)由BA →·BC →=32得ca cos B =32, 由cos B =34,可得ca =2,即b 2=2.由余弦定理得a 2+c 2=b 2+2ac cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.13.(选做题)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求角A ;(2)若a =2,△ABC 的面积为3,求b ,c .解(1)△ABC中,∵a cos C+3a sin C-b-c=0,利用正弦定理可得sin A cos C+3sin A sin C=sin B+sin C=sin(A+C)+sin C,化简可得3sin A-cos A=1,∴sin(A-30°)=1 2,∴A-30°=30°,∴A=60°.(2)若a=2,△ABC的面积为12bc·sin A=34bc=3,∴bc=4 ①.再利用余弦定理可得a2=4=b2+c2-2bc·cos A=(b+c)2-2bc-bc=(b+c)2-3·4,∴b+c=4 ②.结合①②求得b=c=2.。
课堂巩固训练
、选择题
1.一个三角形的内角分别为45°与30°,如果45°角所对的边长是4,则30°角所对的边长为()
A.2 6
B.3 . 6
C.2、、2
D.3 . 2
[答
案]
C
2.已知△ABC
中,a=1,b=、3 ,
/
A=30 °,则/ B=( )
兀
A. B. 2二 C.或-n
5 亠兀
D. n或一
3 3 3 3 6 6
[答
案]
C
3.已知△ ABC的三个内角之比为 A : B: C=3: 2: 1,那么对应的三边之比 a : b: c等于()
A.3 :
2 : 1 B. : 2 : 1 C. 、、
3 : .2 : 1 D.2 :
、、3 :1
[答案]2: ,3 : 1.
二、填空题
■■― 2 二
4•在△ ABC 中,若b=1,c= .3 ,Z C= ,则a= ___________________ .
3
[答案]a=b=1.
5在厶ABC 中,a、b、c 分别是/ A、/ B、/ C 所对的边,若/ A=105°,/ B=45 ° , b=2、2,贝U c= __________________ [答案]••• c=2.
三、解答题
6在厶ABC 中,已知A=45°, B=30°, c=10,求b.
[答案]b=5( 、6 - 2 ).
课后强化作业
一、选择题
1.在△ ABC
中,
卜列关系中定成立的疋()
A.a>b sinA
B. a=bs inA
C.a<b sinA
D.a>bsinA [答案] D
2.在△ ABC 中,已知(b+c): (c+a): (a+b )=4 : 5: 6,则sinA; sinB; sinC 等于( )
A.6 : 5: 4
B.7 : 5: 3
C.3: 5: 7
D.4 : 5 : 6
[答案]B
4•不解三角形,下列判断中不正确的是
( )
A.a=7,b=14,A=30 ° 有两解
B.a=30,b=25,A=150 °,有一解
C.a=6,b=9,A=45 ° ,无解
D.b=9,c=10,B=60 °,有两解
[答案] A
5.A ABC 中,a=2,b= . 2 , B=—,贝卩 A 等于(
)
6
[答案] D
A.75 ° [答案] B
B.60
°
C.45 °
D.30
A.
B.
D. 或—[答案]
C
3 3
6.(2012 •潍坊高二期末)在△ ABC 中, a=15, b=10, A=60
,则 cosB=(
A.-
2.2
B.
2、2 3
C.-
D.
.6
4
4。